nature communications

Article

https://doi.org/10.1038/s41467-025-57217-7

Unused housing in urban China and its
carbon emission impact

Received: 29 May 2023

Accepted: 14 February 2025

Published online: 26 February 2025

M Check for updates

Hefan Zheng ®, Rongjie Zhang' , Xinru Yin® & Jing Wu®

The intensive utilization of residential space is crucial to the transition to a
carbon-neutral residential sector, although it has received limited attention in
the literature. We develop a methodology to estimate the volume of unused
housing in urban China, defined as dwelling units built and sold for at least two
years but never occupied. By early 2021, 17.4% of the housing stock built in
China during the first two decades of this century remained unused. The
construction and operation of unused housing produce 55.81 million tons of
carbon dioxide annually at the national level, accounting for 6.9% of the Chi-
nese residential sector’s carbon emissions or 26.5% of the carbon emission
reductions achieved by China’s primary ongoing residential decarbonization

efforts. Cutting down the volume of unused dwelling units can contribute
significantly to China’s decarbonization in 2021-2030.

One-third of worldwide carbon emissions are attributable to the con-
struction and operation of residential buildings', making the residen-
tial sector a key component of global carbon mitigation.
Decarbonizing the residential sector is particularly challenging in
developing countries (i.e., those classified by the International Mone-
tary Fund as “emerging market and developing economies,” based on
factors such as per capita income, economic structure, and level of
global integration) such as China, where the housing stock continues
to rise rapidly. Between 2001 and 2020, China built 11.47 billion square
meters (m?) of urban housing, accounting for about half of the world’s
new housing’.

The majority of current efforts to decarbonize the residential
sector, in both China and high-income countries (those with a Gross
National Income per capita above $14,005 as classified by the World
Bank in 2025), are centered on the “efficiency” perspective, which
seeks to reduce the carbon emission intensity associated with the life
cycle of residential buildings through measures such as construction
material substitution during the materialization stage** and energy
efficiency improvement during the operation stage>. Nevertheless,
the “sufficiency” perspective, which focuses on the intensive usage of
residential buildings, plays an even greater role in the pathway to
establishing a carbon-neutral residential sector’”. For instance, studies
based on the United States and other high-income countries imply
housing size is the primary determinant of residential carbon emis-
sions in their countries”'. In the context of China, where the volume of

newly built housing construction has remained at an increasingly high
level during the past two decades, the sufficiency perspective con-
centrates on the potential oversupply associated with the extensive
new construction'2, However, a comprehensive assessment of
underoccupied housing and its impact on carbon emissions is still
relatively rare.

Researchers and policymakers typically adopt the term “vacancy”
for all underoccupied housing held by households but without resi-
dents at the time of investigation. Nevertheless, various types of
housing vacancy have vastly different implications for decarboniza-
tion: some dwelling units are only temporarily vacant during normal
housing turnovers in the market'*, some units are occasionally vacant
but still serve households’ specific housing demand as seasonal or
second homes”, and some units were previously fully inhabited but
have become obsolete due to deteriorating physical or neighborhood
conditions'®. Whether eliminating the aforementioned types of
vacancies is feasible without impairing housing market efficiency or
resident well-being remains an open question. Therefore, this study
focuses on an extreme type of underoccupied housing in urban China
that is closest to resource waste—dwelling units that remain unoccu-
pied for an extended period after completion. Specifically, we define a
dwelling unit as “unused housing” if it (1) has been sold to a household,
(2) has been completed for at least two years (so that the owner/renter
has sufficient time to decorate the interior and move in), and, most
importantly, (3) has never been occupied by the time of investigation.
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From the standpoint of sustainable development, the so-defined
unused housing has never been functional and, thus, should and can
be mitigated, if not avoided altogether, when decarbonizing the resi-
dential sector.

No current statistics on the volume or proportion of such unused
housing in China or any other country are available; therefore, we
develop a deep-learning-based methodology. Note our estimate only
covers unused units that have been sold to and held by households.
The volume of unsold and unoccupied units held by housing devel-
opers, or the so-called “developers’ inventory,” has been regularly
measured and publicly released by the National Bureau of Statistics of
China” and widely discussed in the literature’. As conceptually illu-
strated in Fig. 1 and described in detail in “Methods,” the method
consists of two core procedures. The first step is to develop a super-
vised deep learning algorithm to utilize the visual information of
online-listed dwelling units and identify all unused units in the full-
sample online-listed unit observations in the target cities, achieving
the proportion of unused units among online-listed units (i.e., the
listing-based unused rate, or LUR). The second step is to convert the
LUR to the stock-based unused rate (SUR, defined as the proportion of
unused units throughout the entire housing stock in the target city),
which is our main interest. We have also adopted multiple methods to
validate the accuracy of the classification results, which we describe in
detail in Supplementary Note 1.

Our estimate suggests that in early 2021, 17.4% of the housing
stock completed between 2001 and 2018 in urban China remained
unused. The unused rate is particularly high in cities or housing sectors
that are more likely to have experienced a substantial housing over-
supply during the last two decades, especially in the majority of third-
tier cities (as defined in Supplementary Table 1, where the city tier
classification follows the definition provided by the National Bureau of
Statistics of China). Moreover, we are able to achieve an estimate of the
remarkable volume of carbon emissions associated with the con-
struction and operation of these unused housing units, which has
substantially counteracted China’s ongoing efforts to decarbonize the
residential sector. Taking the year 2020 as an example, the

construction and operation of unused housing resulted in the emission
of 55.81 million tons of carbon dioxide (CO,) at the national level,
which accounts for 6.9% of the total residential-sector carbon emis-
sions and is equivalent to around 26.5% of the carbon emission
reductions achieved by the Chinese government’s four major carbon-
mitigating measures in the residential sector. Naturally, utilizing
existing unused housing and avoiding its further expansion should be
designated as a top priority in establishing a carbon-neutral residential
sector in China. Our scenario analysis suggests the total carbon emis-
sions of the Chinese residential sector in 2021-2030 can be reduced by
9.1% if the current unused rate is cut by half by 2030.

Results

Volume of unused housing in major cities

We collected information on all dwelling units listed between October
2020 and August 2021 on a leading and anonymous online housing
listing platform in mainland China, covering 56 major cities (Supple-
mentary Table 1). In 2020, these 56 cities accounted for 45.0% of the
urban population, 53.4% of gross domestic product, and 48.4% of the
urban housing completions in China. To further illustrate the spatial
distribution of the sample cities, we also present them on a map in
Supplementary Fig. 1. In each city, we focus on housing communities
completed by real estate developers between 2001 and 2018, con-
sidering that China’s real estate industry only emerged at the begin-
ning of this century.

Figure 2a depicts the baseline estimate of the city-level SURs
during the sample period (we take the midpoint of the sample period,
early 2021, to represent the sample period in the following discus-
sions). We also verify the reliability of the estimates based on other
housing market indicators (Supplementary Note 1).

Generally, the results indicate a substantial portion of new homes
completed during the first two decades of this century in urban China
had never been occupied by early 2021. Using the city-level aggregated
housing completions between 2001 and 2018 as the weight, the
weighted average SUR of these 56 major cities reached 17.4%; that is,
for every six dwelling units completed and sold to households between
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Fig. 1| Method of estimating unused-housing rate. This figure displays our
conceptual method of calculating the stock-based unused-housing rate based on
the listing dataset. Step 1 is to present the method of identifying all the unused
dwelling units for each sample city using a supervised deep learning network. Step

2 is to convert the listing-based unused rate into the stock-based unused rate. Py
denotes the output from the deep learning network for the first photo of Unit 1,
while P; represents the average output across all photos of Unit 1.
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Fig. 2 | City-level unused-housing rates. The figure in (a) displays the distribution
of city-level stock-based unused rates (SURs) in the baseline scenario in early 2021.
The figure in (b) displays the distribution of city-level SURs in the conservative
scenario, reproduced based on (a).

2001 and 2018, at least one unit had never been occupied by early
2021. Based on the volume of housing completions in real estate
development, the unused rate of 17.4% can be converted to a total
volume of 0.93 billion m? of unused housing in these 56 cities. Two
facts may facilitate an intuitive comprehension of this magnitude.

First, the unused volume is equivalent to 293% of the annual housing
completions in these 56 cities in 2020. Second, the unused volume can
accommodate 24.19 million residents, or 6.0% of the urban population
in these 56 cities, based on the per-capita living space for urban Chi-
nese residents of 38.6 m? in 2020.

Besides the baseline estimate in which we adopt the most likely
parameters, we also provide a conservative estimate that tends to
achieve the lower bound of SUR (detailed in “Methods”). The con-
servative estimate, as illustrated in Fig. 2b, puts the unused rate and
volume at 12.5% and 0.67 billion m?, respectively—a lower but still
striking number.

Figure 2 also demonstrates substantial inter-city variances, parti-
cularly from an across-tier viewpoint. Among the 56 sample cities,
there are 4 first-tier cities (7.1%), 18 second-tier cities (32.1%), and 34
third-tier cities (60.7%). The detailed definitions of three tiers of cities
are presented in Supplementary Table 1. In three first-tier cities—Beij-
ing (3.0%), Shanghai (3.8%), and Shenzhen (4.1%)—the SUR is below 5%.
Guangzhou is the only first-tier city with a double-digit SUR (14.8%).
The second-tier cities witness larger variations: the SUR is moderate in
cities such as Suzhou (7.5%), Hangzhou (8.6%), and Tianjin (9.0%), but
remarkable in several other second-tier cities in West China, such as
Chengdu (17.4%), Xi’an (24.6%), and Chongqing (25.8%). Most third-tier
cities have a large proportion of unused housing, with a weighted
average SUR of 25.3%. Specifically, the unused rate exceeds 30% in nine
third-tier cities. Although we leave more conclusive analyses on the
interpretations of the between-tier variations to future study, the
substantial gap still provides meaningful information to facilitate a
back-of-the-envelope calculation on the national-level SUR. Given that
over 250 cities not included in our sample are all third-tier cities,
interpreting the weighted-average SUR of the 56 sample cities (17.4%)
as the lower bound of the national-level SUR is plausible. In this case,
the total volume of unused housing at the national level would reach
1.76 billion m? in early 2021. Here, we can provide another benchmark
for comparison. According to the official statistics by the National
Bureau of Statistics of China, the national-level volume of developers’
housing inventory was 223.79 million m? by the end of 2020, which
implies the volume of unused units held by households was almost
eight times that of the well-known housing inventory held by
developers.

Figure 3 presents evidence that such an inter-city variation pattern
is consistent with the widespread concern about the potential over-
supply in China’s housing market. Figure 3a splits the sample cities into
three categories based on the ratio between aggregated housing
completions in 2001-2020 and population growth during the same
period, which serves as a proxy for excess housing supply in the city.
The results indicate that the unused rate was significantly higher in
cities with a larger supply-demand ratio during these two decades. In
the next two panels, we divide the sample cities according to two
major housing-supply determinants disclosed by the literature. Geo-
graphically, Fig. 3b reveals the SUR was significantly higher in cities
with higher land-supply elasticity, measured by the quantity of flat land
area (i.e., area of non-water land with a slope below 15 degrees) in the
city, normalized by the population in 2000". Institutionally, Fig. 3c
demonstrates the SUR was significantly higher in cities with larger
budget deficits in 2001-2020, which serves as a proxy for local gov-
ernments’ dependence on income from residential land sales as off-
budget revenues®™. In other words, a city is more likely to witness a
higher SUR if it has more developable land resources for housing
development and/or if its local authority has to sell more residential
land to generate off-budget revenues, which further attests to the
linkage between the high unused rate and potential housing
oversupply.

The within-city analysis, as depicted in Fig. 4, also supports such a
linkage. We depict the within-city distribution of all 56 sample cities in
Supplementary Note 2, which indicates that, within the same city, the
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unused housing phenomenon spreads widely across communities,
instead of concentrating in a few neighborhoods. However, the unused
rate is still significantly higher in the suburbs (i.e., communities whose
distances to the city center are above the top quartile; Fig. 4a), which is
consistent with the pattern that housing oversupply is more likely to
emerge in the suburbs in contemporary China®. Similarly, larger
dwelling units tend to have a higher unused rate due to potential
oversupply (over 140 m? in unit size; Fig. 4b). In addition, SUR tends to

decrease with building age (Fig. 4c): the unused rate in the building
cohort aged 3-5 years reached 46.5% and then dropped to 30.0% in the
cohort of 6-8 years, 15.8% in the cohort of 9-11 years, and 5.8% in the
cohort of 12-20 years. On average, the unused units had remained
unused for 6.5 years by early 2021. Nevertheless, we provide the ana-
lysis of the “constant-quality” SURs (Supplementary Note 3), which
controls for the effect of micro-level housing attributes on the city-
level unused rates. The results demonstrate the composition effect
within the cities does not drive the patterns shown in Figs. 2 and 3.

Effect on carbon emissions

We then convert the estimated volume of unused housing to carbon
emissions. As detailed in “Methods,” for each square meter of unused
housing in early 2021, we calculate its annually amortized materi-
alization carbon emissions (with an expected service lifespan of 50
years) and annual central-heating carbon emissions (only for cities in
Northern China), respectively, assuming unused housing does not
generate other operating carbon emissions, such as cooking and
lighting. We can then calculate the aggregated volume of avoidable
carbon emissions associated with all the unused dwelling units in
2020. As shown in Fig. 5, the total volume of preventable carbon
emissions associated with unused housing in these 56 cities amounted
to 25.04 million tons of CO, in 2020 based on the baseline estimate.
Here, we compare the total magnitude with two standards. First, our
estimates indicate the total carbon emissions in the residential sector
of these 56 cities, including those embedded in construction and
materials in new housing and those produced in operating housing,
was approximately 420.76 million tons of CO, in 2020; thus, unused
housing accounted for 6.0% of the total residential carbon emissions.
Second, over the past two decades, the Chinese government has
prioritized four key measures for decarbonizing the urban residential
sector: lowering carbon intensity in steel and cement production,
promoting prefabricated buildings with lower carbon emissions in the
construction stage, promoting green buildings with lower carbon
emissions in the operation stage, and renovating existing buildings to
improve energy efficiency>*’. We estimate that, compared with the
counterfactual scenario where the carbon emission intensity remains
at the level of the year 2000, these four measures achieved a carbon
emission reduction of 107.91 million tons of CO, in the residential
sector of these 56 cities in 2020. In other words, the unnecessary
carbon emissions of unused housing were equivalent to 23.2% of the
carbon emission reductions due to these four measures. Therefore,
excessive housing supply and the massive volume of unused housing
have significantly impeded China’s continuous efforts to decarbonize
the residential sector. We also present a highly conservative estimate,
which not only adopts the conservative estimate of the volume of
unused housing as mentioned in the last section, but also assumes 30%
of the central-heating system in the unused dwelling units would be
turned off (detailed in “Methods”). As depicted in Fig. 6, unused
housing’s carbon emissions would reduce to 17.20 million tons in 2020
if we adopted this conservative estimate, which still accounts for 4.1%
of overall residential carbon emissions and offsets 16.2% of carbon
emission mitigation in the 56 sample cities.

We also estimate the overall volume of preventable carbon
emissions associated with unused housing throughout the country.
Specifically, we adopt the weighted-average unused rate of the 56
sample cities (17.4%) as the national-level housing unused rate to
consider the other 250 cities. In this case, unused housing generated
55.81 million tons of CO, in 2020 based on the baseline estimate. The
overall magnitude accounts for 6.9% of the total residential carbon
emissions and offsets 26.5% of carbon emission mitigation at the
national level. If we adopted the conservative scenario, the unused
housing’s carbon emissions would reduce to 39.85 million tons in
2020, still accounting for 4.9% of the total residential carbon emissions
and offsetting 19.2% of carbon emission mitigation.
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Fig. 5 | Impact of unused housing on carbon emissions in 2020. This figure depicts the city-level carbon emissions (CE) generated by unused housing in 2020. The 56
cities in our sample are sorted by the total carbon emissions of unused housing in 2020.

In Supplementary Note 4, we also provide two other methods to
estimate the unused housing carbon emissions in 2020. The results are
close to the current method, although the alternative methods must
rely on more assumptions.

Consistent with Fig. 2, the results in Fig. 5 emphasize the impor-
tance of unused housing in second- and third-tier cities. For example,
in Xi'an, the capital city of Shaanxi Province, with an estimated SUR of
24.5%, the carbon emissions generated by the construction and
operation of unused housing amounted to 1.64 million tons, which
accounted for 13.3% of its residential carbon emissions (12.30 million
tons) in 2020. By contrast, in superstar cities with low unused rates,
such as Beijing, the impact of unused housing on carbon emissions is
modest. Meanwhile, unused housing’s carbon emissions are generally
higher in Northern China due to central-heating emissions, further
increasing the waste associated with unused housing.

Discussion

This study echoes recent literature that highlights the importance of
the sufficiency perspective in decarbonizing the residential sector.
Using the method based on indoor photos of online listings, our cal-
culations in 56 major Chinese cities indicate 17.4% of dwelling units
completed between 2001 and 2018 had never been occupied by early
2021, with the phenomenon being most pronounced in relatively

smaller cities that have arguably experienced a massive housing
oversupply over the past two decades. The construction and operation
of this vast amount of unused housing produce 6.9% of the Chinese
residential sector’s carbon emissions, which could and should be
avoided. The avoidable emissions of unused housing significantly
offset China’s ongoing efforts to mitigate the residential sector’s car-
bon emissions.

The findings highlight policy priorities in China’s subsequent
efforts to establish a carbon-neutral residential sector. On the one
hand, policymakers should aim to avoid further housing oversupply,
primarily through guiding the residential industry by implementing
long-term and annual housing development plans, as well as asso-
ciated residential land-supply schemes, based on high-quality housing-
demand forecasts. Lowering local governments’ reliance on land-sales
revenues and the resulting residential land oversupply through a
reform of the current local fiscal system can also contribute to this
goal. On the other hand, local governments can also commit to uti-
lizing at least a portion of the unused dwelling units to meet new
housing demand, hence partially replacing the demand for new
housing construction. This objective can be facilitated by, for instance,
imposing a property tax on vacant units, which can increase the
homeownership cost for unused dwelling units while minimizing the
potential unintended effect on housing demand.
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Summary of whole residential sector in China:
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Share of CE generated by unused housing = @/(1D+®) = 4.9%
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Fig. 6 | Impact of unused housing on carbon emissions in 2020. This figure depicts the city-level carbon emissions (CE) generated by unused housing in 2020 in the

conservative scenario.

Here, we provide an intuitive understanding of the potential effect
of these policy efforts via the scenario analysis. In the benchmark
scenario, we assume the Chinese government makes no attempt to
eliminate the increase in unused housing or utilize existing unused
housing, and hence, the unused rate at the end of 2030 remains at the
same level as at the end of 2020. In the other scenarios, we assume a
reduction in the unused rate to 75%, 50%, and 25% as the benchmark
level to reflect different policy intensities. Figure 7 presents the impact
of these initiatives on China’s national-level residential-sector carbon
emissions between 2021 and 2030. Compared with this benchmark
scenario, the total carbon emissions in the residential sector can be
reduced by 4.7% if the unused rate can be gradually lowered to 13.0% in
2030 (i.e., 75% of 17.4%), 9.1% if the unused rate can be lowered to 8.7%
(i.e., cut by half) in 2030, or 13.1% if the unused rate can reach 4.3% (i.e.,
25% of 17.4%) in 2030. Not surprisingly, the potential achievement of
unused-housing-related decarbonization measures is particularly
pronounced in cities with current high unused rates, such as Xi’an. We
estimate Xi'an’s residential carbon emissions in 2021-2030 can be
reduced by 11.6% if its unused rate can be cut by nearly half from 24.6%
at the end of 2020 to 12.4% in 2030. Besides the aforementioned
measures to cut the unused rates, policymakers can also seek to
reduce the carbon emissions associated with unused units. In parti-
cular, in the northern cities, both technique and policy measures can
be implemented to minimize central-heating emissions of the unused
units. We encourage researchers and policymakers from other coun-
tries, especially developing countries, with massive new home

constructions, to consider unused housing when designing dec-
arbonization strategies.

We acknowledge that our research still has a few limitations. First,
the conversion from the LUR to the SUR relies on several assumptions,
which might affect the accuracy of the SUR estimate. Second, the
reliability of our unused-rate estimate could be substantially enhanced
if we could introduce some in-site survey data directly measuring the
community- or even city-level unused rates. Third, the carbon emission
calculations might overlook some components or meaningful
between-city variations in carbon emission intensity. Finally, and per-
haps most importantly, the current study focuses on the impact of
unused housing units on national-level carbon emissions, and hence is
not able to shed more light on the inter- and within-city analyses. In
particular, the significant differences and dynamics in SUR between
different tiers and regions are noteworthy, which would also affect our
understanding of the impact of SUR on carbon emissions. More ana-
lyses of the inter- and within-city spatial distribution of the unused
rate, including its determinants and consequences, should be at the
top of the future research agenda.

Methods

Data

Typically, the seller of a listed dwelling unit in China, or their agent,
would upload the listing information onto online listing platforms for
free to disseminate information to potential buyers®. In almost all
cases, in addition to the text-format information, the seller or their
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Fig. 7 | Contribution of unused rate decreasing on carbon emission reductions
between 2021 and 2030. This figure indicates the percentage of carbon emission
reduction in the Chinese residential sector after the unused rate is gradually cut by
25%, 50%, and 75% throughout 2021 and 2030, respectively. In the benchmark
scenario, the unused rate at the end of 2030 remains at the same level as at the end
of 2020 (for the national average, we adopt the weighted average of 56 sample
cities). We make a forecast from both the national level (a) and for three repre-
sentative cities: b Beijing, which represents the cities with low unused rates;

c Tianjin, which represents the cities with medium unused rates; and d Xi'an, which

represents the cities with high unused rates.

agent uploads multiple indoor photos of the property to depict its
current condition, which has proven crucial for attracting buyers’
attention”>”. Figure 8 presents representative examples of such
indoor photos. Based on these examples, we, or a trained deep
learning model, can discriminate between unused units (Types I-1ll in
the figure) and units that are currently or were once occupied
(“occupied units” hereafter; Types IV and V).

Following this strategy, the raw data are collected from one of the
leading online housing listing platforms in China. Note that although
the literature points out that agents may intentionally release fraudu-
lent or duplicate listings on online platforms to attract attention?, this
possibility is not a concern for this online platform. As the core com-
petitiveness of this platform, the platform not only manually verifies
the validity and uniqueness of each listing, but also provides an explicit
guarantee to buyers that they can get monetary reparation from the
platform if they find invalid (including fake, duplicate, and outdated)
listing information on it.

Through web spiders, we collected information on the dwelling
units listed on the platform in 56 major cities around China between
October 2020 and August 2021. We then cleaned the sample using the
following procedures: (1) We only kept units in communities completed
between 2001 and 2018, because we only consider dwelling units that
have been unused for at least two consecutive years after completion;
(2) we only kept units in communities in the major districts/counties in
the city as listed in Supplementary Table 1; (3) we only kept units with at
least one indoor photo; (4) we dropped outliers as the top and bottom
1% listed units in the number of households in the community and unit
size, and the top 1% listed units in the number of floors; and (5) for each
city, we also dropped the top and bottom 1% listed units in the unit price.
Finally, the working sample includes 1,196,585 listings.

For each unit, we collected all the information provided on the
listing webpage (see, e.g., Supplementary Fig. 2), including the listing
date and price, major community-level attributes (e.g., completion
year, address, whether equipped with the central-heating system, etc.),
major unit-level attributes (e.g., unit size, time of construction, floor,
etc.), text descriptions, and, most importantly, all the indoor photos
uploaded. We collected 6,577,579 photos for the working sample,

giving us an average of 5.5 photos per listed unit. We also list in Sup-
plementary Table 1 the number of dwelling units and photos included
in each city.

Notably, we also collected the date of the previous transaction of
the listed unit from the platform. In China, the transaction tax rate for a
housing resale transaction is partially determined by the seller’s
holding period, defined as the interval between the date when the
seller purchased the unit and the date of the current resale. Therefore,
the date of the previous transaction is widely perceived as a crucial
attribute of a listed unit and is prominently displayed on the listing
webpage.

We provide evidence on the reliability and representativeness of
the listing data in Supplementary Note 1.

Identifying unused dwelling units

We randomly chose 40,000 units with 233,896 indoor photos from the
working sample and hired three research assistants to label whether
each image belonged to an unused or occupied unit. For the research
assistants’ reference, we provided sample images of unused and
occupied units and text descriptions of unused rooms to help them
classify each photo of the training set into unused or occupied units.
We also examined the photos for which the research assistants had
divergent opinions.

As shown in Supplementary Table 2, among all 233,896 photos in
the training set, 38,322 photos are identified as unused, and the other
195,574 photos are identified as occupied. In particular, of the 38,322
photos classified as unused, 23,364 have no decoration (Type 1), 12,437
are partially decorated (Type II), and only 2521 are well decorated (Type
1), which indicates the majority of unused units have no or at most
partial decoration and, thus, are relatively easy to distinguish from
occupied units. Nevertheless, we did not directly use this original
training set, because the ratio between unused and occupied classes is
about 1:5, and the existing literature points out that classifiers trained on
such a class-imbalanced dataset tend to be overwhelmed by the larger
class and ignore the smaller one?*. Specifically, the trained classifiers are
inclined to categorize all observations into the majority class or,
equivalently, reduce the recall rate of the minority class. In our context,
if the trained classifier directly classifies all photos into the occupied
group, the model would still achieve a high accuracy rate due to the
highly unbalanced sample distribution. However, such a classification is
obviously ineffective. To solve the overfitting problem caused by an
imbalanced training set, we utilized the undersampling method, a widely
recognized strategy in the literature”*, and randomly selected 38,322
photos from the occupied group to ensure that the size of the two
classes adopted in the following training is balanced.

We use ResNet-50, a deep learning network widely used for image
classification”*°, as our backbone network. Different from convolu-
tional networks such as VGG16, ResNet-50 reformulates the layers by
learning residual functions with reference to the layer inputs, instead
of learning unreferenced functions, enabling the network to be deeper
and achieve higher classification accuracy®. The architecture of the
network we used is depicted in Supplementary Fig. 3. We convert the
classification network into a regression network, whose continuous
output is more applicable when we comprehensively consider the
outputs of all photos belonging to the same listed unit. More specifi-
cally, we use a one-way fully connected layer with sigmoid as the
output layer to replace the original 1000-way fully connected layer
with softmax. In the current setting, our network returns a value ran-
ging from O to 1, representing the likelihood that the input photo
belongs to an unused unit. The key component of our network is the
convolutional kernel (illustrated by “Conv” in Supplementary Fig. 3),
which is essentially an nxn weighting matrix that extracts features from
the outputs of the last layer. In other words, the sequence of stacked
convolutional layers can be regarded as a more intricate and sophis-
ticated feature extractor, which transforms the input red-green-blue
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Fig. 8 | Examples of photos for unused and occupied dwelling units. This figure
displays representative indoor photos from the online housing listing platform,
which are publicly available under their terms of use and permitted for non-
commercial academic purposes (see https://gitee.com/hefanz/unused-housing-in-
urban-china-and-its-carbon-emission-impact/blob/master/PLATFORM%20SERVICE
%20USE%20AGREEMENT.pdf for details). Any identifying information has been
removed to ensure privacy. The rooms in Type I belong to units without interior
decoration, whereas the rooms in Type Il are partially decorated; obviously, neither

of these two types of units meets the ordinary living standard. The Type IIl rooms
are well decorated, but their pristine state and brand-new furniture indicate they
have never been inhabited. Type IV rooms, on the other hand, are filled with an
abundance of daily items, showing they are currently occupied. Type V rooms are
nearly empty; nevertheless, we can still infer the rooms were once occupied based
on the traces of usage on the walls, floors, and ceilings, even if the owners/renters
have moved out. Accordingly, we classify the dwelling units in Types I, II, and Ill as
“unused,” and units in Types IV and V as “occupied”.

(RGB) image into dozens of features that can be comprehended by
subsequent layers. The training process is analogous to using the
training sample to teach the network which features should be
extracted and the relationships between features and regression
results. Besides the original labeled images, we also generate random
horizontal reflections to modify the RGB channel intensities of the
input training images to prevent overfitting issues™.

To accelerate training, we start with the pre-trained parameters of
ResNet50, which was trained using IMAGENET, a dataset containing
over 1 million images. Then, we fine-tune the model based on our
dataset of tagged photos. We randomly choose 90% of the tagged
photos as the training set and the remaining 10% as the testing set.
Using a batch size of 96 and a learning rate that initializes at 0.002 and
decays by 0.9 per 10 epochs, we train the model with an Adam opti-
mizer for 1000 epochs.

Because the output result is a continuous possibility, we classify
the photo based on a designated threshold. Specifically, if the output
result is larger than the designated threshold, the photo is classified as
positive (i.e., unused). Similarly, if the output result is smaller than the
designated threshold, the photo is classified as negative (i.e., occu-
pied). To select an optimized threshold, we use the F1 score, a com-
monly used metric for evaluating the performance of deep learning
models®***, as the evaluation metric. As listed in Eq. (1) and Eq. (2), True
Positives (TP) are examples correctly classified as positives, False
Positives (FP) refer to negative examples incorrectly classified as

positives, True Negatives (TN) correspond to negative examples cor-
rectly labeled as negative, and False Negatives (FN) refer to positive
examples incorrectly labeled as negatives. P(Precision) reflects the
capacity of a classification model to identify only relevant data,
whereas R(Recall) reflects the ability to identify all relevant cases within
a dataset™. The F1 score, as listed in Eq. (3), is the harmonic mean of P
and R, allowing it to assess the model comprehensively:

TP

- 1
P=7p+Fp @
TP
- 2
R=Tp+Fn @
PxR
- 3
Fi=2xpp 3)

Supplementary Fig. 4 depicts the three metrics at various
thresholds. When the threshold is 0.44, we get the highest F1 score of
0.897, with a P of 90.1% and a R of 89.3%. For simplicity, in the baseline
estimate, we directly apply the threshold of 0.5 to distinguish between
the unused and occupied classes. Under this threshold, P is 91.4% and
R is 87.5%.

We send each of the 6,577,579 photos into the trained model. The
mean value of the predicted likelihood is 0.24, whereas the standard
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deviation is 0.34. As Supplementary Fig. 5a shows, the distribution of
prediction concentrates around O (i.e., 100% to be occupied) and 1 (i.e.,
100% to be unused); specifically, 88% of predicted results are smaller
than 0.2 or larger than 0.8. Among all 6,577,579 photos, 1,284,981
(19.5%) have a prediction value larger than the threshold of 0.5 and
hence are classified as unused.

For each of the 1,196,585 listed units, we calculate the average
prediction value of all the photos associated with the unit as its unit-
level prediction value. The unit-level prediction has a mean value of
0.23 and a standard deviation of 0.31. As Supplementary Fig. 5b
demonstrates, the unit-level predictions are still centered around O
and 1, with 89% of units possessing a prediction value smaller than 0.2
or larger than 0.8. Given the threshold of 0.5, we find 211,498 (17.7%)
units are identified as unused, while the other 985,087 are identified as
occupied.

We provide evidence of the reliability of the LUR in Supplemen-
tary Note 1.

Converting LUR to SUR
The key challenge in converting LUR to SUR lies in the potential dif-
ference in the selling probability between unused and occupied units.
For instance, if owners are less willing to list and sell unused units, the
LUR would be systematically lower than the SUR, and vice versa.
Suppose S dwelling units exist in the housing stock of city X at
time T; p percent of the stock is still unused (i.e., the stock-based
unused rate, or SUR), and 1-p has been occupied. Here, we focus on
adjusting for two potential differences between the unused and
occupied groups. First, the selling probability of an unused unit might
not be equal to the selling probability of an occupied unit. We assume
that the selling probability of occupied units during our sample period
is p and that of unused units is gp. Second, the extent to which these
two groups rely on online platform listings may also differ. We assume
that ¢ of occupied units for sale are listed on our online platform,
whereas the corresponding ratio for unused units is ré. Accordingly,
LUR can be calculated as Eq. (4):

SxSURxqpxré

= 4
LUR SXx(1—SUR)xpx6+SxSURxqp*ré )

Then, we can have Eq. (5):
SUR= LUR 5)

LUR — LURXxgxr+qxr

We estimate g, the ratio between the selling probability of unused
and occupied groups (i.e., and), based on the transaction record data
from the online listing platform. Specifically, for each listed unit, the
online platform reports the date of the prior sale of the unit (i.e., when
the current owner of the listed unit purchased the unit from the new
home or resale market), allowing us to calculate the holding period of
the current owner. We can hence calculate the average lengths of
holding periods for the unused and occupied groups (i.e., H Unused
and H_Occupied, respectively) in each city. By definition, the average
(annual) selling probability of a specific dwelling-unit cohort equals the
reciprocal term of the average holding periods (in years) of the same
cohort. Accordingly, g can be calculated as Eq. (6):

g- Punused _ e _ H Occupied ©

Poccupied WM H_Unused
We assume r, the difference in the likelihood of listed units
appearing on the online platform, equals 1 in the baseline estimate
based on the following reasons. First, the China Institute of Real Estate
Appraisers and Agents (the Chinese counterpart of the National
Association of Realtors) reports over 85% of housing resale

transactions in China are assisted by professional agents, who, in
almost all cases, rely heavily on online platforms to disseminate
information. Therefore, one can assume a very high proportion of
listings would appear on online platforms, leaving little potential for
differences between unused and occupied groups. Second, existing
studies in both the United States and China indicate occupancy status
is not a key determinant of whether sellers choose an agent service or
online listing service®**. Third, to test whether the online platform
contains significant sampling biases, we collected listing data for five
sample cities between November 2020 and March 2021 from both our
online platform and another leading online listing platform in China,
and then applied the same classification procedures to calculate the
city-level LURs for each platform. As Supplementary Table 3 shows, the
LURs based on these two platforms are highly consistent; in particular,
the LURs for our platform are neither systematically higher nor lower
than those based on the other platform. We can thus safely assume
that the online platform we choose neither oversamples nor under-
samples unused units across all online listings.

In the calculation, because Fig. 4 indicates that LUR substantially
varies with building age, we split the housing communities in a city into
four groups according to the year of construction completion. The first
three groups include housing communities completed in 2016-2018
(i.e., with buildings aged 3-5 years), 2013-2015 (6-8 years), and
2010-2012 (9-11 years), respectively, whereas the last group com-
prises communities completed in 2001-2009 (12-20 years). For each
city, we first calculate the LUR and g for each building-age cohort.
Then, we calculate the SUR for each building-age cohort based on
Eq. (5). Finally, we calculate the weighted average of SUR for all four
building-age cohorts, weighted by the volume of housing completions
in the corresponding years in the city as reported by the local statistical
authority. In Supplementary Note 1, we also try grouping the units by
other housing attributes, such as location, instead of building age, and
the results are qualitatively constant.

Conservative estimate of the unused rate

We expect the baseline estimate based on the aforementioned para-
meters to achieve an estimate of the most probable SUR. We also
evaluate a conservative estimate, which we expect to yield a lower
bound of SUR. Compared with the baseline estimate, the conservative
estimate alters two key parameters. First, in classifying the unused and
occupied units based on indoor photos, instead of adopting the con-
ventional threshold of 0.5, we use the Fq 5 score as the metric to get the
threshold, which values P(Precision) more than R(Recall). The Fq 5 score
is calculated as Eq. (7):

PxR

Fos=(1+0.5%)x —
05=( ) 05TxP+R

@)

We obtain the maximum Fg 5 score of 0.922 when the threshold is
0.7, with Pimproving from 91.4% to 95.6% and R decreasing from 87.5%
to 80.7%. A higher P ensures the model is less likely to misclassify
occupied units to the unused class. Under the conservative threshold
of 0.7, the number of unused units is reduced to 180,600 from 211,497
in the baseline estimate.

Second, instead of assuming r equals 1 when converting LUR to
SUR, we consider the possibility that unused units may have a higher
probability of being listed on online platforms. Specifically, as descri-
bed above, the official statistics indicate that 85% of housing resales are
assisted by professional agents. As a most extreme case, we assume
100% of unused listed units are assisted by agents and therefore appear
on online platforms. In this scenario, for each sample city, we can
impute the share of occupied units assisted by agents (and hence listed
online) based on the estimated LUR, bringing to 85% the weighted
average of being assisted by agents of both groups. We then use the
imputed r, instead of the value of 1, in Eq. (5) to convert LUR to SUR.
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Basic setting of carbon emission calculations

For city i, between 2001 and 2020, we can observe the annual series of
housing completions (in floor area), AC;,. Meanwhile, we can impute
the annual series of total housing stock (in floor area), AS;,, between
2001 and 2020, as Eq. (8):

AS;  =AS;, +AC;, —AD; ., t)]

where AD;, refers to the floor area of housing demolition in the city-
year, calculated based on the annual demolition rate of 2% with the
expected service lifespan of 50 years as required by the technique
code in China®. To calculate the housing stock in 2000, we use
the city’s urban population and per-capita living space, as reported by
the 2000 Population Census.

Note that, as revealed in this study, a portion of AS;, had
never been occupied by the end of year t. Here, we assume that
the housing stock in 2000 was completely occupied by 2001 due
to the inadequate housing supply during the pre-reform era and
only consider the unused units completed in and after 2001. In
our data, we can directly observe the SUR associated with each
building-year cohort in early 2021 (or the end of 2020). Hence,
based on AC;, and the building-year-specific SUR, we can calcu-
late the volume of unused housing in each building-year cohort at
the end of 2020 (SUR of the year-2019 cohort is set as 100% by
definition), denoted by AUi,ZOZO,BuildingYearr from AUi,2020,2001 to
AU, 2020,2019- Note the unused rate is originally calculated based
on the proportion of units, and here, we apply it to the floor-area
volume. Considering that larger units are more likely to be
unused, as revealed in Fig. 4 in the main text, this conversion
achieves a lower bound of the estimate on unused volume (and
the associated carbon emissions). By aggregating the volume of
unused housing in the building-year cohorts between 2001 and
2019, we can get the total volume of unused housing at the end of
2020, or AUi,zggo, as Eq. 9):

2019

AUi,ZOZO = AUi, 2020, Building Year- (9)
Building Year=2001

We can then get the floor area of occupied units, or AO; 020. Note
we assume it is reasonable for any housing unit to be unused during
the first two years after its completion. In China’s common practice, a
buyer typically takes several months to over one year to decorate
a newly purchased unit and then move in. Here, we choose to adopt a
relatively longer option of a two-year window rather than a one-year
window to obtain a lower bound of the unused rate. For this purpose,
we also need to further extract the housing-completion area in 2020
from the housing-stock area in 2020 to calculate the floor area of
occupied units at the end of 2020, as Eq. (10):

AO; 5020 =AS; 2020 — AU 2020 — AC; 2020- (10)
AO;,can be interpreted as the floor area of actual housing demand in
the city-year. For each sample city, we can use the logistic function to
regress the annual series of AO;, between 2001 and 2020 and then
use the estimated coefficients to forecast AO;, between 2021
and 2030.

Calculations of actual carbon emissions in 2020

The residential sector’s overall carbon emissions consist of the
construction and operation stages. The volume of residential-
building construction emissions in year ¢, CE_C Actual;,, is calcu-
lated as Eq. (11):

CE_C_Actual, ,=AC; . x CO2.C; , (11)

where CO2 C;, refers to the embodied carbon-intensity factor during
the construction stage (including the construction material produc-
tions, e.g., cement and steel) for the residential sector in year ¢.

For the operation stage, the volume of carbon emissions of the
residential building stock in year ¢, CE_O Actual,, is calculated as Eq. (12):

CE_O_Actual; ,=AO; , % (C02.0; ,+ CO2_CH; ,) b
+AU; . xCH;xCO2_CH; ,, 12
where CO2 O, indicates the operational carbon-intensity factor (e.g.,
cooking and lighting) in China’s residential sector. For cities located in
Northern China, we consider the carbon emissions associated with
central heating in different regions. Because the regional energy
structure and climate conditions greatly influence heating demand
and carbon emissions, we employ a provincial-level factor, CO2 CH;,,
to accurately measure the carbon emission intensity of central
heating®. We do not consider the carbon emissions associated with
the cooling system, because the district cooling system has seldom
been adopted in China’s residential sector so far**°,

Here, we assume that an unused unit does not generate operational
carbon emissions. As for the heating emissions, we assume that if an
unused unit uses the individual household-based heating system, the
owner will turn off the system, and hence, the unit would no longer
generate heating emissions. However, for dwelling buildings with central-
heating systems, whose proportion in Northern Chinese cities reaches as
high as 89.5% according to our dataset, the heating systems are expected
to keep functioning for the unused dwelling units for two reasons. First,
from the community perspective, a heat-supply company is typically
reluctant to turn off the central-heating system of the whole community
even if the community is underoccupied. Chinese governments have
implemented official regulations on operating the central-heating system
for residential communities. Normally, the heating facilities shall keep
functioning during their warranty period (typically the first two years
after completion) for all communities with viable central-heating sys-
tems, regardless of the occupancy conditions. Post-warranty, these sys-
tems are required to remain operational if a desirable proportion of
households (usually 40-50%) have moved in and continue to use central
heating. Even if the occupancy rate falls slightly below the official
threshold, in practice, the heat-supply company still tends to continue
supplying heat to avoid dissatisfaction among remaining residents. Sec-
ond, from the perspective of individual housing units, owners of some
unused units may have access to turning off their indoor central-heating
system. Still, we can reasonably expect that they have limited economic
incentives to do so, because the primary charging method for central
heating in current China is still based on heating area rather than actual
heating consumption**2, Even for the latter case, ~15-30% of the heating
expenditures shall still be paid as an infrastructure operation fee even if
the indoor heating system is turned off. Based on the above analysis, we
only adopt CH; to indicate the proportion of unused housing with central
heating in city i, calculated based on the same dataset of listing-unit
information that we use to calculate LUR.

Nevertheless, to account for the potential shutoff of the central-
heating system in unused housing, we also introduce a conservative
scenario where we assume 30% of the unused units would have their
central-heating system turned off either by the community or their
owners. In this case, the unused units whose central-heating systems
have been shut off still cannot save all the heating emissions for three
reasons. First, if the heat-supply company discontinues its service to an
underused community, the remaining residents might resort to inef-
ficient self-heating methods (e.g., air conditioners), potentially result-
ing in higher carbon emissions. Second, a large amount of heat has
already been lost before it reaches the final end of housing units.
Specifically, the power consumption for the circulating water pump,
heat-source efficiency, and heat loss in the pipe network can account
for 25-47% of the total heating consumptions*’, which indicates the
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end-use heat reductions can only have a limited impact on the total
heat loss. Finally, households will require more heat to keep their
rooms warm once their neighbors turn off their heat supply. The
intuition is that the indoor temperature of a single unused housing unit
within a large apartment building would not drop significantly after
turning off its own heat supply, because its adjacent rooms would heat
it up through the walls, floors, and ceilings, with the cost being that the
heating systems of these adjacent rooms have to generate more heat.
Specifically, the existing literature indicates the long-term closure of
heating in an adjacent unit would increase heating expenses by
20-50%***. Considering all these factors, we assume 30% of the
heating emissions from unused housing will not be eliminated merely
by shutting down the central-heating system.

As for the three carbon-intensity factors (CO2_C;,, CO2_0;,, and
CO2 CH;,), to reflect the actual emissions condition, we have already
taken into consideration China’s decarbonization efforts in
the residential sector. Specifically, we adopt 465.59 kgm™ for
CO2 C; 2000, 28.21kg m™ for CO2 0; 2000, and 124.00 kg m™ for the
national-level CO2 CH;3000°**¢* for the scenario in 2000, under
which no decarbonization measures had been taken. Then, we
consider four key decarbonization measures during the past two
decades to update those intensity factors in each subsequent year
from 2001 to 2020.

For the embodied carbon emission factor, CO2 C;,, we first con-
sider reducing carbon intensity in major material productions, speci-
fically, steel and cement. We incorporate the estimates on the
proportion*® of brick concrete structures, steel concrete structures,
and steel structures in the national-level annual residential building
completions and the average material intensity*® of 10 major materials
(e.g., cement, steel, etc.) for each of these three structures. We then use
the time-variant carbon-emission-intensity factors of cement” and
steel’”** and the time-invariant intensity factors of the other eight
materials, as well as transportation and on-site construction*’ from
existing literature. The average embodied carbon intensity can thus be
calculated. Second, we consider the development of prefabricated
buildings. The government report documents that the proportion of
prefabricated buildings in the national-level residential building com-
pletions increased from 4.9% in 2016 to 20.5% in 2020. Prefabrication
offers a 15% carbon reduction relative to the traditional cast-in-situ
method*>*. Consequently, the average embodied carbon intensity is
further reduced.

For the operational and central-heating carbon emission factors,
C020;, and CO2CH;, we account for improvements in energy-
efficiency standards and the promotion of green buildings. China has
progressively implemented the building energy-efficiency code since
1986, which has gone through four stages, with the goal of the building
energy-saving rate increasing from 30% to up to 75%"". In addition to
new buildings that have implemented the updated standards, the
energy-efficiency level of existing residential buildings has also
improved, according to the report of the Chinese government. Using
completion and renovation data, we can impute the distribution of
housing across different energy-efficiency levels, which allows us to
calculate the average operational and heating carbon-intensity factors
for each year. Additionally, studies show carbon emissions from green
residential buildings are 10% lower than those from non-green
buildings®™. Moreover, the Chinese government has also disclosed
the proportion of green buildings in total new construction, mush-
rooming from 2% in 2012 to 65% in 2019. The yearly operational and
heating carbon-intensity factors can thus be obtained considering the
joint effect achieved by the above two measures.

Finally, we can have the city-level total emission volume in any
specific year. Take the year 2020 as an example, as shown in Eq. (13):

CE_Actual; y0p0 = CE_C_Actual; oy + CE_O_Actual; 5ny. 13)

Calculations of carbon emissions from unused housing

For each square meter of dwelling space that remained unused at the
end of 2020 (note we do not include the carbon emissions of unused
units completed in 2019 and 2020, because we assume they are not
preventable), we consider its related carbon emissions from two per-
spectives. The carbon emissions for the operation stage are straight-
forward. As described in the previous subsection, we assume unused
housing does not generate operational carbon emissions, but it would
still incur central-heating emissions if it is located in a northern city and
is equipped with a central-heating system. For the construction stage,
we convert the lump-sum construction emissions to the annual amor-
tized emissions™. Because the literature has not achieved a consensus
on the “discount rate” of carbon emissions, we choose to evenly
amortize the construction carbon emissions on the expected service
lifespan of 50 years. Because, by definition, the unused period can only
exist at the beginning of the lifespan, adopting the 0% discount rate (i.e.,
even amortization) achieves a lower bound of the annual amortized
emissions. Therefore, for dwelling units that were completed in the year
BuildingYear and remained unused at the end of 2020, the associated
waste in carbon emissions in 2020 can be calculated as Eq. (14):

2018
CE_Unused; 5050 = CE_Unused; 500, puitding¥ear
BuildingYear =2001
2018
—_ 0,
= Z (2/’ xA Ui, 2020, BuildingYear
BuildingYear =2001

14)

X COZ—Ci, 2020, BuildingYear +AUi, 2020, BuildingYear
X CH; x CO2_CH; 2000, puildingyear)-

Carbon emission reductions by decarbonization measures

We consider a counterfactual scenario in which none of the four dec-
arbonization initiatives are implemented, and the carbon-intensity
factors remain constant at 2000 levels. Under this non-
decarbonization scenario, the residential sector’s total carbon emis-
sions can be re-calculated as Eq. (15):

CE_High; 5050 =AC; 2020 X CO2_C; 5000 + AO; 2020 X (CO2-0; 5000
+C02_CH; 5000) + AU 2020 X CH; x CO2_CH, 5000
(15)

The difference between CE_High; 020 and CE_Actual; ;0,0 reflects
the carbon-emission-reduction contribution of these four dec-
arbonization measures.

Scenario analysis for 2021-2030

Based on AO;, we can impute the series of annual floor areas of
housing completion between 2021 and 2030, AC Base;,, which could
make the unused rate remain at the same level as the end of 2020.
Specifically, recall the SUR is defined as Eq. (16):

SUR; ;= SUR; 5020 = (AS;  — AO; 1) /AS, ;- (16)

Based on Eq. (8) and Eq. (16), we can have Eq. (17):

AC_Base; = {(AS; ;1 — AD; ;) X (SUR; 20,0 — D +AO;  } /(1 = SUR; 5020)-
17)

We also assume the carbon-intensity factors are consistent with
those in 2020. Based on these assumptions, the carbon emission in the
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baseline scenario can be calculated as Eq. (14):

2030
CE,Baseline,- = Z (A CBasei, t X COZ—Ci,ZOZO +A0i,t
t=2021

* (CO2_C; 5020 + CO2_CH; 5020)
+(AS;; — AO; ;)X CH;x CO2_CH, 5550

8)

In the following scenarios, we assume the unused rate of each city
at the end of 2030 gradually reduces to 75%, 50%, and 25% of the level
observed at the end of 2020. Utilizing these assumed rates of unused
housing, we can impute the series of annual floor areas of housing
completion using the corresponding SUR;, in Eq. (17), as well as the
annual series of AS;,. We can then calculate the total carbon emissions
in the city in 2021-2030 under each scenario.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All macro-level data necessary for the calculation of unused rate and
carbon emissions have been deposited in the public repository
(https://gitee.com/hefanz/unused-housing-in-urban-china-and-its-
carbon-emission-impact). Source data are provided with this paper.

Code availability

All codes necessary for replication have been deposited in the public
repository (https://gitee.com/hefanz/unused-housing-in-urban-china-
and-its-carbon-emission-impact).
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