
High Performance Commercial Building Systems

Software Toolbox for

Component-Level Model-Based Fault
Detection and Diagnosis Methods

April 7, 2004

Peng Xu, Moosung Kim and Philip Haves

Lawrence Berkeley National Laboratory

Subtask 2.3.3 Develop semi-automated, component-level diagnostic
procedures

Element 5 – Integrated Commissioning & Diagnostics

Table of Contents
 Pages

1 Abstract

2 Introduction
2.1 Toolbox in phases of building lifecycle

2.2 SPARK and toolbox

3 Online monitoring and fault detection modules

3.1 Pre-processor module

3.2 Steady-state detector module

3.3 Simulator module

3.4 Comparator module

3.5 Calibration module

3.6 Fault Diagnosis

4 References

5 Appendices

Appendix I Innovate SPARK model

Appendix I Complex method used for calibrations

Appendix III Table of C++ program files

Appendix IV Table of data files

Appendix V Calibration module structure

Appendix VI Mixing box calibration

Appendix VII VAV fan-duct system calibration

Appendix VIII Cooling coil and valve system calibration

Appendix IX Heating and cooling coil diagnosis

Appendix X Mixing box fault diagnosis

Appendix XI Supply and return fan fault diagnosis

1 Abstract

This document describes the contents of a toolbox for component-level model-based fault

detection methods in commercial building HVAC systems. The toolbox consists of five

basic modules: a parameter estimator for model calibration, a preprocessor, an AHU

model simulator, a steady-state detector, and a comparator. Each of these modules and

the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in

C++ and also invokes the SPARK simulation program.

2 Introduction

The aim of the work described here is to develop and implement model-based fault

detection methods for HVAC components and subsystems. The software routines

documented here are designed to be used with a set of component models implemented in

the object-oriented simulation program SPARK, developed at LBNL. The models are

documented in a companion report [library].

SPARK is used to execute the models at each stage of use of the tool. In the calibration

stage, model parameters are identified on a component-by-component basis. In some

cases, e.g. air handling units, the components are then aggregated to form subsystems

whose boundaries are defined by the availability of reliable sensor measurements. In the

fault detection stage, SPARK is used to simulate the subsystem model. The calibration

routines support both linear and non-linear models. Currently, only static models are

supported. The execution of the SPARK models is illustrated in Appendix I.

Model-based fault detection tools proposed here can be used in both commissioning and

routine operation. As it is shown in Figure 1, each phase involves a distinct mode of

execution and involves two different stages, which are performed sequentially – model

calibration followed by fault detection. During the commissioning phase, design

information and manufacturer’s performance data are first used to calibrate the model.

Functional test data taken during start-up tests are then used to detect any pre-existing

faults. Once remedial work has been performed, the tests are repeated to confirm that the

faults have been corrected. Once the test results are considered satisfactory, the test data

are used to recalibrate the model for use in the on-line monitoring phase. The predictions

of the recalibrated model are compared with routine operating data, in order to detect any

faults that may arise during subsequent operation.

Figure 1 Fault detection schema

3 Online monitoring and fault detection modules

3.1 Pre-processor

On the top of Figure 1, the pre-processor module of the fault detection stage collects the

online data taken during routine operation of the system. This program converts the raw

data file, containing all data measured during the fault detection phase into processed data

files having a standard format. There is a control file, which contains the standard format

and naming conventions of the parameters to be converted. This control file is used to

process the raw data file, convert it and separate it into two processed data files: one is

the measured input parameter data file, and other is the measured output parameter data

file. Data is also checked for errors prior to writing the input and output data files.

Several different modules use the input and output data files within the fault detection

stage. One of these, the model simulation itself, has already been discussed in detail.

Simulation of the AHU model in SPARK requires the use of model input parameter data

obtained from the preprocessor module. This model input data, as well as the output data

found in the files are used by the steady state detector module.

3.2 Steady-state detector

model

Functional test data

model parameters

Parameter estimator:

Model “fine-tuning”

Online data taken during routine operation of system

pre-processor

model input data

output data

model output

comparator

FAULT

steady state detector

model

Functional test data

model parameters

Parameter estimator:

Model “fine-tuning”

Online data taken during routine operation of system

pre-processor

model input data

output data

model output

comparator

FAULT

steady state detector

The steady-state detector module is to detect whether the system components under

consideration are in under steady-state. The governing equations used to model all

components of the system are static, since no dynamics have been modeled. Hence we

can only consider fault detection during steady-state, and no transients are allowed. As

such, there must be some threshold for determining the steady-state condition for both

input and output data sets. Steady-state detection is performed by computing the EWMA

(Exponentially-Weighted Moving Average) of the difference between consecutive time-

indexed values for input and output parameter data values. If the absolute value of this

computation for any parameter value is below a predetermined threshold value, then

steady-state has been achieved.

The input and output data files are both needed by the steady-state detector module, and

come from the preprocessing module. The control file required by the steady-state

detector module contains the threshold values of each input and output parameters. The

output file, stores the results of the detection. For each time-indexed data point, a value of

1 is recorded in this file if the component is found to be at steady-state, or 0 if it is not at

steady-state.

3.3 Simulator

The C++ program file that implements the simulator module invokes the aggregate AHU

(Air-handling unit) model generated by SPARK. All of the components of the AHU

model's parameters are calibrated by the functional test data in a separate phase. These

calibrated constant parameters are hardcoded. The preprocessor module automatically

generates the measured operating AHU system input data, and the results are effectively

written in the file pos.inp.

Both of these input files, pos.inp and constant.inp are referenced in the file AHU1.run,

which is used by SPARK. Currently all of these calibrated parameters are hard-coded, not

automatically written into the constant.inp file. It is possible that additional coding effort

could be used to automate this process, making for a more seamless boundary between

the two stages of model parameter calibration and fault detection.

There are over 100 parameters that SPARK requires for aggregate AHU system

simulation. However, there are only about 10 that are actually calibrated. There are

several software development options that exist and may need to be explored in terms of

how to handle generalizing this parameter selection, calibration and component inclusion

modeling issue. The AHU1.run file also references an output file, Sparkoutput.out. This

is where the resulting simulated output data for the AHU model executed by SPARK will

be stored. Other meta-data is also included in the AHU1.run file, such as the initial and

final simulation times, as well as the simulation time increment, etc. There is also an

AHU.prf file that is used by SPARK in order to set the specific parameters that control

the methods and tolerances for analysis and solution of the governing equations. The

executable file, AHU.exe, will generate the simulated output results of an overall model

of the AHU system. Diagnostic information on SPARK's simulation is returned to the

console upon completion of the simulation by default. This can be suppressed by

redirecting this information to a log file, instead of to console I/O. This is named

SPARK.log.

3.4 Comparator

This is implemented by the C++ program file comparator.cpp. The system must first be

in steady-state, determined by data from the file SS.dat. Then the simulated outputs

derived from the SPARK simulation module, Sparkoutput.dat, are compared with the real

output of the system, realoutput.dat. The real output data comes from the preprocessor

module. Depending on the magnitude of the absolute error between the two, a

determination is made regarding whether or not a fault has occurred. The results are

stored in the file named FaultReport.dat, and released to console I/O screen display.

Detection of a fault is based upon comparing the magnitude of the absolute error to some

component-specific threshold. The thresholds are based upon empirical input parameter

data found in the file realinput.dat, and characterize specific physical parameters of the

components, in a least squares sense. These relationships are defined in a separate file,

threshold.cpp, and called in the comparator module. Hence, the information in the file

realinput.dat needs to be used by the comparator module. Although the least squares

method is currently used to identify most of these thresholds empirically, in the case of

the mixing box model these thresholds will be based upon the upper & lower limits

defined by the SPARK model (Xu & Haves, 2001). Specifically, the outside air fraction

(OAF) provides the basis for setting these thresholds in lieu of the mixed air temperature.

These thresholds are defined over the entire operating range, and therefore can similarly

be used for fault detection over the same range.

Analysis of the effects of measurement & modeling errors are not explicitly accounted

for in this fault detection toolbox. It is assumed that some engineering judgment will need

to be used to take these factors under consideration to prevent spurious false alarms

and/or missed detections.

3.5 Calibration modules

There are several nonlinear optimization techniques that may be used for model

calibration. The method implemented in the toolbox is Box’s Complex Method for

constrained nonlinear optimization (Box, 1965). A step-by-step description of the

algorithm is in the appendix II.

The parameter estimator module uses functional test data to calibrate parameters for the

specific component. The detailed the module structure working with current version of

the SPARK is shown in Appendix V. The calibrations of the three main components

within the AHU system are shown in Appendix VI, VII and VIII.

3.6 Fault Diagnosis

In the comparator module, fault detection is complemented with fault diagnosis

functionality as well. Given that the AHU system is found to be in steady-state, fault

diagnosis is performed by using the innovation (error) found in the detection phase as a

fuzzy input to a diagnostic rulebase. The software used to generate the fuzzy rulebase,

input sets and membership functions is TILShell 3.0, from Togai InfraLogic, Inc. C code

can be automatically generated by this program, and the data structures from the resulting

source code can be incorporated into the existing toolbox comparator module.

There are currently some problems with incorporating the automatically generated source

code for use by the existing toolbox comparator module . However, the problem can be

solved by manually implementing a coding workaround. As it turns out, some of the data

structures that are used in the automatically generated code do not exist. Hence, to correct

the problem, we can manually correct the problem by changing the data structures

appropriately.

The fault diagnosis is based upon a list of possible faults that may occur over the entire

operating range of the controlled input for a particular HVAC component. Because

different faults occur in different sections of the operating range of the control signal,

weighted bins are used to accumulate instances of detected faults together. Typically

there are two or three bins weighted over sections of the operating range. These bins

provide a way to partition the operating range into sections. In this way, the number of

faults detected in any one bin can be used to set a threshold count for when an accurate

computation of the moving average value can be made. Also, weighted bins can serve as

a mitigating effect for the new incoming data in computation of the moving average,

based upon the operating range location within the bin. This will influence the moving

average filter, which uses a forgetting factor. The forgetting factor is used to temporally

weight the incoming innovation data in order to allow for using a reasonably modest

memory of previous inputs. The final result will be to provide moving average values of

the innovation for each bin that will serve as fuzzy inputs into a rulebase for diagnosis.

The fault diagnosis of the three main component are shown in Appendix IX, X, and XI.

5 References

Box, M. J. (1965). A new method of constrained optimization and a comparison with

other methods. Computer Journal, 8:42--52.

Peng Xu and Philip Haves. (2002). Field Testing of Component-Level Model-Based

Fault Detection Methods for Mixing Boxes and VAV Fan Systems. Proceedings of 2002

American Council ACEEE Summer Study on Energy Efficiency in Buildings. Pacific

Grove, CA. Accepted.

Peng Xu and Philip Haves. (2001). Library of component reference models for fault

detection (AHU and chiller). Report to California Energy Commission. Berkeley, CA.:

Lawrence Berkeley National Laboratory.

Appendix I Innovate SPARK models in the current version of toolbox

Three main components or subsystems within the air handling unit subsystem are the

mixing box, the fan-duct subsystem, and the cooling coil subsystem. To explore different

implementation approaches, the simpler models are coded as C++ classes and SPARK is

used for the more complex models, such as the cooling coil subsystem, which require

iteration. Calling the current version of SPARK requires an EXEC call, which involves a

significant overhead. When a more convenient form of SPARK becomes available, e.g. a

DLL, SPARK will become the implementation method of choice for all components,

providing a uniform way of calling and coupling models.

The basic file processing and data transfer requirements for generating a SPARK

executable are shown in Figure 3. The input files are: 1) filename.run, a meta-file

containing a list of the files referencing basic constant, input and calibration parameters

required to solve the equation(s). It also contains other important parameters such as the

name of the resulting output file, the initial & final simulation times, and time interval,

etc., and 2) filename.prf, which contains the user preferences for how the governing

equation(s) are to be solved and certain tolerances associated with obtaining the solutions.

Given these two files, the SPARK software will create an executable file that can be

invoked on the command line, and hence called from within a C++ program when

necessary.

The files containing the basic constant, input and calibration parameters required to solve

the governing equation(s) for the component(s) being simulated are typically created with

extension *.inp. As shown in Figure 3, some *.inp files that are generated manually and

others are generated automatically, either by C++ programs or from trend logs of EMCS

databases. Table 1 illustrates the present status of automation vs. manual generation for

the different uses of SPARK within the toolbox:

1. Total AHU model simulation for fault detection

hardcoded.inp

automated.inp
Filename.run SPARK

Filename.prf

Filename.exe
Filename.out

Or

Filename.dat

Input Status Depends

on level of automation

currently coded

Examples of input files:

current calibration parameters,

input parameters

Execute/invoke within C

code

hardcoded.inp

automated.inp
Filename.run SPARK

Filename.prf

Filename.exe
Filename.out

Or

Filename.dat

Input Status Depends

on level of automation

currently coded

Examples of input files:

current calibration parameters,

input parameters

Execute/invoke within C

code

2. Cooling coil subsystem model simulation for calibration

Table 1 Current status of hardcoded and automated use of SPARK

Note that automation of the input parameter data file for use in the total AHU SPARK

model simulation for fault detection has not yet been implemented. Furthermore, the

naming convention for the files shown is provisional. In the future, the file naming

convention for these input (and other) relevant files would be standardized.

 Automated Manually Generated

1)

Pos.inp (Input parameters)
- 480 lines of data

- should be written by preprocessor &

read by SPARK

Constant.inp (Calibration parameters)
- 1 line of data

- hardcoded & read by SPARK

2)

ccvalveSim1.inp

(Calibration

parameters)
-1 line of data

- Continuously

written by

calibration routine

& read by SPARK

ccvalvexReal1.inp
(Input parameters)

- 8 lines of data

- Written once by

calibration routine using

data from

Cccalibrationsansome.dat

& read by SPARK

ccvalveCConstant1.inp
(Constant parameters)

-1 line of data

- hardcoded & read by SPARK

Appendix II Complex method used for calibrations

Let:

 nc = number of parameters to be estimated

 M = number of vertices (points) corresponding to the number of initial guesses for all

calibration parameters values, representing a complex geometric figure in nc{?}-space

(the ‘complex’).

 1. Find M ≥ nc+1 points that satisfy all implicit & explicit inequality constraints. There

are two cases, depending on the nature of the constraints:

a. For explicit inequality constraints, the complex is bounded by a hypercube

defined by the constraints, which defines the region of feasible solutions. One

point can be picked within the feasible range, and for the remaining points, a

uniform random number generator can be used to ensure compliance with the

bounding hypercube restriction.

b. For implicit inequality constraints, each new test point is generated randomly

and then tested for feasibility. If the point is infeasible, it is moved to a

location halfway to the centroid of the already accepted points. This process

is repeated until a set of k{M} feasible points is found.

Note: only explicit constraints are used in the current version of the toolbox.

 2. Define an objective function to minimize.

In this case, the objective function is an error function, f, defined as the

sum of the scaled absolute error between the measured actual output of the

component or subsystem and model simulated output, averaged over a set

of N measurements:

{ }M1j ,)(
1

1

K∈∀−= ∑
=

N

i

real

iji

sim

ij yy
N

f c,x

where fj is the error for the jth point in the complex, yi
sim

 is the model

output for the ith measurement, xi is the vector of measured inputs the ith

measurement, cj is the vector of parameters that define the jth point in the

complex and yi
real

 is the measured output for the ith measurement. There

are M error functions to compute, one for each point in the complex.

The function is evaluated at each of the k points (vertices). The point that

evaluates to the largest function value is reflected about the centroid of the

remaining vertices of complex. The formula for reflection is:

 Xr =(1+a)X0-aXh

 where Xr = new reflected point

 X0 = centroid of remaining points

 Xh = current point evaluating to largest function value

 a = positive-valued reflection coefficient (default value 1.3)

Note that this formula must be computed for each dimension of the

parameter space. The intuition for the reflection formula stems from the

fact that the new reflected point lies on a line joining the centroid of the

remaining points and the high point. However, it lies closer to the centroid

than to the high point. This is what we want, since we move away from

the high point, and closer to potential low points. The distance away from

the high point and to the centroid of remaining points is governed by

selection of the reflection coefficient, a.

3. We must test for feasibility of the new reflected point (meaning the

constraints must not be violated with this new reflected point).

a. If the new point is feasible, and the function value is lower than the

high value, we replace this high value with the new reflected point

and proceed to finding another maximum function value and

reflection in Step 2.

b. If the function value is not lower, then the reflection coefficient

must be too high. Hence, a new reflection point is found by halving

the value of a, and re-computing the reflection point. This iteration

continues until a point is found that results in a lower function

value. However, we don't want this to go on indefinitely, so we

must set some tolerance, ε1, for a, at which this process will stop.

c. If a lower function value is not found after reaching the ε1

tolerance level, then we just throw away this point, and start Step 2

all over again with the 2nd highest function value.

 4. If at any stage the reflected point is deemed to be infeasible, it is moved

halfway in towards the centroid until it becomes feasible.

5. Convergence of the process (i.e. termination of the algorithm) is

determined when the following conditions are met:

a. The complex shrinks to a specified small size, i.e. the distance

between any two vertices is smaller than some pre-specified

tolerance, ε2.

b. The standard deviation of the function value becomes sufficiently

small, below some prescribed tolerance, ε3.

 Appendix III Table of C++ files

File Name Usage Module Content

PreProcessor.cpp
Online monitoring/fault

detection
Preprocessor

Pre process the raw data collected from EMCS

systems

SSDectector.cpp

Online monitoring/fault

detection
Steady state detector

Determine whether the system is under steady

state

simulation.cpp

Online monitoring/fault

detection
Simulator Conduct SPARK simulation

Comparator.cpp

Online monitoring/fault

detection
Comparator

Compare the measured and simulated output

and determine whether there is a fault

Threshold.cpp

Online monitoring/fault

detection
Comparator

Determine the threshold of the output variable

for comparator

coolingcoilvalvecalibration.cpp Automatic calibration Cooling coil and valve

calibration

Cooling coil and valve system calibration

fancalibration.cpp Automatic calibration VAV fan calibration VAV fan system calibration

mixingboxcalibration.cpp Automatic calibration Mixing box calibration Mixing box calibration

bin.cpp Automatic calibration Bin module
Collapse a big data set from functional step test

to a small training data set

plot.cpp Automatic calibration Calibration Real time plot of all above calibrations

Appendix IV Table of data files (not C++ program files)

File Name Called By/

Created By

Module Content Format

raw.dat
preprocessor.cpp/

EMCS system
Preprocessor

Time-indexed data dump from building

EMCS system

 (1 11-hr working day, 10 sec intervals)

Time

Parameter names

from EMCS

system

convert.con preprocessor.cpp/

software user

Preprocessor Control file that contains the standard

format and naming conventions of the

parameters to be converted

N/A

realinput.dat

SSDetector.cpp,

comparator.cpp,

threshold.cpp,

AHU1.run

SPARK

/preprocessor.cpp

Steady-State

Detector,

Comparator,

SPARK

Model

Contains the input data read during

routine operation of system, after being

processed by preprocessor module

Time

TLiqEntCC

posValveCC

TLiqEntHC

posValveHC

TAirRet

wAirRet

TAirOut

wAirOut

posDamper

realoutput.dat

SSDetector.cpp,

comparator.cpp,

threshold.cpp

/preprocessor.cpp

Steady-State

Detector,

Comparator

Contains the output data read during

routine operation of system, after being

processed by preprocessor module

Time

TAirLvgCC

wAirLvgCC

TLiqLvgCC

mLiqCC

TAirLvgHC

TLiqLvgHC

mLiqHC

TAirSup

wAirSup

mAirSup

powerTotSfan

nSfan

pSfan

mAirRet

powerTotRfan

nRfan

pRfan

SS_T_input.con
SSDetector.cpp/

Software user

Steady-State

Detector

Control file required by the steady-state

detector module containing the threshold

values of each input parameter

TLiqEntCC

posValveCC

TLiqEntHC

posValveHC

TAirRet

wAirRet

TAirOut

wAirOut

posDamper

SS_T_output.con
SSDetector.cpp/

Software user

Steady-State

Detector

Control file required by the steady-state

detector module containing the threshold

values of each output parameter

TLiqEntCC

posValveCC

TLiqEntHC

posValveHC

TAirRet

wAirRet

TAirOut

wAirOut

PosDamper

SS.dat
comparator.cpp/

SSDetector.cpp
Comparator

Stores the results of the detection as

follows: for each time-indexed data

point, record a value of 1 (Yes, at steady-

state i.e. below threshold) or 0 (No, not

at steady-state i.e. above threshold)

Time

SS Value

FaultReport.dat
Software User/

comparator.cpp
Comparator The final results are stored in the file

N/A

Pos.inp

AHU1.run,

SPARK

/preprocessor.cpp

SPARK

Model
Contains input data from fault detection

Index

MixposDamper

MixTAirOut

RetTAirRet

Constant.inp

AHU1.run,

SPARK

/ Software User

SPARK

Model
Contains calibration parameter values

See SPARK

documentation

for more details

Sparkoutput.out
comparator.cpp/

SPARK

SPARK

Model

Contains SPARK simulation output

results for aggregate AHU system

See SPARK

documentation

for more details

mixingcal.dat
mixingboxcalibration.cpp/

EMCS system

Parameter

Estimator

Contains training data for calibration of

mixing box model parameters

MixTAirOut

RetTAirRet

MixposDamper

TAirEntCC

fanCal.dat
fancalibration.cpp/

EMCS system

Parameter

Estimator

Contains training data for calibration of

VAV fan-duct model parameters

nFan

mAir

PowerTot

pFan

Pstat

Cccalibrationsansome.dat

coolingcoilvalvecalibration

.cpp/EMCS system

Parameter

Estimator

Contains training data for calibration of

coil-valve model parameters

TAirEnt

wAirEnt

TLiqEnt

mAir

mLiqOpen

pos

wAirLvg

TairLvg

ccvalvexReal1.inp

ccvalve1.run, SPARK/
coolingcoilvalvecalibration

.cpp, EMCS system

Parameter

Estimator

Contains input training data for

generation of simulated output for coil-

valve model using SPARK (One-time

read)

Index

TAirEnt

wAirEnt

TLiqEnt

mAir

mLiqOpen

pos

ccvalvecSim1.inp

ccvalve1.run, SPARK/
coolingcoilvalvecalibration

.cpp

Parameter

Estimator

Contains current calibration parameters

for generation of simulated output for

coil-valve model using SPARK

(Continuously read)

Index

Cair

Cwater

Valc1

Valc2

ccvalveCConstant1.inp

ccvalve1.run, SPARK/

Software User

Parameter

Estimator

Contains constant parameters for

generation of simulated output for coil-

valve model using SPARK

Aext

Aint

Patm

ValLeakpar

Authority

ccvalveSparkoutput1.dat

coolingcoilvalvecalibration

.cpp/SPARK

Parameter

Estimator

Contains SPARK simulation output

results for coil-valve model

(Continuously written)

Appendix V Current calibration module structure

The diagram illustrates the current version of the calibration process for all of the

component model parameters.

The performance data used to calibrate the model parameters shown at the top of Fig. 2 is

separated into two files at the beginning. One is the output data file contains information

such as leaving air and water temperatures. The other is input data file contains valve

position data. The file containing the constant parameters and the automated files are also

shown in Fig. 2. These files contain the input and calibration parameters, respectively.

Notice that the files in SPARK calls at the bottom of Fig. 2 correspond to the invocation

of SPARK (Appendix I) - simulating the cooling coil-valve model.

The calibration parameter file is written continuously as required by the algorithm that is

used to calibrate the model. After SPARK simulates the output during execution of the

C++ program, the resulting data will be stored in the output file called. This information

is written, and also read continuously by the same program, as needed by the algorithm to

calibrate the model in a pseudo-information feedback loop. Once the algorithm is

complete, the coil-valve model’s calibrated parameters will appear on a visual display.

The resulting data presented in the visual display does not necessarily have to be

coincident with the training data sets used to calibrate the models. In fact, there is a bin

Functional test data:

Spark run files:

SPARK Exe files:

SPARK prf files:

SPARK output files:

Functional tests input

data:

Functional test output data:

Other constant parameters:

Calibration parameters:

Complex method:

module, which is used to reduce the size of the training data set. This reduced sized

training data set is used to calibrate the model, while the original larger data set is used to

visually display the results of the calibration on the plot. This “bin” tool collapses one big

data set into a small data set based on two criteria: that the system is in steady state, and

the new control signal is significantly different than the previous control signal recorded

in the small data set. The small data set can then be used for model calibration, by

grasping the core characteristics of the larger data set for analysis.

The Appendix IV, V, VI highlight the idiosyncrasies of the code required to calibrate

each one of the components using the aforementioned algorithm. Very little emphasis

will be placed on describing the code required to update the visual display that shows the

real and simulated data points as the calibration progresses. However, the output is very

visually appealing because the fit of the calibrated model parameters to the actual data

can be seen to converge in “real-time.” At most, a screenshot of the resultant fit will be

provided, following a description of the code required to calibrate each component’s

nuances in implementing the algorithm.

Appendix VI Mixing box calibration module

For the mixing box, the parameters to be calibrated are: LeakRet, LeakOut, c1, and c2 (c3 =

1-c1-c2). The inputs are: pos, Tret, and Tout. The output parameter is Tmix, and the

governing relationship is as follows:

 Tmix=(((1-LeakRet)-LeakOut)(c1*pos+c2*pos
2
+c3*pos

3
)+LeakOut)*(Tout-Tret)+Tret

More details of this model are given in (Xu & Haves, 2001).

This module performs model calibration of the mixing box component of the AHU

system. The parameters, inputs, outputs, and their relationships are listed above. Because

the parameters are nonlinear with respect to the output parameter, the least squares

method cannot be used to compute them. The least squares method can only be used

when the output parameter is linearly dependent upon the calibration parameters.

The calibrated model parameters can easily be found by applying this technique. This

technique is the Box-Complex constrained nonlinear optimization algorithm discussed in

Appendix. The picture in Figure 3 illustrates the fit of the simulated model output

compared to the real measured output mixed air temperature.

Appendix VII VAV Fan-duct system calibration module

For the fan-duct system, the parameters to be calibrated are: CRes, CFan, kFan, and ηMot. The

constants are: MotFrac, ηShaftMax, PAtm, Area, cEff, and density(ρ). The input parameters are:

nFan and mAir. The output parameters are: PowerTot, Pfan, PStat. The governing relationships

are:

 Pfan=kfan*nFan
2
-CFan*mAir

2

 PStat=Pfan-cRes*mAir
2

 PowerTot = mAir*Pfan/(ρ * ηMot)

Again, for more details on this model refer to (Xu & Haves, 2001). Note that unlike the

mixing box calibration, there are three calibrations that must take place because there are

three output parameters and three governing equations. These calibrations must take

place sequentially, and the result of the first calibration must be used in the second and

third calibrations. Other than this major difference, the underlying principle of calibration

is the same.

Note that the second governing equation to be calibrated is linear in cRes. Hence, the least

squares method could be used to obtain this value. However, for consistency, we'll use

the same Box - Complex constrained nonlinear optimization algorithm as described

previously for all three calibrations. As a result of applying the algorithm, we will obtain

the calibrated model parameters: CRes, CFan, kFan, ηMot. The picture in Figure 4 illustrates

the fit of the simulated model output compared to the second real measured output, static

fan pressure.

Appendix VIII Cooling coil and valve system calibration module

Finally, for the cooling coil-valve system calibration, the parameters to be calibrated are:

Cair, Cwater, Valc1, and Valc2. The constants are: Aext, Aint, Patm, ValLeakpar, and Authority.

The input parameters are: TairEnt, wAirEnt, TliqEnt, mAir, mLiqOpen, and valve position. The

output parameters are: TairLvg, wAirLvg, and Tliqlvg, although the latter two parameters have

been left out at this stage.

The governing relationships are a bit complicated to express here. The details are

provided in (Xu & Haves, 2001). There are ideally 3 calibrations to perform, similar to

the fan system calibration. The calibrations must take place sequentially. The underlying

principle of calibration is the same. As a result of applying this algorithm, the calibrated

model parameters: Cair, Cwater, Valc1, and Valc2 will be obtained. The picture in Figure 5

illustrates the fit of the simulated model output compared to the real measured output, air

temperature downstream of the cooling coil.

Appendix IX Cooling and Heating coil fault diagnosis

The cooling & heating coil fault diagnosis is based upon the premise that there are two

fuzzy inputs: innovation at full duty and innovation at minimal duty of the heating or

cooling coil valve. Two bins are used to aggregate the data for each of the fuzzy inputs.

There are four possible faults: valve leakage, coil fouling, and positive or negative sensor

offset. The following table summarizes a fuzzy rulebase, based upon combinations of all

possible faults & bins:

Fault Type Innovation at Minimal Duty

(ε0)

Innovation at Full Duty (ε100)

Valve Leakage + 0

Coil Fouling 0 -

Positive Sensor Offset + +

Negative Sensor Offset - -

The weighting factor for both inputs are binned according to the graph below illustrating

both the crisp and fuzzy bins for the heating & cooling coil-valve weighting factor. As

shown in following figure, the weighting factor is meant to act as a mitigating technique

in computation of the moving average when using the fuzzy bin method. The reason for

using this technique is to weight the new incoming data according to the operating range

location. The result that this might have on the final updated moving average value can

be either positive or negative, depending on the value of the difference between the new

incoming data and the current moving average value. The mitigating effect is evident by

the weighting factor’s linear decrease from 1 to 0. It can also be seen that the weighting

factor is always equal to one for the crisp bin method. Hence the following equation for

the moving average is:

nnn xwwyy)]1(1[)1(1 αα −−+−= −

and when w=1 it becomes:

nnn xyy)1(1 αα +−= −

where α is the forgetting factor, xn is the new data, yn-1 is the current moving average

value, and yn is the new moving average value.

Note that the moving average computation is not valid before 50 detections have been

counted. However, it is still computed regardless of the number of counts, and displayed

upon each detection, along with a warning stating that the value may not be valid. To

clarify, the detection count will always be computed, as well the moving average.

However, the diagnostic code is invoked only if the count for both bins exceeds 50. The

resulting diagnostic information is displayed only if there is a detection (threshold

exceedance) that triggers it, regardless if the count for both bins exceeds 50 or not. The

bins shown above are only defined on the very small regions between 0 and 0.02,

representing minimal duty, and between 0.98 and 1, representing full duty.

The fuzzy membership functions defined for the input variables are created in the

TILShell 3.0 software. For both minimal and full duty innovations, the membership

functions for the sets are as in figure:

The rule-based associated with the fuzzy system is based upon the table shown

previously. There are three basic fuzzy sets for both inputs: zero, positive and negative,

which is evident from the diagram above and the values listed in the table. Each of the

rules will fire based upon the computed inputs and defined fuzzy membership functions.

As a result, the belief values associated with each of the rules will be used as the

diagnostic information that is displayed upon an instance of triggered fault detection.

Appendix X Mixing box fault diagnosis

The mixing box fault diagnosis is based upon the premise that there are three independent

fuzzy systems, one for each type of possible fault. There are three possible faults: outside

air damper leakage, return air damper leakage, and all other types of faults lumped

together in one category including nonlinearities. Each fuzzy system has its own rulebase,

with innovations binned over specific sections of the operating range that act as inputs.

They are as follows: innovation at minimal duty, innovation at half duty, and innovation

at full duty of the mixing box damper position. The inputs correspond respectively to the

faults mentioned previously. The following table summarizes the fuzzy rulebases, based

upon combinations of all possible faults & bins:

Fault Type Innovation at

Minimal Duty (ε0)

Innovation at

Half Duty (ε50)

Innovation at

Full Duty (ε100)

Outside Air Damper Leakage -

Return Air Damper Leakage +

Nonlinearity and other faults +

Nonlinearity and other faults -

The weighting factor for both inputs are binned according to the Figure 9 below

illustrating both crisp and fuzzy bins for the mixing box weighting factor.

The bins shown above are defined on the regions between 0 and 0.02, representing

minimal duty, between 0.4 and 0.6 representing half duty, and between 0.98 and 1,

representing full duty. The three basic fuzzy sets for all inputs are: zero, positive and

negative. For all three innovation inputs, the membership functions for the sets are as

follows:

Again, each of the rules will fire based upon the computed inputs and defined fuzzy

membership functions. The belief values associated with each of the rules will then be

used as the diagnostic information displayed upon an instance of a triggered fault

detection.

Appendix XI Supply and return fan diagnosis

The supply & return fan duct-system fault diagnosis is based upon the premise that that

there are two fuzzy inputs: innovation at low speed and innovation at high speed of the

supply & return fans. Two bins are used to aggregate the data for each of the fuzzy inputs.

There are eight possible faults: positive and negative sensor offset, fan stuck at full and

intermediate speed, fan motor failure, fan reduced capacity, slipping fan belt, and all

others lumped into a single generic category. The following table summarizes a fuzzy

rulebase, based upon combinations of all possible faults & bins:

Fault Type Innovation at Minimal Duty (ε0) Innovation at

Full Duty (ε100)

Positive sensor offset + +

Negative sensor offset S- S-

Fan stuck at full speed + 0

Fan stuck at intermediate speed + S-

Fan motor failure L- L-

Fan reduced capacity S- +

Slipping fan belt M- M-

Others 0 S-

The five basic fuzzy sets for both inputs shown in the above table are: positive (+), zero

(0), small negative (S-), medium negative (M-), and large negative (L-). The weighting

factor for both inputs are binned according to the graph below illustrating both the crisp

and fuzzy bins for the supply & return fan duct system weighting factor in Figure 11.

The bins shown above are defined on the regions between 0.3 and 0.5, representing low

fan speed, and between 0.65 and 1 representing high fan speed. The membership

functions for the five basic fuzzy sets described earlier, for both innovation inputs, are as:

Note that the fuzzy sets shown in the legend of the illustration above (NM, N, Z, P, PM)

do not correspond exactly with the sets described previously (positive (+), zero (0), small

negative (S-), medium negative (M-), and large negative (L-)). The sets, however, have to

be translated respectively because the software defaults to the former nomenclature. As

always, each of the rules will fire based upon the computed inputs and defined fuzzy

membership functions. The belief values associated with each of the rules will then be

used as the diagnostic information displayed upon an instance of a triggered fault

detection.

