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A B S T R A C T   

For cooling equipment management and scheduling optimization, accurate building cooling load forecasting 
technology is crucial. Currently, the physics-based forecasting models are too complex to achieve, and existing 
shallow-machine and deep learning algorithms are difficult to capture and retain sequential information from 
historical building cooling loads, leading to insufficient prediction accuracy. This paper considered the de-
pendency relationship between time-series information in load data and proposed a building load prediction 
model based on a transformer network to improve the accuracy of building load prediction. This encoder-decoder 
block-based model can encode and decode all input data, capture sequence information from mapping vectors 
with user-defined dimensions, and learn important features through the Attention mechanism. In addition, input 
features were analyzed to verify the importance of each input feature, and to explaine the reasons for the impact 
of used features on the TRN-based model. Finally, the performance of the proposed model is evaluated using real 
data from an office building. Compared with other existing methods, the proposed model has the best prediction 
accuracy (RMSE, MAE, R2 were 0.01, 0.03, and 0.98, respectively), and maintained the best predictive stability 
over a longer time (uncertainty ranged from − 11% to + 11%). The results show that the proposed method can 
support the development and optimal operation of energy-saving HVAC systems, thereby lowing power 
consumption.   

1. Introduction 

The rapid growth of the world’s economy and population is accel-
erating the increase of the global primary energy demand, from 145 
billion MWh (in 2010) to an estimated value of 203 billion MWh (in 
2046), an increase of 46% [1] over the 30 years. More than 39% of 
energy consumption comes from the construction industry, which leads 
to one-third of greenhouse gas emissions worldwide [2]. Saving energy 
in buildings is therefore extremely significant; it is reported that 30–80% 
of building energy consumption could be saved by using building 
technologies that are currently available [3]. Inside buildings, there are 
various service systems but the HVAC systems account for the largest 
proportion of the total building energy consumption, such that HVAC 
systems consumed more than 50% of the total building energy in the 
United States of America (USA) [4]. As a result, the most effective 
method for reducing the overall building energy consumption is to 

decrease the energy consumed by HVAC systems. The success of 
lowering the HVAC system’s energy consumption depends largely on 
balancing the building thermal energy demand and the HVAC system’s 
thermal energy supply. This is a tremendous challenge due to the 
constantly varying load caused by the time-variable weather conditions 
and the internal load, along with the HVAC system’s limited operational 
flexibility [5]. Another issue with the conventional design method of the 
HVAC system is that, to make the HVAC system more reliable, the HVAC 
system’s configuration is designed using the peak value of the building 
load (both heating and cooling loads). Moreover, a safety factor or 
redundancy HVAC system is adopted to ensure the designed system can 
fulfill all uncertain heating/cooling loads. The heating/cooling size of 
the designed HVAC system, therefore, is always oversized and the sys-
tem’s energy efficiency seriously decreases when the working conditions 
are different from the designed conditions [6]. As a result, predicting 
instantaneous building thermal load becomes necessary to reduce the 
HVAC system’s energy consumption. 
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1.1. Literature review 

At present, there are three types of traditional and commonly used 
methods for predicting building thermal load, namely, a white-box 
physical model based on physical information such as buildings, 
weather, and internal activities, a gray-box reduced-order model based 
on simplified wall structures and their thermal resistance and capaci-
tance, and a black-box data-driven model based on pure data 
information. 

For the white-box physics-based model, first, a detailed physical 
model needs to be completed for the simulated building, which should 
include the following information about the building: geometry, thermal 
property information (including thermal conductivity, heat capacity, 
etc.), and internal activity (such as the activity of people and electrical 
devices). Then, the model needs to be validated to ensure its accuracy, 
using correlated weather data, recorded internal activity, and monitored 
thermal load. Although commercially available and mature software 
programs (EnergyPlus, TRNSYS, etc.) already exist, which have built-in 
modules allowing users to easily implement building models [7], there 
are still several disadvantages to this method. First, this method is too 
complicated to use, because it needs many assumptions to implement 
the heat and mass transfer equations for calculating the thermal load. 
The difference between the assumptions and the actual heat/mass pro-
cess could lead to serious differences in results [7]. Second, this method 
needs too many detailed inputs, which are both time and effort- 
consuming. In some cases, it is even unrealistic to obtain all the 
required inputs. Finally, the uncertain and inaccurate inputs used in the 
simulations could cause unacceptable differences between the model 
and actual results [8]. 

The gray-box reduced-order model can reduce the amount of input 
information required in white-box physics-based models [9], by 
simplifying wall structures along with their thermal resistance and 
capacitance (RC) to predict the heat flux through building walls [10]. 
The parameters used in the model calculations, such as the Rs and Cs, are 
obtained by minimizing prediction errors, rather than physical param-
eters of buildings derived from measurement data, effectively reducing 
required input information [11]. The existing RC models include the 
1R1C model proposed by Wang et al. [12], 2R2C and 3R2C models 
developed by Wang and Xu [13], and 3R3C and 5R4C models analyzed 
by Blum et al. [14]. Compared to the higher-order models, the second- 
order RC model was verified as significantly reducing calculation time 
without compromising calculation accuracy [15]. However, a key issue 
for RC models is that they only calculate external heat gains without 
considering internal heat gains. To address this issue, researchers 
implemented studies for RC models that can consider internal gains. For 
example, Lin et al. [16] used the hourly cooling load factor method to 
predict the hourly cooling load of buildings. The internal gains can be 
estimated by using the sub-models; Ji et al. [17] developed an updated 
simplified thermal network model integrated with the sub-metering 

system to forecast the cooling load of buildings. In this model, the 
sub-metering system was adopted to reflect internal heat gains. The 
results indicated that the proposed model could forecast the building 
cooling load, along with internal heat gains, with high accuracy. 
Compared with the white-box physics-based model, the gray-box 
reduced-order model can significantly reduce the required input infor-
mation and calculation time. It also has a self-adaptive ability to 
improve model accuracy when there is measured data for the Rs and Cs. 
But the precision of the model still cannot be guaranteed [18], because 
internal heat gains contribute an increasing proportion in modern 
buildings, especially when the building’s envelope has a high efficiency 
level [19]. 

To overcome the limits of the two above models, researchers turned 
attention to the black-box data-driven model, which is a purely data- 
driven model using either shallow-machine learning or deep learning 
algorithms. It is largely attributed to the development of the Internet of 
Things (IoT) technology for the model’s success, which can monitor and 
collect increasing amounts of data. With enough historical data, it can 
fully learn the building load patterns and complete modeling. Black-box 
data-driven models have been studied since the 1980 s. Studies mainly 
focus on the investigation of various algorithms applied to forecast the 
thermal load of buildings. A linear regression model used to predict the 
thermal load of a large building was first proposed in 1984 [20]; after-
ward, researchers investigated support vector machines (SVM) [21], 
artificial neural networks (ANN) [22], extreme learning machines [23], 
multilayer perceptron (MLP) [27], regression tree [24], random forest 
[25], Hierarchical Mixture of Experts [26], XGBoost [18], and long short 
term memory (LSTM) models [28]. Researchers also compared the ac-
curacies of various algorithms used to forecast the thermal load of 
buildings to determine the best algorithm. For instance, Li [29] 
compared SVM and ANN models to predict hourly building cooling 
loads. The findings indicated that the SVM algorithm could predict the 
cooling load with higher accuracy; Wang et al. [19] compared seven 
shallow machine learning, two deep learning, and three heuristic 
methods. They concluded that the LSTM model was better for predicting 
short-term (1 h ahead) building cooling load, and the XGBoost model 
was better for forecasting long-term (≥24 h ahead) building cooling 
load. Compared with the single model, the hybrid method has signifi-
cant improvement in short-term load forecasting. Guo et al. constructed 
four hybrid models for improved prediction accuracy of heating and 
cooling loads [30]. Matthew Motoki et al. [31] used three algorithms to 
complete the load forecasting task—CatBoost [32], LightGBM [33], and 
MLP, and then ensembled the model predictions using weighted 
generalized mean, achieving better results in forecasting accuracy. 
Compared with the white-box and gray-box models, the black-box 
model just needs enough historically recorded data from the building 
without requiring too much building information (e.g. Rs and Cs), or 
exact information (e.g. internal gains). 

The Transformer algorithm was developed by Vaswani et al. in 2017 

Nomenclature 

Abbreviations 
ANN artificial neural network 
DNI direct normal irradiance 
DOM day of month 
HOD hour of day 
HVAC heating, ventilation, and air − conditioning 
IoT Internet of Things 
LSTM long short − term memory 
CLM the hybrid prediction model (CatBoost, LightGBM, MLP)
MAE mean absolute error 
MLP multilayer perceptron 

MOY month of year 
Qc building cooling loads 
R2 coefficient of determination 
RC resistance and capacitance 
RH relative humidity 
RMSE root mean square error 
RNN recurrent neural network 
SVM support vector machine 
Tdb dry bulb temperature 
TRN Transformer network 
Vwin wind speed 
ρX,Y Pearson ′s correlation coefficient  
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[34]. The core principle of the Transformer model is the self-attention 
mechanism, which is mainly based on matrix multiplication in its spe-
cific implementation, so that it can capture the dependency between any 
vectors in the input sequence, independent of the distance between 
vectors. Meanwhile, the Self-Attention mechanism is less complex, has 
fewer parameters, and requires less computing power, the results of each 
step do not depend on the results of the previous step, so the effect is 
better. Transformer, through its special attention mechanism, not only 
supports parallel training, but also can learn the timing information in 
the sequence, and improve the model training speed by an order of 
magnitude on the premise of ensuring high accuracy. Based on the above 
characteristics, Transformer has attracted extensive attention from re-
searchers since it was proposed, and has shown excellent application 
effects in many fields such as machine translation [35] and image 
identification [36]. Mohan Li et al. proposed an online attention 
mechanism, known as cumulative attention (CA), for streaming 
Transformer-based automatic speech recognition (ASR) [37]. LIM B 
et al. [38] achieved significant performance improvement in the pre-
diction fields of power load, transportation, retail, stock, and so on. 
Transformer algorithm has also achieved remarkable results in Natural 
Language Processing (NLP). Since NLP and time series are sequence 
information, Transformer algorithm is also gradually applied to time 
series forecasting tasks. Li et al. [39] have achieved good results in time 
series forecasting. Thus, the Transformer algorithm is a more promising 
method for building thermal load forecasting. 

1.2. Research gap and objectives 

The building load consisted of time-series data containing sequential 
information, which reflected the variation in the internal heat gains. 
Whether the time series information contained in the load forecasting 
can be effectively processed directly affects the accuracy of the 
prediction. 

At present, all the shallow-machine learning methods and deep- 
learning algorithms proposed in research cannot capture and retain in-
formation in input sequences (except the LSTM algorithm), and cannot 
efficiently and accurately analyze time-series data. The LSTM (a special 
form of the recurrent neural network (RNN) algorithm) alleviates the 
problem of gradient explosion and disappearance in RNN by adding 
three control gates and one unit state. Although the LSTM can handle the 
long-term and short-term dependence in time series data to a certain 
extent, when the input sequence is too long, problems such as historical 
information dilution and sequence information loss still exist. Every 
recursion of LSTM is accompanied by information loss, as a result, its 
ability to capture dependencies under the condition of inputting long 
sequences declines rapidly, that is, memory degradation occurs, and the 
sequential information captured by the LSTM algorithm became less 
relevant as the prediction horizon lengthened [18]. In addition, the 
cycle structure in the RNN model limits its need to input data in a serial 
manner, resulting in low training efficiency [40]. 

Another issue for the black-box data-driven model is that there is no 
research on performing a feature analysis (especially the analysis of 
solar radiation intensity, wind velocity, and time-related variables that 
could pattern the occupancy activity, internal heat gains, and building 
usage) for either the shallow-machine or deep-learning methods, due to 
limitations of the recorded data. 

To solve the problem of traditional models being unable to capture 
and retain the time-series information, and fill the research gap in 
feature analysis of shallow machines or deep learning methods, this 
paper first analyzes the Transformer algorithm in depth, then proposed a 
novel prediction model based on the Transformer algorithm (TRN-based 
model) to forecast the building cooling and heating load (only cooling 
load was analyzed in this paper). Then, the paper implemented an 
overall analysis of the above-mentioned features to determine the 
importance of each feature. The contributions can be summarized as 
follows: 

1. A Transformer algorithm based model (TRN-based model) was pro-
posed for the building load forecasting.The attention mechanism of 
this model allows for modeling the dependence of input and output 
sequences, without considering their distance in the sequence, and 
can capture the correlation between sequences, which could capture 
and retain sequential information from long-term time-series data, 
effectively improving the accuracy of prediction.  

2. Using the TRN-based model for feature analysis and ranking the 
importance of features, the reasons for the impact of features on the 
TRN-based model were analyzed.  

3. Taking real data as an example, the performance of the proposed 
model was evaluated, and the advantage of the TRN-based model 
was analyzed by comparing its performance with shallow-machine 
(XGBoost),deep-learning models (LSTM), and hybrid prediction 
model (LightGBM, CatBoost, MLP).  

4. The accuracy and result errors were analyzed for the TRN-based 
model when using different numbers of input features. 

2. Research methodology 

Fig. 1 presents the research outline for this study, as follows: 

1) Generate sequential input dataset: First, an original dataset con-
taining direct normal irradiance (DNI), wind speed (Vwin), relative 
humidity (RH), dry bulb temperature (Tdb), building cooling loads 
(Qc) were created based on historical collected real data. Second, 
time-related features were extracted from the original dataset, 
including the month of the year (MOY), day of the month (DOM), 
and hour of the day (HOD). These new features were combined with 
the original data to form a new dataset, containing time-related 
variables that reflected internal heat gains. After determining the 
correlation between the two variables, a sequential input dataset was 
generated using the new dataset with the sequential information 
pattern.  

2) Train the Transformer-based model: The sequential input dataset 
was imported into the TRN-based model, and the parameters and 
hyper-parameter setting was conducted on the Transformer-based 
model to train the algorithm.  

3) Model validation and comparative analysis: Finally, the performance 
of the TRN-based model was evaluated using three performance 
metrics: Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE) and coefficient of determination (R2), and compared with 
state-of-art approaches from both shallow-machine (XGBoost) deep- 
learning models (LSTM) and hybrid prediction model (CatBoost, 
LightGBM, MLP).  

4) Feature analysis: The impact of the amount and the dimensionality of 
input features on model performance was discussed, the importance 
ranking of model input features was obtained, and the reasons for the 
impact of important features on the model were explained. 

The following paragraphs discuss the extraction of time-related 
features and generation of the sequential input dataset, the algorithms 
used for the TRN-based model, as well as the state-of-art approaches 
from shallow-machine and deep-learning models used for comparison, 
and the evaluation of the model’s performance. 

2.1. The algorithm for the TRN-based model 

The TRN-based model proposed in this paper was developed from 
Vaswani et al.’s [34] Transformer algorithm, which is mainly composed 
of encoder-decoder blocks. Through four steps of input-enco-
ding–decoding-output, the Transformer algorithm has good feature 
extraction ability, solving the problem of poor parallel computing ability 
caused by sequence dependencies in RNN, and improving the defect of 
information loss in seq2seq structure. The TRN-based model’s 
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architecture is shown in Fig. 2. 
First, the sequential input data (shown as the ‘Encoder Input’) was 

mapped into a vector with dmodel-dimensions, and then Positional 
Encoding with sine and cosine functions was used to encode sequential 
information in the time-series data through the element-wise addition of 
the input vector with a positional encoding vector. The positional 
encoding vector can represent the position of the current data and the 
distance between different data. The position formulation is shown in 
eqs. (1) and (2) [34]. 

P̌
(p,2i) = sin

⎛

⎜
⎜
⎝

p
10000 2i

dmodel

⎞

⎟
⎟
⎠ (1)  

P̌
(p,2i+1) = cos

⎛

⎜
⎜
⎝

p
10000 2i

dmodel

⎞

⎟
⎟
⎠ (2)  

where P̌ is the positional encoding result; p is the position of the input 
variables; i is the position of the input variable and dmodel is the dimen-
sion of the input data. Even positions are encoded using sine, and car-
dinal positions are encoded using cosine. 

Then, the positional encoding vector was imported into the encoder 
block to produce a dmodel-dimensional vector that feeds the decoder 
block. The output data (shown as the ‘Decoder Input’) was processed 
using the same methods as the encoder procedure and imported into the 
decoder block. The decoder block then used the encoder block’s 
dmodel-dimensional feed vector and the decoder input’s positional vector 
to generate a unique vector that contained probability information to 
calculate the outputs. This unique vector then calculated the probability 
of the outputs using ‘Linear Mapping’ and ‘Softmax’ layers. Two ANN 
layers were connected to the ‘Softmax’ layer to convert the probability 
into the model’s final outputs (shown as the ‘Decoder Output’). 

The composition of the encoder and decoder blocks is shown in 
Fig. 3. The encoder block had two identical encoder layers, with each 

Fig. 1. Research roadmap.  
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layer having four series-connected sectors. The first sector was called 
‘Multi-head attention’, and its basic principle is based on the Dot- 
product Attention mechanism. The Dot-product Attention mechanism 
maps a query and a set of key value pairs to an output, and the received 
data is the input or output of the previous encoder. Multiplying by 
different weights yields the Query, Key, and Value vector matrices. The 

equation explanation is shown in (3), and the calculation method for 
attention values is shown in equation (4) [34]. 
⎧
⎨

⎩

ζ = Ṁζxi

λ = Ṁλxi
ω = Ṁωxi

(3)  

Attention(ζ, λ,ω) = softmax
(

ζλT

̅̅̅̅̅
dk

√

)

(4)  

where ζ, λ and ω are the query, key and value vectors; Ṁζ
, Ṁλ and Ṁω are 

the matrix used to calculate query, key and value vectors; xi is the input 
variables; dk is the correction parameter used to adjust the attention 
value within a certain range. 

The Multi-head Attention mechanism concatenates the single 
attention results of ζ, λ and ω through different linear transformations, 
allowing the model to focus on information from different representa-
tion subspaces, which has a stronger feature extraction ability than 
single attention with the same number of parameters. Its structure is 
shown in Fig. 4. 

The second sector was called ‘Add & Normalize’, where the attention 
values were then normalized to ensure the model’s robustness. After 
normalization, a feed-forward neural network layer was used to calcu-
late the feed vector used in the decoder block, The feedforward neural 
network is composed of two linear transformations, in which ReLU is 
activated, which can enhance the nonlinear fitting ability of the model. 
Before the feed vector was sent to the decoder block, it was normalized 
again to ensure its robustness. 

The decoder block had two identical decoder layers and the same 
sectors as the encoder layer; in addition, it had “Encoder – Decoder 
Attention” and “Add & Normalize” sectors. The difference between 
“Encoder - Decoder Attention” and the self-attention mechanism in the 
Encoder block is that its input is not from the same sequence, but rather 
applies the feed vector (from the encoder block) to the decoder input: 
the encoder output λ, ω and the decoder’s multi-head attention output ζ. 
Its structure is shown in Fig. 5. By utilizing this structure, all information 

Fig. 2. The Transformer network-based model architecture.  

Fig. 3. The composition for the ‘Encoder’ and ‘Decoder’ layers.  
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in the encoding can be fully utilized during decoding, generating 
attention between the data of the Encoder block and the Decoder block. 

2.2. The state-of-art approaches from shallow-machine and deep learning 
models 

XGBoost and LSTM are both mainstream models in prediction 
methods, considered the best shallow machine and deep learning 
models in relevant literature [18], and widely used in industry and 
theoretical experimental research. As a mixture model, the CLM model 
has been used in building prediction competitions and has shown good 
prediction ability [31]. Based on the above reasons, XGBoost, LSTM, and 
CLM models were selected as the benchmark models for the comparative 
experiment. Details are explained as follows. 

2.2.1. For XGBoost model 
Gradient Boosting Decision Tree (GBDT) is an additive model based 

on boosting ensemble idea [41]. During training, the forward distribu-
tion algorithm is used for greedy learning, and each iteration learns the 
tth tree to fit the residual between the predicted results of the previous 
tth-1 tree and the true values of the training samples. The basic idea of 
XGBoost is the same as that of GBDT, but some optimizations have been 
made, such as using the second-order Taylor formula to expand and 
optimize the loss function to improve the calculation accuracy; using a 
weak predictor and the regularization term to simplify the model and 
avoid overfitting; adopting the Blocks storage structure to combine 
multiple predictors systematically, which can be calculated in parallel, 

etc [42]. This will enhance both the model’s prediction accuracy and 
generalization capacity. The main equation[41] for XGBoost model is 
explained as follows: 

γt =
∑n

i
l
(

yi,

(

y⌣
t− 1

i

)

+ ft(Xi)

)

+Ω(ft) (5)  

where γt is the objective of the optimization; i is the i-th predicted 

sample, n is the total sample number; yi is the true sample value; y
⌣

i is the 
predicted sample value; ft is the base learner added at the t-th iteration; 
Xi is the feature used for the i-th sample; and Ω

(
ft
)

is the regularization 
term to avoid over-fitting (for more details about the XGBoost method, 
see [41]). 

2.2.2. For LSTM model 
The RNN is a family of neural network specifically designed to solve 

sequence and time-dependent event prediction problems. The LSTM 
algorithm is a variant of the RNN, which is capable of learning long-term 
dependencies by adding four gates to make all cell states incorporative. 
Among these, the most important gates are the input, forget, and output 
gates for the input, hidden, and output states. The other gate is a sigmoid 
function, which is used to modulate the output of these gates. By using 
these four gates, the problems of gradient vanishing and gradient ex-
plosion, found in the conventional RNN algorithm, can be avoided. 
Because the unit states can be remembered for longer time steps, this can 
remove the multiplication of small/big numbers so many times from 
each cell state. Equations [43] used in the LSTM algorithm are explained 
as follows: 

ft = σ
(
Wf • |ht− 1, xt| + bf

)
(6)  

it = σ(Wi • |ht− 1, xt| + bi ) (7)  

ot = σ(Wo • |ht− 1, xt| + bo ) (8)  

Ct = tanh(WC • |ht− 1, xt| + bC ) (9)  

ht = ot × tanh(Ct) (10)  

where ft is the forget gate; it is the input gate; ot is the output gate; σ(x) is 
the sigmoid function; Wf ,Wi,Wo are weight matrices used to update the 
state of forget, input, and output gates, respectively; bf , bi, bo are bias 
vectors used to calculate the forget, input, and output gates, respec-
tively; ht− 1 is the activation value at time step t-1; xt is the input at time 
step t; Ct is the memory candidate of the cell at time step t; tanh(⋅) is the 
hyperbolic function used as the activation function; WC is the weight 
matrix used to calculate the memory candidate; bC is the bias vector used 
to update the memory candidate; and ht is the activation value at time 
step t (for more details about the LSTM model, see [43]). 

2.2.3. For CLM model 
The model first used three algorithms, CatBoost, LightGBM, and 

MLP, to train individual models. CatBoost and LightGBM effectively 
improve the computational efficiency of GBDT. CatBoost is a GBDT 
framework based on symmetric decision trees, which is implemented 
with fewer parameters, supports categorical variables, and has high 
accuracy. The main pain point is to efficiently and reasonably process 
categorical features. The proposal of LightGBM has solved the problems 
encountered by GBDT in massive data, allowing GBDT to be better and 
faster used in industrial practice. MLP is a forward structured artificial 
neural network that maps a set of input vectors to a set of output vectors 
(for more details about the CatBoost, LightGBM and MLP, see 
[32,33,27]). Then, the cross validation methods were used to adjust the 
hyperparameters of all models. Finally, the weighted average method 
was used to combine individual model predictions to obtain the final 
predicted value, which reduced the risk of overfitting and improved 

Fig. 4. The composition of the Multi-head Attention mechanism.  

Fig. 5. The composition for Encoder – Decoder Attention.  
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robustness. The workflow of the model is shown in Fig. 6. 

2.3. Metrics used to evaluate performance 

To compare the performance of the three selected models under 
different input feature scenarios, it is important to select several com-
parison indexes. In this analysis, the mean absolute error (MAE), root 
mean squared error (RMSE), coefficient of determination (R2), and un-
certainty were selected as the evaluated metrics. The MAE is a measure 
of errors between predicted and observed values that indicate the per-
formance of the predicted to observed values: either over-prediction or 
under-prediction. The RMSE is a frequently used measure of the differ-
ences between values predicted by a model and those observed. The R2 

is the proportion of the variance in the dependent variable that is pre-
dictable from the independent variables; it measures how well the 
observed values replicate the model values. The uncertainty is the range 
of relative errors [44], which represents the degree to which the pre-
dicted value deviates from the true value. The equations of these three 
metrics are explained as follows: 

MAE =

∑n
i=1|ŷi − yi|

n
(11)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ŷi − yi)
2

n

√

(12)  

R2 =
COV(ŷ, y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(ŷ)Var(y)

√ (13)  

uncertainty = max
(

yi − ŷi

yi

)

− min
(

yi − ŷi

yi

)

(14)  

where i is the i-th observed/predicted value; n is the total number of the 
values; y is the observed value; ŷ is the predicted value; COV(•) is the 
covariance function between observed and predicted values; VAR(•) is 
the variance function. 

3. Case study 

The analyzed data in this study were derived from an office building 
in the University of New South Wales, which was designed to monitor 
the performance of a solar-driven desiccant cooling system integrated 
with a dew-point evaporative cooler [45]. The whole building could be 
separated into two thermal zones. While Zone 1 was used for the 
working space, with an area of 46.7 m2, Zone 2 was the storage room, 
with an area of 5.4 m2. There were two windows in the west wall of Zone 
1, each with an area of 2.2 m2. Shading devices were used around the 

windows to prevent solar radiation from entering the building. In the 
room setting, the temperature was 25.5 ◦C and relative humidity was 
60%. Dry bulb temperature (Tdb), relative humidity (RH), direct normal 
irradiance (DNI), and wind speed (Vwin) were recorded as weather data. 
The total cooling energy supply from the desiccant cooling system was 
recorded and calculated using the temperature difference between the 
sending and returning cooled air. Since the temperature sensors were 
closely installed in the inlet and outlet of the air ducts entering and 
leaving the building room. Thus, the total cooling energy supply (from 
the air-conditioning system) was thought equal to the total building 
cooling load (the sum of sensible and latent cooling loads). The recorded 
time period was from 8:00 am to 5:00 pm, between 1 October 2015 and 
30 March 2016, and the recorded time interval was every hour. The view 
of the office building is shown in Fig. 7. 

3.1. The creation of dataset with time-related features 

Fig. 8 shows the plots for the weather data and building cooling load 
(Qc). We could found that the recorded Tdb, RH, DNI, wind velocity, and 
cooling load varied from 7.6 ◦C to 42 ◦C, 39% to 96%, 0 W/m2 to 1010 
W/m2, 0.3 m/s to 15.1 m/s and 0 kW to 4.3 kW, respectively. It should 
be noted that not every day of the cooling season had a cooling load. 

Fig. 9 shows the plots that indicated the hourly building cooling load 
for each day from October 2015 to March 2016, which helped to extract 
the time-related features. Three main points could be concluded from 
the plots. First, the cooling loads had various scales in different months. 
For example, the cooling load had scales of 0–2.2 kW (October 2015), 
0–2.8 kW (November), 0–4.1 kW (December), 0–4.3 kW (January 
2016), 0–3.2 kW (February), and 0–2.1 kW (March). Second, the cooling 
load changed every day in each month. For instance, in October 2015, 
the cooling load varied from 0 kW to > 2 kW for Day 28, and 0 kW to 1.5 
kW for Day 25, while the cooling load was 0 kW or changed from 0 kW 
to < 1 kW for the remaining days. Finally, the cooling load firstly 
increased from 8:00 am to about 3:00 pm, then decreased after 4:00 pm 
for most of the recorded days. Thus, the initial analyzed features should 
include all weather-related variables (Tdb, RH, DNI, Vwin) and time- 
related variables (MOY, DOM, and HOD). 

3.2. The generation of sequential input dataset 

Before generating the sequential input dataset, the correlation be-
tween input variables was first implemented using Pearson’s correlation 
coefficient (ρX,Y). ρX,Y measures the strength of the association between 
two variables; it is the most popular method in the machine learning 
field for evaluating the linear correlation between two variables, X and 
Y. When the variables have perfectly positive or negative correlated 
features in the input dataset, there is a high chance of the model 
suffering from multicollinearity [46]. Multicollinearity is a phenomenon 
in which the predicted results can be skewed, when one or more vari-
ables in a multiple regression model can be predicted from the others 
with a high degree of accuracy. The ρX,Y was calculated using the 
following equation [47]: 

ρX,Y =
COV(X,Y)

σXσY
=

E
[
(X − μx)

(
Y − μy

) ]

σXσY
(14)  

where COV(X,Y) is the covariance of X and Y; σX and σY are the de-
viations of X and Y; and μx and μy are the means of X and Y. ρX,Y has a 
range from –1 to + 1; Table 1 explains the relation between X and Y 
(when ρX,Y has different values). Typically, ±0.6 is the most commonly 
adopted value to reduce correlated input variables. Fig. 10 shows the 
results of the ρX,Y for the input variables. 

As shown in Fig. 10, the ρX,Y value varied from –0.51 (between DNI 
and RH) to + 0.4 (between Tdb and HOD), which were within the range 
of ±0.6. This result showed that all features had a poor linear correlation 
with others, indicating that the input weather and time-related features Fig. 6. Overview of the CLM model.  
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were linearly independent of each other. Thus, all inputs could be used 
to train the TRN-based model. 

Because the building cooling load has attributes of daily seasonality, 
it was expected that the prediction accuracy could be improved using 
measurements from the previous 24 h [48]. Thus, the previous 24-hour 
input variables were connected in series as sequential input data at 

hourly sampling intervals to predict the building cooling load in the 25th 
hour. The scheme for the final sequential input dataset is shown in 
Fig. 11. 

Fig. 7. (a). Front view of the office building; (b) Top view of the office building; (c) The overview of the office building in Sketchup [40].  

Fig. 8. Plots for weather and building cooling load.  
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4. Results and discussion 

4.1. Model parameters and hyper-parameter setting 

The adjustment of model hyperparameter is crucial for obtaining the 
best prediction performance. Through many experimental tests and 
comparisons, we have obtained the parameters and hyper-parameter of 
the TRN-based model as shown in Table.1, and an early stop step was 
defined to avoid overfitting. 

The XGBoost, LSTM, CLM and TRN-based models were executed in 
Python using Sklearn [49], XGBoost [50], and Keras library [51], 
respectively. Before training the models, the sequential input dataset 
was split into two parts with a ratio of 0.8 to 0.2, meaning that 80% of 
the data was used as training data, with the remaining 20% used as 
testing data. The model’s performance was then evaluated using the 
three metrics mentioned above. In order to increase the credibility of the 

results of each model, we trained all three models 10 times and selected 
the average of the results as the final model training result. 

4.2. Results for the performance of the XGBoost, LSTM, CLM and TRN- 
based models 

Table.2 shows the model performance results of the XGBoost, LSTM, 
CLM and TRN-based models. Among them, the LSTM model had the 
worst performance, with RMSE of 0.02/0.02, MAE of 0.05/0.06, and R2 

of 0.91/0.89. This was because, in the calculation process, the sequential 
information was obtained through concatenation. Although the LSTM 
model can handle sequential information, the prediction horizon was 
too long (in this paper, the horizon was 24), and the calculated values 
would be very large/small. The model suffered from the problem of 
gradient explosion/disappearance, which reduced the accuracy of the 
prediction results. The performance results of the XGBoost model were 
in the middle, with RMSE of 0.01/0.02, MAE of 0.04/0.05, and R2 of 
0.96/0.94. Although it did not suffer from gradient explosion/vanish as 
in the LSTM model, it was not specifically designed for processing 
chronological data, could not capture and retain sequence information, 
and was prone to overfitting problems. As a composite model, the per-
formance results of the CLM model were relatively good, with RMSE of 
0.01/0.02, MAE of 0.03/0.04, and R2 of 0.97/0.96, but it also cannot 
solve the problem of long-term dependency learning of sequences. 
Therefore, its performance was lower than that of TRN-based models. 
The TRN-based model had the best performance, with RMSE of 0.01/ 
0.01, MAE of 0.03/0.03, and R2 of 0.98/0.98. Because it modeled 
sequential information in parallel through attention values between 
every two inputs from the input dataset. The accuracy was thus 

Fig. 9. Hourly cooling load for each day from October 2015 to March 2016.  

Table 1 
The settings of hyper-parameter.  

Hyper-parameter Value 

Embedding size for each token 32 
Number of attention heads (Layer 1) 2 
Hidden layer size in feed forward network (Layer 1) 32 
Dropout ratio for each hidden layer 0.1 
Number of attention heads (Layer 2) 1 
Hidden layer size in feed forward network (Layer 2) 32 
Batch size 128 
Optimizer Adam 
Epochs 80  
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guaranteed, no matter the length of the prediction horizon. 
To investigate the uncertainty of the prediction results, the four 

models were used to predict the cooling loads of 10 typical days 
extracted from three different summer months. The results are plotted in 
Figs. 12–15. Fig. 12 shows that the XGBoost model could predict the 
building cooling loads with an uncertainty between –21% and + 31%. 
Fig. 13 shows the LSTM model’s prediction, with an uncertainty 

between –17% and + 33%. Fig. 14 shows the CLM model’s prediction, 
with an uncertainty between –32% and + 27%. Fig. 15 shows the TRN- 
based model’s model’s prediction, with an uncertainty between –11% 
and + 11%. The largest uncertainties always occurred in the first or last 
two working hours of the day. This is because when the system started/ 
stopped working, it could not keep the inside space of the building in a 
thermally stable condition. Thus, the temperature difference between 
the sending and returning cooled air would have big fluctuations that 
would not reflect the real building cooling loads. As a result, the pre-
dicted cooling loads would have a large uncertainty. Another issue is 
that the TRN-based model had better and smoother predicted results, 
because it could maintain an uncertainty of ±11%, which did not suffer 
a large variation (such as between 0% and 31% for the XGBoost model, 
between 0% and + 33% for the LSTM model, and between 0% and 32% 
for the CLM model). 

4.3. Results for feature importance analysis in TRN-based model 

Feature analysis plays a key role in determining the prediction ac-
curacy of the model, especially for which input features should be used 
in the data-driven black-box model. Too few features used in the model 
would cause an under-fitting problem, while too many features would 
result in an over-fitting problem [52]. This is because the model be-
comes more complex as the number of input features increase. When the 
model complexity rises, bias reduces and variance increases. If there is 
not enough information from the input features, the model’s bias cannot 
be learned effectively, leading to a high bias value. As a result, the model 
accuracy would be poor, with an under-fitting problem. If there are too 
many input features, however, the model becomes too complex. 
Although the bias is very small, the variance would be too large, which 
could also reduce the model’s accuracy. Thus, there is an optimum 
number/range for selecting input features, model complexity, and 
model accuracy (seen Fig. 16). 

To eliminate the effects caused by data volume on the feature anal-
ysis, 50%, 75%, and 100% of the input data were used to conduct the 
feature importance analysis. Tables 3–5 show the feature analysis results 
for the TRN-based model, with different numbers of input features. 
Several things could be found by comparing the results in them. First, 
the volume size of the input data had almost no effect on the feature 
analysis. Second, when there was only one input feature, Tdb was the 
most important; it made the model have R2 above 0.89, RMSE smaller 
than 0.03, and MAE smaller than 0.06. Third, Tdb and HOD were the two 

Fig. 10. Heat map for ρX,Y values among the input features.  

Fig. 11. The scheme for the final sequential input dataset.  

Table 2 
Model performance results for different models.  

Model performance results 

Model name For training dataset For testing dataset  

RMSE MAE R2 RMSE MAE R2 

XGBoost model 0.01 0.04 0.96 0.02 0.05 0.94 
LSTM model 0.02 0.05 0.91 0.02 0.06 0.89 
CLM model 0.01 0.03 0.97 0.02 0.04 0.96 
TRN-based model a 0.01 0.03 0.98 0.01 0.03 0.98  

a The bold part indicates the proposed model. 
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most important features when there were only two input features. Tdb 
reflected the heat flux through the building walls from outside into the 
building and HOD helped the model to pattern the cooling load infor-
mation caused by internal heat gains from people’s activity and elec-
trical equipment during the operation time of the cooling system. 
Fourth, RH and DNI were third- and fourth-most important features 
when there were three or four input features, because RH influenced the 
building’s latent cooling load caused by ambient humidity, and DNI 
affected the building’s solar heat gain through the windows. Last, DOM, 
MOY, and Vw had little influence on the performance of the TRN-based 
model, because their inclusion showed little improvement in the model’s 
performance. Thus, the input features can be ranked in importance as 
follows: Tdb, HOD, RH, and DNI. 

Fig. 17 presents the plots for the predicted cooling loads and un-
certainties of 10 typical summer days, with different numbers of input 
features. With the increase in the number of input features 
([Tdb]→[Tdb,HOD]→[Tdb,HOD,RH]→[Tdb,HOD,RH,DNI]), the model’s 
performance did not improve significantly (seen from Tables 2 and 3), 
but there was an obvious decrease in uncertainty of –50% to + 37% (for 
only one input feature), –26% to + 15% (two input features), –21% to +
14% (three input features), and –15% to + 16% (four input features). 
This implies that at least four features were required for the TRN-based 
model to have good performance (using the three evaluated metrics) and 
small uncertainties. This is because each of these four input features 
represents one part of the cooling load: Tdb influences the heat flowing 
through the building walls, HOD affects the internal heat gains from 

Fig. 12. Comparison between historical recorded cooling loads and predict cooling loads using XGBoost model.  

Fig. 13. Comparison between historical recorded cooling loads and predict cooling loads using LSTM model.  
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people’s activity and electrical equipment, RH affects the latent cooling 
loads, and DNI determines the heat going through the window. 

5. Discussion 

Compared to other comparative models, the Multi-head Attention 
mechanism of the TRN-based model can focus on information from 
different representation subspaces, allowing the model to obtain more 
data features under the same number of parameters. At the same time, 
the attention mechanism has good global dependency ability and can 
perform parallel calculations. The above reasons have significantly 
improved the prediction accuracy and uncertainty of the proposed 
model. 

For the TRN-based model, the most important features are Tdb and 
time-related features (HOD). Using these two features, the model can 
have an RMSE < 0.01, MAE < 0.05, and R2 greater than 0.94. The un-
certainty of the model results can also be maintained within the range of 
–26% to + 15%. Among these two features, Tdb represents the heat flux 
through wall structures in the white- and/or gray-box models, which 
accounts for most of the cooling loads under this building’s cooling load 
analysis, and time-related feature (HOD) patterns the internal heat gains 
because, in most cases, the occupant, lighting, and plug-load schedules 
are daily periodical behaviors. However, with a change in building type 
(residential, commercial, industrial, etc.), the importance of time- 
related features could change significantly, due to changes in internal 
heat gains in modern society [19]. Thus, when using data-driven black- 

Fig. 14. Comparison between historical recorded cooling loads and predict cooling loads using CLM model.  

Fig. 15. Comparison between historical recorded cooling loads and predict cooling loads using TRN-based model.  
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box models to predict the building thermal load, time-related features 
should be analyzed according to the building type. 

Compared with Tdb and time-related features (HOD), RH and DNI 
make limited contributions to the model’s accuracy, even though these 
two features have important influences on the building thermal load. 
There are two reasons why these features contribute little to this 
particular building. First, RH mainly affects the latent cooling load in-
side the building, through filtration and fresh air ventilation. In this 

building, however, the amount of filtration and fresh air ventilation is 
quite small (<10% of the total sending cooled air into the building [40]). 
In addition, if the ambient humidity is equal to or less than the setting 
point of humidity inside the building, it would not contribute to the 
latent cooling load. Considering the weather in Sydney, Australia, those 
times when the ambient humidity is higher than the setting point of 
humidity accounts for just 12% of the total cooling time (seen in Section 
3.1, Fig. 5). Therefore, RH is not important in this building. Second, DNI 

Fig. 16. Bias and variance contributing to total error (left)[47]; optimal number for models (right)[47].  

Table 3 
TRN-based model results for different feature selection scenarios using 100% data.  

Results for model with one feature 

Selected feature(s) For training dataset For testing dataset  

MAE RMSE R2 MAE RMSE R2 

Tdb
a 0.06 0.02 0.89 0.07 0.03 0.86 

HOD 0.09 0.04 0.83 0.09 0.04 0.83 
DNI 0.1 0.04 0.79 0.1 0.05 0.76 
DOM 0.12 0.05 0.75 0.11 0.06 0.73 
RH 0.1 0.07 0.69 0.1 0.06 0.71 
MOY 0.11 0.08 0.65 0.1 0.07 0.67 
Vw 0.14 0.09 0.56 0.13 0.09 0.59  

Results for model with two features 
Tdb ,HODa 0.05 0.01 0.94 0.05 0.02 0.93 
Tdb,RH 0.04 0.02 0.93 0.06 0.03 0.86 
Tdb,Vw 0.04 0.02 0.92 0.05 0.03 0.88 
Tdb,DOM 0.04 0.02 0.92 0.05 0.03 0.87 
Tdb,DNI 0.04 0.02 0.91 0.05 0.03 0.86 
Tdb,MOY 0.04 0.02 0.89 0.05 0.03 0.85  

Results for model with three features 
Tdb ,HOD,RHa 0.03 0.01 0.98 0.03 0.01 0.95 
Tdb,HOD,DNI 0.02 0.01 0.98 0.03 0.01 0.95 
Tdb,HOD,Vw 0.03 0.01 0.97 0.04 0.01 0.96 
Tdb,HOD,DOM 0.03 0.01 0.97 0.03 0.01 0.96 
Tdb,HOD,MOY 0.04 0.01 0.96 0.04 0.01 0.96  

Results for model with more than three features 
Whentherearemorethanthreefeatures 0.02–0.04 0.01 0.96–0.98 0.03–0.04 0.01 0.95–0.96 

aThe bold part indicates the best result when inputting different features. 

L. Li et al.                                                                                                                                                                                                                                        



Energy & Buildings 296 (2023) 113409

14

brings thermal load into buildings through window structures. In this 
building, however, the window area is small. Moreover, there are 
shading devices to prevent solar irradiance from entering the building 
and increasing the building thermal load. Therefore, DNI does not bring 
much thermal load into this building. It is crucial to include RH and DNI, 
however, if the building is located in a humid area with a high amount of 
filtration/ventilation, or if the building has a large area of window 
structures. 

6. Conclusion 

This study proposed a TRN-based model that was specifically 
designed to deal with time-series data (such as building cooling and 
heating load) with sequential information. The performance of the TRN- 
based model was then compared with state-of-art approaches from 
shallow-machine (XGBoost model), deep-learning models (LSTM 
model), and hybrid model (CLM model). The uncertainty of the four 
models was also compared to determine the difference between pre-
dicted cooling loads and historically recorded cooling loads. A 
comprehensive analysis of the input features was conducted to investi-
gate the importance of each input feature. The conclusions can be 
summarized as follows:  

1. The TRN-based model performs better than the XGBoost, LSTM and 
CLM models when dealing with time-series data (building cooling 
load) that contains sequential information. The model could have the 
RMSE of 0.01, MAE of 0.03, and R2 of 0.98. The uncertainty of the 
predicted results was maintained within the range of ±11%;  

2. The two most important features were Tdb and time-related features 
(HOD). Tdb reflected the heat flux through wall structures from 
outside the building to inside. The time-related feature reflected in-
ternal heat gains, such as people’s activity and electrical equipment;  

3. RH and DNI did not contribute much toward improving the model’s 
performance (when using the selected evaluated metrics), but they 

Table 4 
TRN-based model results for different feature selection scenarios using 75% data.  

Results for model with one feature 

Selected feature(s) For training dataset For testing dataset  

MAE RMSE R2 MAE RMSE R2 

Tdb 
a 0.05 0.03 0.9 0.07 0.04 0.85 

HOD 0.09 0.04 0.87 0.09 0.04 0.88 
DNI 0.11 0.07 0.75 0.12 0.09 0.71 
RH 0.12 0.08 0.69 0.12 0.11 0.62 
MOY 0.14 0.09 0.67 0.13 0.1 0.65 
Vw 0.14 0.11 0.57 0.14 0.14 0.54 
DOM 0.14 0.11 0.57 0.13 0.14 0.52  

Results for model with two features 
Tdb ,HOD a 0.05 0.02 0.94 0.06 0.02 0.93 
Tdb,MOY 0.04 0.02 0.94 0.06 0.03 0.89 
Tdb,DNI 0.04 0.02 0.93 0.07 0.04 0.86 
Tdb,RH 0.06 0.02 0.92 0.07 0.03 0.9 
Tdb,DOM 0.05 0.03 0.9 0.07 0.04 0.88 
Tdb,Vw 0.06 0.03 0.88 0.07 0.05 0.84  

Results for model with three features 
Tdb ,HOD,RH a 0.03 0.01 0.98 0.04 0.01 0.97 
Tdb,HOD,DNI 0.03 0.01 0.98 0.04 0.01 0.96 
Tdb,HOD,Vw 0.04 0.01 0.96 0.05 0.02 0.92 
Tdb,HOD,MOY 0.05 0.01 0.96 0.06 0.02 0.94 
Tdb,HOD,DOM 0.04 0.01 0.96 0.05 0.01 0.95  

Results for model with more than three features 
Whentherearemorethanthreefeatures 0.02–0.04 0.01 0.96–0.98 0.03–0.04 0.01 0.94–0.97  

a The bold part indicates the best result when inputting different features. 

Table 5 
TRN-based model results for different feature selection scenarios using 50% 
data.  

Results for model with one feature 

Selected feature(s) For training dataset For testing dataset  

MAE RMSE R2 MAE RMSE R2 

Tdb 
a 0.08 0.03 0.89 0.08 0.03 0.9 

DNI 0.07 0.03 0.86 0.09 0.05 0.82 
Vw 0.09 0.04 0.83 0.1 0.05 0.82 
HOD 0.08 0.04 0.83 0.09 0.04 0.84 
RH 0.09 0.05 0.79 0.11 0.05 0.81 
MOY 0.12 0.05 0.76 0.12 0.05 0.81 
DOM 0.12 0.06 0.73 0.13 0.07 0.75  

Results for model with two features 
Tdb ,HOD a 0.04 0.01 0.97 0.04 0.01 0.97 
Tdb,Vw 0.09 0.03 0.87 0.1 0.04 0.86 
Tdb,DNI 0.08 0.03 0.86 0.11 0.05 0.82 
Tdb,RH 0.09 0.03 0.85 0.12 0.05 0.81 
Tdb,MOY 0.09 0.04 0.8 0.1 0.06 0.78 
Tdb,DOM 0.09 0.05 0.79 0.1 0.06 0.79  

Results for model with three features 
Tdb ,HOD,RH a 0.04 0.01 0.98 0.05 0.01 0.95 
Tdb,HOD,Vw 0.04 0.01 0.98 0.04 0.01 0.97 
Tdb,HOD,DOM 0.04 0.01 0.97 0.04 0.01 0.98 
Tdb,HOD,MOY 0.06 0.01 0.94 0.06 0.02 0.9 
Tdb,HOD,DNI 0.05 0.02 0.93 0.07 0.03 0.9  

Results for model with more than three features 
Whentherearemore 0.02 - 0.01 - 0.97 - 0.03 - 0.01 - 0.96 - 
thanthreefeatures 0.05 0.02 0.98 0.04 0.02 0.98 

aThe bold part indicates the best result when inputting different features. 
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helped to reduce the predicted result uncertainty for a single pre-
dicted point;  

4. At least four features (Tdb,HOD,RH,DNI) were required for the TRN- 
based model to have good performance (using the three evaluated 
metrics) and small uncertainties. Each of these four input features 
represented one part of the cooling load: Tdb,HOD,RH, and DNI re-
flected the heat flux flowing through building walls, internal heat 
gains from people’s activity and electrical equipment, latent cooling 
loads from external environment, and solar heat gain through win-
dows, respectively. 

This study is used for load forecasting of commercial buildings, in 
future work, as an expansion of the proposed methodology, we would 
like to further explore the following directions.  

1) Research on different types of buildings.  
2) Research on the impact of extreme climate on prediction results. 
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