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1 Abstract 
 

This document describes the contents of a toolbox for component-level model-based fault 

detection methods in commercial building HVAC systems.  The toolbox consists of five 

basic modules: a parameter estimator for model calibration, a preprocessor, an AHU 

model simulator, a steady-state detector, and a comparator.  Each of these modules and 

the fuzzy logic rules for fault diagnosis are described in detail.  The toolbox is written in 

C++ and also invokes the SPARK simulation program.                                                                        

 

2 Introduction 

   
The aim of the work described here is to develop and implement model-based fault 

detection methods for HVAC components and subsystems.  The software routines 

documented here are designed to be used with a set of component models implemented in 

the object-oriented simulation program SPARK, developed at LBNL.  The models are 

documented in a companion report [library]. 

 

SPARK is used to execute the models at each stage of use of the tool.  In the calibration 

stage, model parameters are identified on a component-by-component basis.  In some 

cases, e.g. air handling units, the components are then aggregated to form subsystems 

whose boundaries are defined by the availability of reliable sensor measurements.  In the 

fault detection stage, SPARK is used to simulate the subsystem model.  The calibration 

routines support both linear and non-linear models.   Currently, only static models are 

supported.  The execution of the SPARK models is illustrated in Appendix I. 

 

Model-based fault detection tools proposed here can be used in both commissioning and 

routine operation.  As it is shown in Figure 1, each phase involves a distinct mode of 

execution and involves two different stages, which are performed sequentially – model 

calibration followed by fault detection.  During the commissioning phase, design 

information and manufacturer’s performance data are first used to calibrate the model.  

Functional test data taken during start-up tests are then used to detect any pre-existing 

faults.  Once remedial work has been performed, the tests are repeated to confirm that the 

faults have been corrected.  Once the test results are considered satisfactory, the test data 

are used to recalibrate the model for use in the on-line monitoring phase.  The predictions 

of the recalibrated model are compared with routine operating data,  in order to detect any 

faults that may arise during subsequent operation. 

 



 

 

 

Figure 1 Fault detection schema 

 

 

3 Online monitoring and fault detection modules 

 

3.1 Pre-processor 

 

On the top of Figure 1, the pre-processor module of the fault detection stage collects the 

online data taken during routine operation of the system.  This program converts the raw 

data file, containing all data measured during the fault detection phase into processed data 

files having a standard format. There is a control file, which contains the standard format 

and naming conventions of the parameters to be converted. This control file is used to 

process the raw data file, convert it and separate it into two processed data files: one is 

the measured input parameter data file, and other is the measured output parameter data 

file. Data is also checked for errors prior to writing the input and output data files. 

 

Several different modules use the input and output data files within the fault detection 

stage. One of these, the model simulation itself, has already been discussed in detail. 

Simulation of the AHU model in SPARK requires the use of model input parameter data 

obtained from the preprocessor module. This model input data, as well as the output data 

found in the files are used by the steady state detector module.  

 

3.2 Steady-state detector 

 

model

Functional test data

model parameters

Parameter estimator:

Model “fine-tuning”

Online data taken during routine operation of system

pre-processor

model input data

output data

model output

comparator

FAULT

steady state detector

model

Functional test data

model parameters

Parameter estimator:

Model “fine-tuning”

Online data taken during routine operation of system

pre-processor

model input data

output data

model output

comparator

FAULT

steady state detector

 



The steady-state detector module is to detect whether the system components under 

consideration are in under steady-state. The governing equations used to model all 

components of the system are static, since no dynamics have been modeled. Hence we 

can only consider fault detection during steady-state, and no transients are allowed. As 

such, there must be some threshold for determining the steady-state condition for both 

input and output data sets. Steady-state detection is performed by computing the EWMA 

(Exponentially-Weighted Moving Average) of the difference between consecutive time-

indexed values for input and output parameter data values. If the absolute value of this 

computation for any parameter value is below a predetermined threshold value, then 

steady-state has been achieved.  

 

The input and output data files are both needed by the steady-state detector module, and 

come from the preprocessing module. The control file required by the steady-state 

detector module contains the threshold values of each input and output parameters. The 

output file, stores the results of the detection. For each time-indexed data point, a value of 

1 is recorded in this file if the component is found to be at steady-state, or 0 if it is not at 

steady-state. 

 

3.3 Simulator 

 

The C++ program file that implements the simulator module invokes the aggregate AHU 

(Air-handling unit) model generated by SPARK. All of the components of the AHU 

model's parameters are calibrated by the functional test data in a separate phase. These 

calibrated constant parameters are hardcoded. The preprocessor module automatically 

generates the measured operating AHU system input data, and the results are effectively 

written in the file pos.inp.  

 

Both of these input files, pos.inp and constant.inp are referenced in the file AHU1.run, 

which is used by SPARK. Currently all of these calibrated parameters are hard-coded, not 

automatically written into the constant.inp file.  It is possible that additional coding effort 

could be used to automate this process, making for a more seamless boundary between 

the two stages of model parameter calibration and fault detection.  

 

There are over 100 parameters that SPARK requires for aggregate AHU system 

simulation. However, there are only about 10 that are actually calibrated. There are 

several software development options that exist and may need to be explored in terms of 

how to handle generalizing this parameter selection, calibration and component inclusion 

modeling issue. The AHU1.run file also references an output file, Sparkoutput.out. This 

is where the resulting simulated output data for the AHU model executed by SPARK will 

be stored. Other meta-data is also included in the AHU1.run file, such as the initial and 

final simulation times, as well as the simulation time increment, etc. There is also an 

AHU.prf file that is used by SPARK in order to set the specific parameters that control 

the methods and tolerances for analysis and solution of the governing equations. The 

executable file, AHU.exe, will generate the simulated output results of an overall model 

of the AHU system. Diagnostic information on SPARK's simulation is returned to the 

console upon completion of the simulation by default. This can be suppressed by 



redirecting this information to a log file, instead of to console I/O. This is named 

SPARK.log. 

 

 

3.4 Comparator 

 

This is implemented by the C++ program file comparator.cpp. The system must first be 

in steady-state, determined by data from the file SS.dat. Then the simulated outputs 

derived from the SPARK simulation module, Sparkoutput.dat, are compared with the real 

output of the system, realoutput.dat. The real output data comes from the preprocessor 

module. Depending on the magnitude of the absolute error between the two, a 

determination is made regarding whether or not a fault has occurred. The results are 

stored in the file named FaultReport.dat, and released to console I/O screen display. 

 

Detection of a fault is based upon comparing the magnitude of the absolute error to some 

component-specific threshold. The thresholds are based upon empirical input parameter 

data found in the file realinput.dat, and characterize specific physical parameters of the 

components, in a least squares sense. These relationships are defined in a separate file, 

threshold.cpp, and called in the comparator module. Hence, the information in the file 

realinput.dat needs to be used by the comparator module. Although the least squares 

method is currently used to identify most of these thresholds empirically, in the case of 

the mixing box model these thresholds will be based upon the upper & lower limits 

defined by the SPARK model (Xu & Haves, 2001). Specifically, the outside air fraction 

(OAF) provides the basis for setting these thresholds in lieu of the mixed air temperature. 

These thresholds are defined over the entire operating range, and therefore can similarly 

be used for fault detection over the same range. 

 

Analysis of the effects of measurement & modeling errors are not explicitly accounted 

for in this fault detection toolbox. It is assumed that some engineering judgment will need 

to be used to take these factors under consideration to prevent spurious false alarms 

and/or missed detections. 

 
3.5 Calibration modules 

 

There are several nonlinear optimization techniques that may be used for model 

calibration.  The method implemented in the toolbox is Box’s Complex Method for 

constrained nonlinear optimization (Box, 1965).  A step-by-step description of the 

algorithm is in the appendix II. 

 

The parameter estimator module uses functional test data to calibrate parameters for the 

specific component. The detailed the module structure working with current version of 

the SPARK is shown in Appendix V.  The calibrations of the three main components 

within the AHU system are shown in Appendix VI, VII and VIII.    

 

 

3.6 Fault Diagnosis 



 

In the comparator module, fault detection is complemented with fault diagnosis 

functionality as well. Given that the AHU system is found to be in steady-state, fault 

diagnosis is performed by using the innovation (error) found in the detection phase as a 

fuzzy input to a diagnostic rulebase. The software used to generate the fuzzy rulebase, 

input sets and membership functions is TILShell 3.0, from Togai InfraLogic, Inc. C code 

can be automatically generated by this program, and the data structures from the resulting 

source code can be incorporated into the existing toolbox comparator module.  

 

There are currently some problems with incorporating the automatically generated source 

code for use by the existing toolbox comparator module . However, the problem can be 

solved by manually implementing a coding workaround. As it turns out, some of the data 

structures that are used in the automatically generated code do not exist. Hence, to correct 

the problem, we can manually correct the problem by changing the data structures 

appropriately. 

 

The fault diagnosis is based upon a list of possible faults that may occur over the entire 

operating range of the controlled input for a particular HVAC component. Because 

different faults occur in different sections of the operating range of the control signal, 

weighted bins are used to accumulate instances of detected faults together. Typically 

there are two or three bins weighted over sections of the operating range. These bins 

provide a way to partition the operating range into sections. In this way, the number of 

faults detected in any one bin can be used to set a threshold count for when an accurate 

computation of the moving average value can be made. Also, weighted  bins can serve as 

a mitigating effect for the new incoming data in computation of the moving average, 

based upon the operating range location within the bin. This will influence the moving 

average filter, which uses a forgetting factor. The forgetting factor is used to temporally 

weight the incoming innovation data in order to allow for using a reasonably modest 

memory of previous inputs. The final result will be to provide moving average values of 

the innovation for each bin that will serve as fuzzy inputs into a rulebase for diagnosis. 

 

The fault diagnosis of the three main component are shown in Appendix IX, X, and XI. 
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Appendix I Innovate SPARK models in the current version of toolbox  

 

Three main components or subsystems within the air handling unit subsystem are the  

 

 

mixing box, the fan-duct subsystem, and the cooling coil subsystem.  To explore different 

implementation approaches, the simpler models are coded as C++ classes and SPARK is 

used for the more complex models, such as the cooling coil subsystem, which require 

iteration.  Calling the current version of SPARK requires an EXEC call, which involves a 

significant overhead.  When a more convenient form of SPARK becomes available, e.g. a 

DLL, SPARK will become the implementation method of choice for all components, 

providing a uniform way of calling and coupling models.   

 

The basic file processing and data transfer requirements for generating a SPARK 

executable are shown in Figure 3.  The input files are: 1) filename.run, a meta-file 

containing a list of the files referencing basic constant, input and calibration parameters 

required to solve the equation(s).  It also contains other important parameters such as the 

name of the resulting output file, the initial & final simulation times, and time interval, 

etc., and 2) filename.prf, which contains the user preferences for how the governing 

equation(s) are to be solved and certain tolerances associated with obtaining the solutions.  

Given these two files, the SPARK software will create an executable file that can be 

invoked on the command line, and hence called from within a C++ program when 

necessary.  

 

The files containing the basic constant, input and calibration parameters required to solve 

the governing equation(s) for the component(s) being simulated are typically created with 

extension *.inp.  As shown in Figure 3, some *.inp files that are generated manually and 

others are generated automatically, either by C++ programs or from trend logs of EMCS 

databases. Table 1 illustrates the present status of automation vs. manual generation for 

the different uses of SPARK within the toolbox: 

 

1. Total AHU model simulation for fault detection 

hardcoded.inp

automated.inp
Filename.run SPARK

Filename.prf

Filename.exe
Filename.out

Or 

Filename.dat

Input Status Depends 

on level of automation 

currently coded

Examples of input files: 

current calibration parameters, 

input parameters

Execute/invoke within C 

code

hardcoded.inp

automated.inp
Filename.run SPARK

Filename.prf

Filename.exe
Filename.out

Or 

Filename.dat

Input Status Depends 

on level of automation 

currently coded

Examples of input files: 

current calibration parameters, 

input parameters

Execute/invoke within C 

code  



2. Cooling coil subsystem model simulation for calibration 

 

Table 1 Current status of hardcoded and automated use of SPARK 

 

 

Note that automation of the input parameter data file for use in the total AHU SPARK 

model simulation for fault detection has not yet been implemented.  Furthermore, the 

naming convention for the files shown is provisional.  In the future, the file naming 

convention for these input (and other) relevant files would be standardized. 

 

 Automated Manually Generated 

1) 

 

Pos.inp (Input parameters) 
- 480 lines of data 

- should be written by preprocessor & 

read by SPARK 

 

 

Constant.inp (Calibration parameters) 
- 1 line of data 

- hardcoded & read by SPARK 

 

2) 

ccvalveSim1.inp 

(Calibration 

parameters) 
-1 line of data 

- Continuously 

written by 

calibration routine 

& read by SPARK 

 

 

ccvalvexReal1.inp 
(Input parameters) 

- 8 lines of data 

- Written once by 

calibration routine using 

data from 

Cccalibrationsansome.dat 

& read by SPARK 

 

 

ccvalveCConstant1.inp 
(Constant parameters) 

-1 line of data 

- hardcoded & read by SPARK 

 

 



Appendix II Complex method used for calibrations 

 

Let: 

   nc = number of parameters to be estimated 

  M = number of vertices (points) corresponding to the number of initial guesses for all 

calibration parameters values, representing a complex geometric figure in nc{?}-space 

(the ‘complex’). 

 

  1. Find M ≥ nc+1 points that satisfy all implicit & explicit inequality constraints.  There 

are two cases, depending on the nature of the constraints: 

a. For explicit inequality constraints, the complex is bounded by a hypercube 

defined by the constraints, which defines the region of feasible solutions. One 

point can be picked within the feasible range, and for the remaining points, a 

uniform random number generator can be used to ensure compliance with the 

bounding hypercube restriction.  

b. For implicit inequality constraints, each new test point is generated randomly 

and then tested for feasibility.  If the point is infeasible, it is moved to a 

location halfway to the centroid of the already accepted points.   This process 

is repeated until a set of k{M} feasible points is found.  

 

Note: only explicit constraints are used in the current version of the toolbox. 

 

  2. Define an objective function to minimize. 

 

In this case, the objective function is an error function, f, defined as the 

sum of the scaled absolute error between the measured actual output of the 

component or subsystem and model simulated output, averaged over a set 

of N measurements:  

{ }M1j                        ,)(
1

1

K∈∀−= ∑
=

N

i

real

iji

sim

ij yy
N

f c,x  

where fj is the error for the jth point in the complex, yi
sim

 is the model 

output for the ith measurement, xi is the vector of measured inputs the ith 

measurement, cj is the vector of parameters that define the jth point in the 

complex and yi
real

 is the measured output for the ith measurement.  There 

are M error functions to compute, one for each point in the complex.    

The function is evaluated at each of the k points (vertices). The point that 

evaluates to the largest function value is reflected about the centroid of the 

remaining vertices of complex. The formula for reflection is: 

 

            Xr =(1+a)X0-aXh 

 

    where  Xr = new reflected point 

     X0 = centroid of remaining points 

    Xh = current point evaluating to largest function value 

      a = positive-valued reflection coefficient (default value 1.3) 

       



Note that this formula must be computed for each dimension of the 

parameter space. The intuition for the reflection formula stems from the 

fact that the new reflected point lies on a line joining the centroid of the 

remaining points and the high point. However, it lies closer to the centroid 

than to the high point. This is what we want, since we move away from 

the high point, and closer to potential low points. The distance away from 

the high point and to the centroid of remaining points is governed by 

selection of the reflection coefficient, a. 

 

3.  We must test for feasibility of the new reflected point (meaning the 

constraints must not be violated with this new reflected point).  

a. If the new point is feasible, and the function value is lower than the 

high value, we replace this high value with the new reflected point 

and proceed to finding another maximum function value and 

reflection in Step 2. 

b.  If the function value is not lower, then the reflection coefficient 

must be too high. Hence, a new reflection point is found by halving 

the value of a, and re-computing the reflection point. This iteration 

continues until a point is found that results in a lower function 

value. However, we don't want this to go on indefinitely, so we 

must set some tolerance, ε1, for a, at which this process will stop.  

c.  If a lower function value is not found after reaching the ε1 

tolerance level, then we just throw away this point, and start Step 2 

all over again with the 2nd highest function value. 

 

  4.  If at any stage the reflected point is deemed to be infeasible, it is moved 

halfway in towards the centroid until it becomes feasible. 

 

5.  Convergence of the process (i.e. termination of the algorithm) is 

determined when the following conditions are met: 

a. The complex shrinks to a specified small size, i.e. the distance 

between any two vertices is smaller than some pre-specified 

tolerance, ε2. 

b.  The standard deviation of the function value becomes sufficiently 

small, below some prescribed tolerance, ε3.  

 



 Appendix III Table of C++ files 

 

File Name Usage Module Content 

PreProcessor.cpp 
Online monitoring/fault 

detection 
Preprocessor 

Pre process the raw data collected from EMCS 

systems 

SSDectector.cpp 

 

Online monitoring/fault 

detection 
Steady state detector 

Determine whether the system is under steady 

state 

simulation.cpp 

 

Online monitoring/fault 

detection 
Simulator Conduct SPARK simulation  

Comparator.cpp 

 

Online monitoring/fault 

detection 
Comparator 

Compare the measured and simulated output 

and determine whether there is a fault 

Threshold.cpp 

 

Online monitoring/fault 

detection 
Comparator 

Determine the threshold of the output variable 

for comparator 

    

coolingcoilvalvecalibration.cpp Automatic calibration Cooling coil and valve 

calibration  

Cooling coil and valve system calibration 

fancalibration.cpp Automatic calibration VAV fan calibration VAV fan system calibration 

mixingboxcalibration.cpp Automatic calibration Mixing box calibration Mixing box calibration 

bin.cpp Automatic calibration Bin module 
Collapse a big data set from functional step test 

to a small training data set 

plot.cpp Automatic calibration Calibration Real time plot of all above calibrations 

 

 



Appendix IV Table of data files (not C++ program files) 

 

File Name Called By/ 

Created By 

Module Content Format 

raw.dat 
preprocessor.cpp/ 

EMCS system 
Preprocessor 

Time-indexed data dump from building 

EMCS system 

 (1 11-hr working day, 10 sec intervals) 

Time 

Parameter names 

from  EMCS 

system 

convert.con preprocessor.cpp/ 

software user 

Preprocessor Control file that contains the standard 

format and naming conventions of the 

parameters to be converted 

N/A 

realinput.dat 

SSDetector.cpp, 

comparator.cpp, 

threshold.cpp, 

AHU1.run 

SPARK 

/preprocessor.cpp 

Steady-State 

Detector,  

Comparator, 

SPARK 

Model 

Contains the input data read during 

routine operation of system, after being 

processed by preprocessor module 

Time 

TLiqEntCC 

posValveCC 

TLiqEntHC 

posValveHC 

TAirRet 

wAirRet 

TAirOut 

wAirOut 

posDamper 

realoutput.dat 

SSDetector.cpp, 

comparator.cpp, 

threshold.cpp 

/preprocessor.cpp 

Steady-State 

Detector,  

Comparator 

Contains the output data read during 

routine operation of system, after being 

processed by preprocessor module 

Time 

TAirLvgCC 

wAirLvgCC 

TLiqLvgCC 

mLiqCC 

TAirLvgHC 

TLiqLvgHC 

mLiqHC 

TAirSup 

wAirSup 

mAirSup 

powerTotSfan 

nSfan 

pSfan 

mAirRet 

powerTotRfan 

nRfan 

pRfan 

SS_T_input.con 
SSDetector.cpp/ 

Software user 

Steady-State 

Detector 

Control file required by the steady-state 

detector module containing the threshold 

values of each input parameter 

TLiqEntCC 

posValveCC 

TLiqEntHC 

posValveHC 

TAirRet 

wAirRet 

TAirOut 

wAirOut 

posDamper 

SS_T_output.con 
SSDetector.cpp/ 

Software user 

Steady-State 

Detector 

Control file required by the steady-state 

detector module containing the threshold 

values of each output parameter 

TLiqEntCC 

posValveCC 

TLiqEntHC 

posValveHC 

TAirRet 

wAirRet 

TAirOut 

wAirOut 

PosDamper 

SS.dat 
comparator.cpp/ 

SSDetector.cpp 
Comparator 

Stores the results of the detection as 

follows: for each time-indexed data 

point, record a value of 1 (Yes, at steady-

state i.e. below threshold) or 0 (No, not 

at steady-state i.e. above threshold) 

Time 

SS Value 

FaultReport.dat 
Software User/ 

comparator.cpp 
Comparator The final results are stored in the file 

N/A 



Pos.inp 

AHU1.run, 

SPARK 

/preprocessor.cpp 

SPARK 

Model 
Contains input data from fault detection 

Index 

MixposDamper 

MixTAirOut 

RetTAirRet 

Constant.inp 

AHU1.run, 

SPARK 

/ Software User 

SPARK 

Model 
Contains calibration parameter values 

See SPARK 

documentation 

for more details 

Sparkoutput.out 
comparator.cpp/ 

SPARK 

SPARK 

Model 

Contains SPARK simulation output 

results for aggregate AHU system 

See SPARK 

documentation 

for more details 

mixingcal.dat 
mixingboxcalibration.cpp/ 

EMCS system 

Parameter  

Estimator 

Contains training data for calibration of 

mixing box model parameters 

MixTAirOut 

RetTAirRet 

MixposDamper 

TAirEntCC 

fanCal.dat 
fancalibration.cpp/ 

EMCS system 

Parameter  

Estimator 

Contains training data for calibration of 

VAV fan-duct model parameters 

nFan 

mAir 

PowerTot 

pFan 

Pstat 

Cccalibrationsansome.dat 
 

coolingcoilvalvecalibration

.cpp/EMCS system 

Parameter  

Estimator 

Contains training data for calibration of 

coil-valve model parameters 

TAirEnt 

wAirEnt 

TLiqEnt 

mAir 

mLiqOpen 

pos 

wAirLvg 

TairLvg 

ccvalvexReal1.inp 
 

ccvalve1.run, SPARK/ 
coolingcoilvalvecalibration

.cpp, EMCS system 

Parameter  

Estimator 

Contains input training data for 

generation of simulated output for coil-

valve model using SPARK (One-time 

read) 

Index 

TAirEnt 

wAirEnt 

TLiqEnt 

mAir 

mLiqOpen 

pos 

ccvalvecSim1.inp 
 

ccvalve1.run, SPARK/ 
coolingcoilvalvecalibration

.cpp 

Parameter  

Estimator 

Contains current calibration parameters 

for generation of simulated output for 

coil-valve model using SPARK 

(Continuously read) 

Index 

Cair 

Cwater 

Valc1 

Valc2 

ccvalveCConstant1.inp 
 

ccvalve1.run, SPARK/ 

Software User 

Parameter  

Estimator 

Contains constant parameters for 

generation of simulated output for coil-

valve model using SPARK  

Aext 

Aint 

Patm 

ValLeakpar 

Authority 

ccvalveSparkoutput1.dat 
 

coolingcoilvalvecalibration

.cpp/SPARK 

Parameter  

Estimator 

Contains SPARK simulation output 

results for coil-valve model 

(Continuously written) 

 

 

 



Appendix V Current calibration module structure 

 

The diagram illustrates the current version of the calibration process for all of the 

component model parameters.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The performance data used to calibrate the model parameters shown at the top of Fig. 2 is 

separated into two files at the beginning.  One is the output data file contains information 

such as leaving air and water temperatures.  The other is input data file contains valve 

position data. The file containing the constant parameters and the automated files are also 

shown in Fig. 2. These files contain the input and calibration parameters, respectively. 

Notice that the files in SPARK calls at the bottom of Fig. 2 correspond to the invocation 

of SPARK (Appendix I) - simulating the cooling coil-valve model.   

 

The calibration parameter file is written continuously as required by the algorithm that is 

used to calibrate the model.  After SPARK simulates the output during execution of the 

C++ program, the resulting data will be stored in the output file called. This information 

is written, and also read continuously by the same program, as needed by the algorithm to 

calibrate the model in a pseudo-information feedback loop.  Once the algorithm is 

complete, the coil-valve model’s calibrated parameters will appear on a visual display.  

 

The resulting data presented in the visual display does not necessarily have to be 

coincident with the training data sets used to calibrate the models. In fact, there is a bin 

Functional test data:  

 

Spark run files: 

 

 

SPARK Exe files: 

 

SPARK prf files: 

 

SPARK output files: 

 

Functional tests input 

data: 

 

Functional test output data: 

 

Other constant parameters: 

 

Calibration parameters: 

 

Complex method: 

 



module, which is used to reduce the size of the training data set. This reduced sized 

training data set is used to calibrate the model, while the original larger data set is used to 

visually display the results of the calibration on the plot. This “bin” tool collapses one big 

data set into a small data set based on two criteria: that the system is in steady state, and 

the new control signal is significantly different than the previous control signal recorded 

in the small data set. The small data set can then be used for model calibration, by 

grasping the core characteristics of the larger data set for analysis. 

 

The Appendix IV, V, VI highlight the idiosyncrasies of the code required to calibrate 

each one of the components using the aforementioned algorithm. Very little emphasis 

will be placed on describing the code required to update the visual display that shows the 

real and simulated data points as the calibration progresses. However, the output is very 

visually appealing because the fit of the calibrated model parameters to the actual data 

can be seen to converge in “real-time.” At most, a screenshot of the resultant fit will be 

provided, following a description of the code required to calibrate each component’s 

nuances in implementing the algorithm. 

 



Appendix VI Mixing box calibration module 

 

 

For the mixing box, the parameters to be calibrated are: LeakRet, LeakOut, c1, and c2 (c3 = 

1-c1-c2). The inputs are: pos, Tret, and Tout. The output parameter is Tmix, and the 

governing relationship is as follows: 

 

   Tmix=(((1-LeakRet)-LeakOut)(c1*pos+c2*pos
2
+c3*pos

3
)+LeakOut)*(Tout-Tret)+Tret 

 

More details of this model are given in  (Xu & Haves, 2001). 

 

This module performs model calibration of the mixing box component of the AHU 

system. The parameters, inputs, outputs, and their relationships are listed above. Because 

the parameters are nonlinear with respect to the output parameter, the least squares 

method cannot be used to compute them. The least squares method can only be used 

when the output parameter is linearly dependent upon the calibration parameters.  

 

The calibrated model parameters can easily be found by applying this technique. This 

technique is the Box-Complex constrained nonlinear optimization algorithm discussed in 

Appendix. The picture in Figure 3 illustrates the fit of the simulated model output 

compared to the real measured output mixed air temperature.  

 

 

 



 

Appendix VII VAV Fan-duct system calibration module 

 

For the fan-duct system, the parameters to be calibrated are: CRes, CFan, kFan, and ηMot. The 

constants are: MotFrac, ηShaftMax, PAtm, Area, cEff, and density(ρ). The input parameters are: 

nFan and mAir.  The output parameters are: PowerTot, Pfan, PStat. The governing relationships 

are: 

 

    Pfan=kfan*nFan
2
-CFan*mAir

2
 

    PStat=Pfan-cRes*mAir
2 

    PowerTot = mAir*Pfan/( ρ * ηMot) 

  

Again, for more details on this model refer to (Xu & Haves, 2001). Note that unlike the 

mixing box calibration, there are three calibrations that must take place because there are 

three output parameters and three governing equations. These calibrations must take 

place sequentially, and the result of the first calibration must be used in the second and 

third calibrations. Other than this major difference, the underlying principle of calibration 

is the same. 

 

Note that the second governing equation to be calibrated is linear in cRes. Hence, the least 

squares method could be used to obtain this value. However, for consistency, we'll use 

the same Box - Complex constrained nonlinear optimization algorithm as described 

previously for all three calibrations. As a result of applying the algorithm, we will obtain 

the calibrated model parameters: CRes, CFan, kFan, ηMot. The picture in Figure 4 illustrates 

the fit of the simulated model output compared to the second real measured output, static 

fan pressure.  

 



 
 

 

 



Appendix VIII Cooling coil and valve system calibration module 

 

Finally, for the cooling coil-valve system calibration, the parameters to be calibrated are: 

Cair, Cwater, Valc1, and Valc2.  The constants are: Aext, Aint, Patm, ValLeakpar,  and Authority.  

The input parameters are: TairEnt, wAirEnt, TliqEnt, mAir, mLiqOpen, and valve position. The 

output parameters are: TairLvg, wAirLvg, and Tliqlvg, although the latter two parameters have 

been left out at this stage. 

 

The governing relationships are a bit complicated to express here. The details are 

provided in (Xu & Haves, 2001).  There are ideally 3 calibrations to perform, similar to 

the fan system calibration. The calibrations must take place sequentially. The underlying 

principle of calibration is the same. As a result of applying this algorithm, the calibrated 

model parameters: Cair, Cwater, Valc1, and Valc2 will be obtained. The picture in Figure 5 

illustrates the fit of the simulated model output compared to the real measured output, air 

temperature downstream of the cooling coil.  

 

 
 

 

 

 

 



Appendix IX Cooling and Heating coil fault diagnosis 

 

The cooling & heating coil fault diagnosis is based upon the premise that there are two 

fuzzy inputs: innovation at full duty and innovation at minimal duty of the heating or 

cooling coil valve. Two bins are used to aggregate the data for each of the fuzzy inputs. 

There are four possible faults: valve leakage, coil fouling, and positive or negative sensor 

offset. The following table summarizes a fuzzy rulebase, based upon combinations of all 

possible faults & bins: 

 

Fault Type Innovation at Minimal Duty 

(ε0) 

Innovation at Full Duty (ε100) 

Valve Leakage + 0 

Coil Fouling 0 - 

Positive Sensor Offset + + 

Negative Sensor Offset - - 

 

 

The weighting factor for both inputs are binned according to the graph below illustrating 

both the crisp and fuzzy bins for the heating & cooling coil-valve weighting factor. As 

shown in following figure, the weighting factor is meant to act as a mitigating technique 

in computation of the moving average when using the fuzzy bin method. The reason for 

using this technique is to weight the new incoming data according to the operating range 

location. The result that this might have on the final updated moving average value can 

be either positive or negative, depending on the value of the difference between the new 

incoming data and the current moving average value. The mitigating effect is evident by 

the weighting factor’s linear decrease from 1 to 0. It can also be seen that the weighting 

factor is always equal to one for the crisp bin method. Hence the following equation for 

the moving average is: 

 

nnn xwwyy )]1(1[)1(1 αα −−+−= −  

 

and when w=1 it becomes: 

 

nnn xyy  )1(1 αα +−= −  

 

where α is the forgetting factor, xn is the new data, yn-1 is the current moving average 

value, and yn is the new moving average value. 

 



 
 

Note that the moving average computation is not valid before 50 detections have been 

counted. However, it is still computed regardless of the number of counts, and displayed 

upon each detection, along with a warning stating that the value may not be valid. To 

clarify, the detection count will always be computed, as well the moving average. 

However, the diagnostic code is invoked only if the count for both bins exceeds 50. The 

resulting diagnostic information is displayed only if there is a detection (threshold 

exceedance) that triggers it, regardless if the count for both bins exceeds 50 or not. The 

bins shown above are only defined on the very small regions between 0 and 0.02, 

representing minimal duty, and between 0.98 and 1, representing full duty.  

 

The fuzzy membership functions defined for the input variables are created in the 

TILShell 3.0 software. For both minimal and full duty innovations, the membership 

functions for the sets are as in figure: 

 



 
 

 

The rule-based associated with the fuzzy system is based upon the table shown 

previously. There are three basic fuzzy sets for both inputs: zero, positive and negative, 

which is evident from the diagram above and the values listed in the table. Each of the 

rules will fire based upon the computed inputs and defined fuzzy membership functions. 

As a result, the belief values associated with each of the rules will be used as the 

diagnostic information that is displayed upon an instance of triggered fault detection. 

 



Appendix X Mixing box fault diagnosis 

 

The mixing box fault diagnosis is based upon the premise that there are three independent 

fuzzy systems, one for each type of possible fault. There are three possible faults: outside 

air damper leakage, return air damper leakage, and all other types of faults lumped 

together in one category including nonlinearities. Each fuzzy system has its own rulebase, 

with innovations binned over specific sections of the operating range that act as inputs. 

They are as follows: innovation at minimal duty, innovation at half duty, and innovation 

at full duty of the mixing box damper position. The inputs correspond respectively to the 

faults mentioned previously. The following table summarizes the fuzzy rulebases, based 

upon combinations of all possible faults & bins: 

 

Fault Type Innovation at 

Minimal Duty (ε0) 

Innovation at 

Half Duty (ε50) 

Innovation at 

Full Duty (ε100) 

Outside Air Damper  Leakage -   

Return Air Damper  Leakage   + 

Nonlinearity and other faults  +  

Nonlinearity and other faults  -  

 

The weighting factor for both inputs are binned according to the Figure 9 below 

illustrating both crisp and fuzzy bins for the mixing box weighting factor. 

 
 

 



 
 

The bins shown above are defined on the regions between 0 and 0.02, representing 

minimal duty, between 0.4 and 0.6 representing half duty, and between 0.98 and 1, 

representing full duty. The three basic fuzzy sets for all inputs are: zero, positive and 

negative. For all three innovation inputs, the membership functions for the sets are as 

follows: 

 



 

Again, each of the rules will fire based upon the computed inputs and defined fuzzy 

membership functions. The belief values associated with each of the rules will then be 

used as the diagnostic information displayed upon an instance of a triggered fault 

detection. 

 



Appendix XI Supply and return fan diagnosis 

 

The supply & return fan duct-system fault diagnosis is based upon the premise that that 

there are two fuzzy inputs: innovation at low speed and innovation at high speed of the 

supply & return fans. Two bins are used to aggregate the data for each of the fuzzy inputs. 

There are eight possible faults: positive and negative sensor offset, fan stuck at full and 

intermediate speed, fan motor failure, fan reduced capacity, slipping fan belt, and all 

others lumped into a single generic category. The following table summarizes a fuzzy 

rulebase, based upon  combinations of all possible faults & bins: 

 

Fault Type Innovation at Minimal Duty (ε0) Innovation at  

Full Duty (ε100) 

Positive sensor offset + + 

Negative sensor offset S- S- 

Fan stuck at full speed + 0 

Fan stuck at intermediate speed + S- 

Fan motor failure L- L- 

Fan reduced capacity S- + 

Slipping fan belt M- M- 

Others 0 S- 

 

The five basic fuzzy sets for both inputs shown in the above table are: positive (+), zero 

(0), small negative (S-), medium negative (M-), and large negative (L-). The weighting 

factor for both inputs are binned according to the graph below illustrating both the crisp 

and fuzzy bins for the supply & return fan duct system weighting factor in Figure 11. 

 



 
 

The bins shown above are defined on the regions between 0.3 and 0.5, representing low 

fan speed, and between 0.65 and 1 representing high fan speed. The membership 

functions for the five basic fuzzy sets described earlier, for both innovation inputs, are as: 

 

  
 



 

Note that the fuzzy sets shown in the legend of the illustration above (NM, N, Z, P, PM) 

do not correspond exactly with the sets described previously (positive (+), zero (0), small 

negative (S-), medium negative (M-), and large negative (L-)). The sets, however, have to 

be translated respectively because the software defaults to the former nomenclature. As 

always, each of the rules will fire based upon the computed inputs and defined fuzzy 

membership functions. The belief values associated with each of the rules will then be 

used as the diagnostic information displayed upon an instance of a triggered fault 

detection. 

 
 


