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Building sector consumes a significant portion of energy worldwide. One of the reasons is that the
performance of building and its components degrades over the years. It is found that by improving
the performance of existing systems through continuous commissioning, significant energy saving can
be achieved. In a continuous commissioning process, energy benchmarking is extremely important for
tracking, monitoring and detecting abnormal energy consumption behavior of a building. In this paper,
up to date methods and tools available for energy benchmarking purpose are reviewed. It is hoped that
with this paper, researchers and building operators are more confident in choosing a proper method (or
tool) during the commissioning process.

� 2014 Elsevier Ltd. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
2. Energy benchmarking methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
2.1. Black box method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

2.1.1. Bin method (BM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
2.1.2. Multiple linear regression (MLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
2.1.3. Support vector regression (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2.1.4. Gaussian process regression (GPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2.1.5. Artificial neural network (ANN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2.1.6. Decision tree (DT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
2.2. Gray box method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

2.2.1. Bayesian network (Bayesian network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
2.2.2. RC network for air conditioning load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
2.3. White box method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

2.3.1. Normative method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.3.2. Idealized model based method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.3.3. Modified bin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.3.4. Detailed energy simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2014.03.020&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2014.03.020
mailto:zhengwei_li@tongji.edu.cn
http://dx.doi.org/10.1016/j.apenergy.2014.03.020
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


326 Z. Li et al. / Applied Energy 124 (2014) 325–334
3. Application of benchmarking methods in continuous commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

3.1. Black box method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
3.2. Gray box method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
3.3. White box method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
4. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

4.1. How to choose a proper benchmarking method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.2. Performance of black box methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
4.3. Performance of gray box methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
4.4. Performance of white box methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
1. Introduction

Building sector consumes more than 30% of the total energy
worldwide [1]. An efficient way to alleviate global warming and
improve environmental sustainability is to enhance building en-
ergy efficiency. However, many causes lead to a decrease of build-
ing energy efficiency for most buildings over the years, such as
degradation of HVAC system components [2].

Continuous commissioning (CC) is an emerging technology to
improve energy efficiency. Essentially, a CC is to conduct commis-
sioning continuously throughout the life cycle of a building. It aims
at assessing, improving and optimizing the performance of build-
ing systems [3]. A CC project launched in Texas A&M University be-
tween 1995 and 2000 is estimated to bring a total cost saving of as
much as $10 million [4]. According to the Federal Energy Manage-
ment Program (FEMP) in United States, CC has produced typical
savings of 20% with payback under three years (often one to two
years) in more than 130 large buildings [5]. To assess the energy
consumption performance of a building, energy benchmarking is
a necessary step. Energy benchmarking is defined as ‘a macro-
scopic level of performance assessment, using metrics to measure
its performance relative to other building or its previous perfor-
mance’ [6].

In the past, various methods for energy benchmarking have
been developed. These methods can be categorized into white
box method, gray box method and black box method. A white
box method is also termed as first principle based method, which
embeds physical constraints into the modelling of building compo-
nents, and thus requires large amount of design documentations.
Examples of this type of method include modified bin method
and detailed energy simulation method [7,8]. On the contrast, a
black box method uses data fitting techniques rather than physical
knowledge, therefore requires a pre-selected statistical model and
training data. Examples of black box method include artificial neu-
ral network method (ANN) and support vector machine method
(SVM) [9]. The principle of gray box method lies in the middle be-
tween white box method and black box method, it combines both
physical knowledge of the system and data fitting techniques to
derive a useful energy model. Degree day method and its variants
are examples of gray box method [10].

Benchmarking methods can also be categorized based on their
corresponding types of baselines. Four types of baselines can be
calculated by existing benchmarking methods: previous perfor-
mance of comparable buildings, current performance of compara-
ble buildings, previous performance of the same building, and
intended performance of the same building [11]. While the first
two types of baselines are often used by regulators and released
to public, to encourage owners to improve energy efficiencies of
their buildings [12], the rest are often used internally for energy
tracking and monitoring purpose. In the context of this paper,
benchmarking methods to calculate the latter two types of
baselines are focused.
Overviews of building energy benchmarking methods have
been given by several researchers [9,10,13]. Al-Homoud [10] intro-
duced characteristics of mainly three methods: degree day based
method, modified bin method, and detailed energy simulation
method, which lie in the white box and gray box category.
Holcomb [9] compared performance of three black box methods:
multiple linear regression (MLR), artificial neural network (ANN)
and support vector machine (SVM). It is found that ANN has the
worst prediction accuracy compared to the other two methods.
Zhao [13] investigated major characteristics of engineering meth-
ods (namely white box methods in this paper), statistical methods
(namely regression based black box methods in this paper), neural
networks, support vector machines, and grey models, with a con-
clusion that the neural network method and simplified engineering
method have the highest accuracy.

To have a systematic view of up to date energy benchmarking
methods and their performance levels, a literature review is con-
ducted in this paper. It is hoped that with this paper, researchers
can choose an appropriate benchmarking method based on the de-
tail level of available information and required prediction accuracy.
The content is organized as the following: first, the principles and
characteristics of various benchmarking methods are introduced;
second, the application cases of these methods and their perfor-
mances are presented; finally, discussion section and conclusion
remarks are given.
2. Energy benchmarking methods

As mentioned above, current energy benchmarking methods
can be categorized into black box method, gray box method, and
white box method. In this section, main methods in each category
are briefly reviewed.
2.1. Black box method

In the category of black box method, multiple linear regression
(MLR), bin method (BM), support vector regression (SVR), artificial
neural network (ANN), and Gaussian process regression (GPR) are
the most popular methods for energy benchmarking purposes.
2.1.1. Bin method (BM)
In this method, historical loads are grouped together into a bin

if their associated variables (such as hour of week, temperature,
and humidity) are close and fall into the same interval categories.
The average value of the bin is then used to predict load with sim-
ilar associated variables.
2.1.2. Multiple linear regression (MLR)
MLR method relates the predicted variable (baseline energy

consumption) to multiple input variables. Typically, ambient
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temperature and time index of the monitored period are included
in the input variables.

Using qb to denote the baseline energy consumption, and U to
denote the vector of input variables during the monitored period,
then qb can be expressed with the following formula:

qb ¼ q0 þ
Xs

i¼1

aiUi ð1Þ

where q0 is a constant, a is a vector of coefficients that are derived
by fitting the training data with a linear curve. The notation s de-
notes the number of input variables, and the value of s could be dif-
ferent in different tools. When there is only one independent
variable (degree day) in U, this method essentially becomes the de-
gree-day method.

Building energy consumption in previous hours are often in-
cluded in the input variables, to take into account the time delay
caused by building thermal mass. The MLR model in Eq. (1) then
becomes the autoregressive moving average with exogenous in-
puts (ARMAX) model in Eq. (2) below:

qb ¼ q0 þ
Xs

i¼1

aiUi þ
Xm

i¼1

ciqt�i ð2Þ

where the notation m denotes the number of past observations. In
both Eqs. (1) and (2), the coefficients q0, a, c can be determined
by so called ordinary least square (OLS) estimation techniques.

2.1.3. Support vector regression (SVR)
Support vector machine (SVM) is a data driven black box meth-

od, it gains its popularity due to its superior performance in predic-
tion accuracy. Suppose there is an input vector X (Xi, j denotes the
jth input component in the ith sample), and a corresponding out-
put vector Y (Yi denotes the prediction output of the ith sample,
SVM relates X with Y with the following equation:

Y ¼W � /ðXÞ þ b ð3Þ

where W and b are constants, / is a mapping function that maps X
to a higher dimensional feature space.

SVM is special in two aspects: first, it tries to minimize not only
training error, but also structure risk described by the norm of W;
second, SVM ignores training samples whose training errors are
smaller than a predefined constant e. By introducing slack variables
ni and f�i , SVM calculates W and b with the following algorithm.

Minimize
fi ;f
�
i ;W ;b

: 1
2 kWk

2 þ c 1
N

XN

i¼1

ðfi þ f�i Þ

subject to Yi �W � /ðxiÞ � b � eþ fi

W � /ðxiÞ þ b� Yi � eþ f�i
i ¼ 1; . . . ;N; fi � 0; f�i � 0

9>>>>>>=
>>>>>>;

ð4Þ
Fig. 1. A typical three layer feed forward network (left: fee
2.1.4. Gaussian process regression (GPR)
The principle of GPR lies in the concept that the observations yi

(i = 1,. . .,n) can be regarded as a point sampled from a multivariate
distribution with n independent input vectors Xj (j = 1,. . .,n). To do
so, the observations are correlated with a vector of mean values m
and covariance function K of X with the normal distribution func-
tion, as shown in Eq. (5).

Pðy; m; kÞ ¼ 1

ð2pÞn=2jKðX;XÞj1=2

� exp �1
2
ðy�mÞT KðX;XÞ�1ðy�mÞ

� �
ð5Þ

where the covariance function K is calculated by Eq. (6):

K ¼

kðx1; x1Þ kðx1; x2Þ : : : kðx1; xnÞ
kðx2; x1Þ kðx2; x2Þ kðx2; xnÞ

:

:

:

:

:

:

:

:

:

:

:

:

kðxn; x1Þ kðxn; x2Þ kðxn; xnÞ

��������������

��������������

ð6Þ

in which the kernel function k can be polynomial function, radial
basis function, sigmoid function, etc.

To take into account the uncertainty in prediction of y, a white
noise r is assumed, thus the covariance of y becomes

covðyÞ ¼ KðX;XÞ þ r2 ð7Þ

With above assumption, and denote the new observation vari-
able as x⁄, a new prediction of y� can be formulated as below.

y� ¼
Xn

i¼1

aikðxi; x�Þ ð8Þ

ai ¼ ðKðX;XÞ þ r2IÞ�1
yi ð9Þ
2.1.5. Artificial neural network (ANN)
The field of artificial neural network is derived from neurobio-

logical studies. There are many types of neural networks, such as
feed forward network, recurrent network, and radial basis function
(RBF) network. An ANN is composed of multiple layers of neurons
and functions that connect them, as shown in Fig. 1. Various func-
tions are available to connect these neurons, and linear function
and sigmoid function are the most commonly used. Once an ANN
together with its functions has been trained with a proper amount
of data sets, it can be used to predict the output and achieves good
accuracy even if the input–output relationship remains unknown.

Regarding the structure of an ANN, the feed forward network,
recurrent network and RBF network are the most common
d forward network, right: recurrent neural network).
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configurations. A typical feed forward neural network is shown in
Fig. 1. In this network, the information flows from input nodes to
output nodes, there is no loop or cycle in the network. On the other
hand, a recurrent network allows cycles from output nodes to in-
put nodes, thus enables learning from past experience (as shown
in Fig. 1). Besides sigmoid function, radial bases function (RBF) is
also widely as activation function. If RBF function is used, the neu-
ral network is also terms as RBF network.

Once a structure is determined, the weights and parameters in
activation functions can be trained via a back propagation algo-
rithm, given sufficient training data.
2.1.6. Decision tree (DT)
In the artificial intelligence (AI) area, decision tree method is

traditionally used for classification. If regarding the energy bench-
marking problem as a classification problem, this method can also
be used to benchmark building energy consumption against its his-
torical data. When using this method, the independent variables
(weather, building type, room area, etc.) are firstly selected and
converted into either categorical parameters or numerical values,
further, the target variable (historical energy consumption) is also
converted into categorical parameter. These historical data can
serve as the training data to derive an energy consumption deci-
sion tree, based on popular decision tree algorithms. This decision
tree can then be used to benchmark current energy consumption
based on the new input variables.
2.2. Gray box method

2.2.1. Bayesian network (Bayesian network)
Bayesian network represents a set of random variables and their

conditional dependencies with a probabilistic graphical model.
Given a set of random input variables xi (i = 1,. . ., N), a Bayesian net-
work specifies how input variable are connected with each other,
and a conditional distribution for each node. A typical conditional
distribution is shown in Eq. (5), where h denotes a set of unknown
model parameters, and Ui denotes the parent nodes for node xi.
Fig. 2. RC n
Pðxi; hÞ ¼ PðxijUi; hÞ ð10Þ

If some of the x (denoted by Zi) are unobservable, which is often
the case, the equation above becomes

Pðxi; hÞ ¼
X

Zi

Pðxi; ZijUi; hÞ ð11Þ

Given a set of training data, the unknown model parameters h
as well as the missing data Z can be estimated using expectation
maximization (EM) algorithm. Typically, Eq. (6) is transformed to
its log counterpart to avoid the problem of too many missing data.
Denoting the missing variables as h and visible variables as v, the
log form of Eq. (6) is shown in Eq. (7). By maximizing log P(x,h),
the distribution of h and h can be estimated.

log Pðx; hÞ ¼ log PðhÞ þ
X

i

Z
hi

log Pðh; vjhÞdh ð12Þ
2.2.2. RC network for air conditioning load
RC network method uses an analogy to the electrical circuit to

model heat transfer through structures. R and C in the thermal
transfer context stand for the thermal resistor and thermal capac-
itor respectively. The most common network configuration for the
wall, roof and floor is 3R2C network, and for modelling internal
mass 2R2C network is typically used (as shown in Fig. 2). The num-
ber before R and C stands for the number of resistors and capaci-
tors, respectively. A three-step approach is used to model the
cooling load. First, frequency analysis is used to estimate the
parameter for 3R2C network. Second, an optimization approach
combining the line search and sequential quadratic programming
(SQP) is used to find the optimal parameter for 2R2C network.
Finally, the estimated network structure is used to predict the
cooling load of the building.

2.3. White box method

In white box method, the modeller submit a set of input param-
eters (typically building design parameters) to a calculation tool,
etwork.
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which then does the calculation and send monthly or hourly en-
ergy consumption as output. In the order of increasing complexity,
there is normative method, modified bin method and equation
based energy simulation method.

2.3.1. Normative method
As mentioned above, in normative method, the energy con-

sumption baseline is calculated a simplified energy flow model,
taking into account the building geometry, location, envelope
material, types and configurations of major building systems (heat-
ing, cooling, humidifying, lighting, pump, fan, domestic hot water,
etc.), and even the electricity generation efficiency on the primary
energy side. During the calculation, the normative method has to
make assumptions on key parameters during the calculation pur-
pose. If the normative method specifies the parameter values
according to input information using a standardized way, based
on an empirical study of a large number of buildings, then the pre-
diction result is the intended energy performance of the building
[14]. However, if these parameters are not pre-assumed, but
guessed through model calibration using monitoring data, then
this method sets up a benchmark model against the past of the
building [15].

2.3.2. Idealized model based method
An idealized building model based method is similar to norma-

tive method in that both methods follow a simplified and standard
procedure to calculate the energy consumption benchmark, and
thus require relatively few design parameter inputs. This standard
calculation procedure is typically derived from first principle based
method, but with some empirical assumptions to simplify the cal-
culation. However, different from building energy standards which
is established by a group of experts, idealized building model is
often established by one or two researchers, and is tailored to some
specific applications [16,17].

2.3.3. Modified bin method
Knebel developed a modified bin method, which is a simplified

energy analysis calculation method [7]. In this method, outdoor
temperature is characterized using four typical temperatures: peak
cooling temperature (Tpc), intermediate cooling temperature (Tic),
intermediate heating temperature (Tih), peak heating temperature
(Tph). For each temperature, a building load is calculated by consid-
ering the following components: solar through glass, conduction
through glass, conduction through walls and roof, solar through
walls and roof, lights, people, equipment and infiltration. By corre-
lating each component linearly with outdoor temperature, the to-
tal load profile is also linearly related with outdoor temperature.
Thus, total heating or cooling demand is the summed product of
temperature hours and corresponding load. On the system side,
modified bin method contains calculation methods for a large set
of commonly used HVAC systems, such as heating/cooling coil,
fan, mixing air box, chiller, boiler, cooling tower, etc.

2.3.4. Detailed energy simulation method
A detailed energy simulation method calculates the energy con-

sumption for heating, cooling, ventilation, and lighting equipment
associated with a building based on first principle models and de-
tailed input information. Take heating and cooling load calculation
as an example, it calculates the heating and cooling loads to main-
tain thermostat set points based on the orientation, geometry,
location, envelope, climate condition and internal thermal load of
the building, etc.

Crawley compared twenty major building energy simulation
programs (DOE-2.1E, EnergyPlus, DeST, etc.) based on detailed sim-
ulation method, regarding their general modelling features. It is
found that the comparison is difficult as there is no common
language when describing the capabilities of different software.
However, following capabilities are commonly found in a detailed
energy simulation method: heating/cooling load calculation con-
sidering conduction, convection, long wave and short save radia-
tion; ventilation calculation considering wind pressure coefficient
based multiple zone air flow network; HVAC system performance
calculation considering an inter-connection between plants, distri-
bution systems and terminal units; tight coupling between instan-
taneous building load and HVAC system performance, etc. [18].
3. Application of benchmarking methods in continuous
commissioning

All of the methods introduced above have been applied to
benchmark building energy consumption. A review of detailed
application of these methods is given in this section. A summary
of these applications is given in Table 1.
3.1. Black box method

Bin method may be one of the earliest studied methods for load
prediction, and has been used in two existing continuous commis-
sioning (CC) tools: WBD and PACRAT [19,20]. It is used for baseline
calculation and fault detection at the building level. While WBD is
more of a research tool, PACRAT is commercially available through
facility dynamics engineering [21], and has been used in many dif-
ferent projects [22].

MLR (or ARMAX) model has been successfully used to predict
peak electricity load, hourly air conditioning load, and hourly total
building energy consumption [23–26]. Jacob [25] tested the perfor-
mance of linear regression methods in building fault detection
applications. They find that by introducing the rate of change of
indoor air temperature (DT) as an independent variable, the
coefficient of determination (R2) between predicted and measured
energy consumption can be improved from 0.2 to 0.7. Use of a
hierarchical agglomerative clustering algorithm is found to further
increase the value of R2.

SVR has also been found useful in predicting hourly cooling load
and monthly utility bill [27–30]. Researchers applied SVM to pre-
dict cooling load of simulated buildings in Guangzhou city, good
prediction accuracy was observed i [27–29]. Dong applied SVR to
predict monthly utility bill for four commercial buildings in
Singapore based on weather data (ambient temperature, relative
humidity and global solar radiation), prediction accuracy within
4% was achieved [30].

GPR is a unique regression technique in that it explicitly calcu-
lates the uncertainty of the prediction result, thus is more useful
when the uncertainty of input parameters is large. Since building
energy modeller often lacks confidence in choosing a proper value
for certain parameters, such as the envelope insulation level (U
value), and the air leakage rate, an explicit quantification of the
impact of input parameter uncertainty on the outcome could be
attractive. For this reason, it has been proposed by several
researchers as a meta-modelling technique for building energy
consumption estimation [31,32]. Heo concluded that GPR can cap-
ture the complex behavior of energy consumption better than MLR,
and are more suited to handle the problem of uncertainty [31].
Manfren compared the performance of MLR, GPR and a detailed
energy simulation model, and found that the performance of GPR
is much closer to that of the detailed simulation model than MLR
method. Thus, it is concluded that GPR is an effective technique
in cases where detailed simulation model is difficult to establish
[32].

ANN has been tested by numerous researchers for predicting
cooling load [24,28], hot-water heating load [33], space heating



Table 1
Summary of energy benchmarking models.

Method Input Time
resolution
level

Application Tool

Bin method Day of the week, hour of the day, weather data Multiple
resolution

Fault detection [19,20] WBD, PACRAT

Linear regression Day type, weather data, historical data Multiple
resolution

Fault detection [25], load prediction [23–24,26] /

Support vector
regression

Weather data Multiple
resolution

Prediction of cooling load [27–29], monthly utility bill
split [30]

/

Gaussian process
regression

Weather data, other selected explanatory
variables

Multiple
resolution

Retrofit analysis [31], replacement of detailed simulation
[32]

/

Artificial neural
network

Weather data, time, DHW/heating system and
equipment properties, energy consumption
patterns, dwelling characteristics

Hourly Prediction of cooling load [24,28], hot water heating load
[33], space heating load [33,34], total energy
consumption [35], fault detection [36]

/

Decision tree Weather, building type, ownership of electric
appliance, building area

Annually Electricity prediction [37], total energy prediction [38] /

Bayesian network Weather data, known parameters, prior
distributions of unknown parameters, historical
energy consumption data

Daily Energy consumption estimation [39] /

RC network Weather data, historical energy consumption
data

Hourly Building heating/cooling load predication [40,41],
demand control [42]

/

Normative Weather data, simplified building design
parameters

Hourly,
monthly

Energy source planning, energy policy analysis [43],
retrofit analysis [15]

EPSCT

Idealized model based Weather data, simplified building design
parameters

Hourly Energy consumption benchmark [16,17], optimal control
[46]

/

Modified bin method Weather data, simplified building design
parameter

Hourly Fault detection [47,48] ABCAT

Detailed simulation Weather data, detailed building design
parameters

Sub-
hourly

Monthly utility bill split [52], Fault detection [49],
retrofit analysis [50–51,54], load prediction [53]

EnergyPlus
Esp-r, DOE-
2.1E, DEST, etc.
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[33,34], and total energy consumption [35]. The results show that
ANN has sufficiency accuracy for hot-water heating, cooling and
space heating load prediction purposes. Based on its prediction
capability, ANN has been deployed to detect faults at the building
level [36].Decision tree (DT) method is a relatively new method for
predicting building energy use. Tso and Yau [37] applied this meth-
od to predict electricity usage of different buildings in Hong Kong,
and found that DT method has better performance than neural net-
work method and regression analysis method. Bon the residential
building energy consumption data collected in Japan, Yu et al.
[38] derived a decision tree which can predict whether the annual
energy consumption will be high (between 441.5 MJ/m2 yr and
707 MJ/m2 yr) or low (below 441.5 MJ/m2 yr) based on multiple
input information.

Holcomb compared three black box methods (MLR, SVR and
ANN) in load prediction performance using simulation data, and
he found that while MLR and SVR showed similar prediction accu-
racy, ANN had the worst performance among the three methods
[9]. Besides Holcomb, other researchers also found the superior
performance of SVR over ordinary back propagation ANNs [28]. It
should be noted that the accuracy of ANN can be significantly
improved by deploying statistical procedures (hypothesis testing,
information criteria, cross validation, etc.) and optimizing the
input parameters, number of hidden layers and hidden units [35].

3.2. Gray box method

Bayesian network has been applied to estimate building energy
consumption for three retail and food service buildings in Florida’s
Walt Disney World Resort [39]. In this model, some of the known
parameters (building geometry, operation schedule, envelope
material, etc.) are given a prior distribution, while other parame-
ters (air exchange per hour, window solar heat gain coefficient,
latent heat removal efficiency, etc.) are estimated using the EM
algorithm. It is concluded that Bayesian network is more applicable
for benchmarking building energy consumption on a large scale,
and especially suitable for cases where part of the parameters
are unknown or some of the monitoring data is missing.

RC network is mainly used to calculate air conditioning load. It
has been used by multiple researchers for load prediction and
demand control purposes [40–42]. Since this method requires less
training data (one or two week traiing data is sufficient), and less
input parameters (mainly weather data and internal temperature
set point), it is an effective and robust method for air conditioning
load estimation. Li and Huang found that RC network showed bet-
ter adaptability to change of temperature set points, compared
with black box methods [24].

3.3. White box method

Normative method has been adopted and applied by some
research groups. The building technology group in Georgia Insti-
tute of Technology developed a normative energy benchmarking
tool named Energy Performance Standard Calculation Toolkit
(EPSCT), to benchmark both new designed building and existing
buildings [43]. In this tool, they used different standards to calcu-
late each sub-item in total building energy consumption. For
example, they use EN ISO 13789 for transmission and ventilation
heat transfer, EN 15241 and EN 15242 for ventilation for buildings,
EN 15243 for cooling and ventilation systems, etc. [44,45]. Lee ap-
plied this tool in two areas: energy source planning of a campus,
and energy policy analysis, and concluded that this tool is capable
for these two purposes [43]. Heo (2012) calibrated a normative
model using real measurement data from a building located in
Cambridge, UK. She concluded that a calibrated probabilistic nor-
mative model is as effective in retrofit analysis decision making
as legacy software, such as EnergyPlus [15].

Although maybe not explicitly termed as such, idealized model
based method has been used by several researchers for energy
benchmarking purposes [16,17,46]. Federspiel proposed a simpli-
fied building energy benchmark model for laboratory buildings.
In this model, it is assumed that the building has perfect insulation
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(no heat conduction or convection with external environment),
and allows no solar radiation into the building. Thus, the total cool-
ing and heating load is mainly composed of ventilation load and
internal heating/cooling load. With this method, user is required
to define just a few input parameters: plan area of lab space and
non-lab space, fraction of lab-space that is air conditioned, loca-
tion, etc. [16]. Mui proposed a simple energy benchmarking meth-
od for ventilation system in air conditioned offices, which relates
the required ventilated rate with the CO2 concentration in the of-
fice, and calculates the energy consumption accordingly [17]. Lv
proposed a new model based method, which can take into account
multiple uncertainty sources and achieve high accuracy in model-
ling the transient building thermal behavior [46].

Modified bin method is one of the few white box methods that
have been applied for fault detection and diagnostics purposes in
real buildings. Researchers in Texas A&M University developed a
tool named Automated Building Commissioning Analysis Tool (AB-
CAT) for fault detection at whole building level [47]. In addition to
the original modified bin method, ABCAT adds some other charac-
teristics: calculation of electric humidification load, calculation of
leakage flow rates, simplified thermal mass considerations. For cal-
ibration purpose, ABCAT introduces a bias item to reduce the dif-
ference between measured and predicted energy consumption,
which is estimated by minimizing mean bias errors (MBE). ABCAT
has been tested in buildings in different locations (TX, NY, NE) and
proved to be successful in detecting energy consumption abnor-
malities [48].

Detailed energy simulation method is probably by far the most
studied and widely applied simulation method. It has been used for
fault detection, retrofit analysis, utility bill splitting, etc. [49–54].
However, calibrating a detailed energy simulation program is a dif-
ficult matter, for two reasons: first, there are too many uncertain
inputs and parameters that can affect the results; second, available
data for calibration is typically little (often only annual utility data
is available). To solve the problem, a sensitivity analysis technique
– Monte Carlo (MC) is often deployed [55]. ASHRARE research pro-
ject RP-1051 proposed a five step calibration methodology: preli-
minary input file preparation, parameter space reduction by
walk-through audits, Monte-Carlo based coarse grid calibration,
solution refinement through guided search, and finally analysis
using multiple plausible solutions [56]. Another approach pro-
posed by Raftery focuses on calibrating the detailed model itera-
tively and on a continuous basis [57].
Table 2
Comparison between different benchmarking methods.

Method Quantity of input data
requirement

Modeller experience requirement

Linear regression Low Low
Support vector

regression
Low Medium (familiar with statistical

Gaussian process
regression

Low Medium (familiar with statistical

Artificial neural
network

Low Medium (familiar with data proce

Bin method Low Low
Decision tree Low Low
Bayesian network Medium Medium (familiar with probability
RC network Low Medium (familiar with thermal dy

theory)
Normative method Medium Medium (familiar with building ph

Idealized model
based

Medium Medium (familiar with building ph

Modified bin
method

Medium Medium (familiar with building ph

Detailed energy
simulation

High High (familiar with building physi
particular software)
4. Discussion

4.1. How to choose a proper benchmarking method

A comparison between different energy benchmarking methods
has been made regarding: input data requirement, modeller expe-
rience requirement, calibration effort requirement, and training
data requirement. Each characteristic is grouped into three levels:
low, medium and high. A comparison between different bench-
marking methods on these requirements has been made in Table 2.
In general, as the model goes from black box category to white box
category, the information input requirement increases, the
requirement for calibration also increases, although the require-
ment on training decreases. On the other hand, the learning curves
of these methods are less dependent on the method category, and
are more related with the complexity of the model structure. While
linear regression, bin method (BM) and decision tree (DT) method
are conceptually simple and thus easy to use, black box methods
are challenging due to the embedded statistical knowledge and
concepts, and white box methods require certain extent of knowl-
edge in the discipline of building physics. Detailed energy simula-
tion method is arguably the most challenging method due to its
complex model structure and solution procedure.

Furthermore, a flow chart (Fig. 3) has been made to help reader
select a proper benchmarking method. When detailed information
of the building is available, preference should be given to white
box methods (detailed energy simulation method, normative
method, modified bin method or idealized model based method),
since the principles of these methods are easier to understand
and the results are thus easier to interpret. Among white box
methods, detailed energy simulation model usually takes much
longer development time, and also requires larger computational
resources, thus it should be only used when there is an extremely
high requirement on understanding the temporal and spatial char-
acteristics of the energy consumption data. In case detailed infor-
mation is not available, then either gray box or black box
methods should be used, choosing which method depends on the
requirement on the energy benchmarking target, level of dynamic
characteristic, confidence in using these methods, ability to quan-
tify uncertainty, etc. For example, while RC network method
should be chosen to control indoor temperature setpoint, since it
has a better accuracy in predicting the dynamic characteristics of
the heat exchange inside the building; black box methods are
Calibration effort
requirement

Quantity of training data
requirement

Low High
concepts) Low High

concepts) Low High

ssing) Low High

Low High
Low High

theory) Medium (few parameters) Medium
namics Medium (few parameters) Medium

ysics) Medium (relatively more
parameters)

Medium (can be Low, if accuracy is
not required)

ysics) Medium (relatively more
parameters)

Medium

ysics) Medium (relatively more
parameters)

Medium

cs and the High (most parameters) Low



Fig. 3. Choose a proper energy benchmark method.
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better suited when the total building energy consumption needs to
be benchmarked Since the achievable benchmarking accuracy de-
pends a lot on the experience of the modeller, the modeller him-
self/herself should be another key factor in choosing which
method to use (see Fig. 3).

4.2. Performance of black box methods

Due to its convenience and quick modelling, black box methods
are good alternatives to detailed energy simulation method.
Although all derived from data mining techniques, the principle
embedded in different black box methods still causes a difference
in their characteristics. Bin method is the simplest method, yet
perhaps one of the most widely applied methods. The tools
(WBD and PACRAT) that deploy it have been applied in numerous
buildings for continuous commissioning. Multiple linear regression
(MLR) technique is the simplest technique, and has been adopted
by ASHRAE as a standard Measurement & Verification (M&V) tech-
nique [58]. Artificial neural network (ANN) method is arguably the
most widely used non-linear regression method in building contin-
uous commissioning, and has achieved success in many applica-
tions. However, as it requires tweaking the inputs, network
structure and weight parameters, its accuracy can’t be guaranteed.
In some cases, it could perform worse than MLR. Support vector
regression (SVR) is a unique regression method in that it optimizes
both the model structure and the estimator error, and its perfor-
mance has been proved by many researchers, including winning
entry in load prediction competitions, thus is worth investigating
in real applications. Gaussian process regression (GPR) is the only
method among black box methods that explicitly calculates the
uncertainty of the estimation result. Combining this with its non-
linear regression nature and ability to capture complex behavior,
it should get wider application in cases requiring risk analysis.

4.3. Performance of gray box methods

While RC network has its root in building physics, and has been
used by relatively more researchers for building heating/cooling
load predictions; Bayesian network method is derived from statis-
tical theory and has only been popular in recent years. It is obvious
that Bayesian network has a broader use than RC network method,
since the latter is only applicable in heating/cooling load calcula-
tion. Furthermore, Bayesian network method has a strong capabil-
ity in handling measurement data errors. However, it should be
noted that the structure of a Bayesian network can only be applied
in building with similar building use pattern and energy consump-
tion profiles, therefore is less general than RC network method.

4.4. Performance of white box methods

Detailed simulation method is probably the most widely used
method for energy estimation in design stage. Due to its compre-
hensiveness and wide acceptability, it is often used as a compari-
son case when testing new benchmarking methods. Researchers
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have shown that simplified methods can perform as effective as
detailed simulation method in many cases for energy benchmark-
ing purpose [31,32]. Developers of ABCAT have shown that modi-
fied bin method performs satisfactorily for energy benchmarking
purposes in testing cases. Normative method is another white
box method with potential for use in continuous commissioning,
since it is as effective as a detailed simulation method in retrofit
analysis [15].

5. Conclusion

In this paper, a total of twelve methods for benchmarking build-
ing energy consumption are reviewed, including six black box
methods, two gray box methods and four white box methods. It
is found that many methods, although simple, can achieve satisfac-
tory performance. Choosing a proper method should be based on
project requirements, available inputs, available monitoring data,
and modeller experience. While white box methods should be gi-
ven higher priority due to the transparency in the calculation pro-
cedure, black or gray box methods may be sufficient if enough
training data is available. A flow chart has been proposed to help
modeller choose a proper benchmarking method.
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