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Abstract 

Heating, Ventilation, and Air-Conditioning (HVAC) control strategies are set arbitrarily in many 
commercial buildings by operators, who sometimes lack relevant skills and professional training. 
It is acknowledged that improving the control strategy of HVAC is feasible and valid, which as a 

consequence can improve the overall HVAC performance of existing buildings. However, it is 
quite difficult for an outsiders or a commissioning agent to tell what the HVAC control strategies 
are and whether they are implemented appropriately in existing buildings. This paper is intended 

to carry out analysis on the data about Building Automation System (BAS), as well as the data about 
building energy, for the purpose of identifying the control strategies of HVAC in a given building 
by using data mining algorithm. Then the results can be adopted by us to determine whether the 

building is under faulty operation or is running under suboptimal conditions. In this paper, what 
are proposed are algorithms of data mining identification for some specific HVAC control strategies, 
including DR on/off strategy, DR reset strategy and temperature reset strategy of chilled water. On 

the basis of data mining algorithms, a framework is then developed so as to identify these strategies, 
and the main scenario of this identification framework is known as analyzing many commercial 
buildings on an energy monitoring platform of a public building. This framework takes the sensor 

data obtained from HVAC, including temperature, flowrate, and electricity usage, as input, which 
is followed by the application of Image Segmentation and PCA algorithm for preprocessing. Then, 
based on these input variables, XGBoost algorithm is employed to determine whether these strategies 

have been implemented in buildings or not. In order to get the data for training and testing the 
framework, EnergyPlus Runtime Language is adopted for the application of different strategies. 
t is finally shown by the result that the identification algorithm can achieve the accuracy rate of 

92.5% in the case studies by using one-day operation data, and the identification algorithm can 
arrive at the accuracy rate of 100% by using three-day operation data. 
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1 Introduction 

Generally speaking, commercial buildings fall within the 
categories of office buildings, shopping malls, hotels, cultural 
facilities, medical facilities, and sports facilities etc. In 2018, 
the total area of commercial buildings in America was 91.7 
billion square feet and the Energy Use Intensity (EUI) was 
199.1 thousand Btu per square foot. Apart from that, the 
energy consumption of American commercial buildings in 
2018 has expanded to as large as 18606.9 trillion Btu, which 

accounted for about 18% of the total energy use (EIA 2018). 
With regard to this tendency, it is reported by EIA that energy 
consumption will grow by an average of 2.1% per year from 
2012 to 2020 in the entire world in commercial sector (EIA 
2018). 

HVAC systems are regarded as one of the most significant 
parts of energy consumers in buildings. Apart from its design, 
the operation and control are also of great significance in 
terms of the final energy efficiency. It is roughly estimated 
that 25%–50% of the energy use in commercial buildings in 
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the UK has been wasted because of the improper operating 
conditions for the reason that both the operation and 
control are highly depended on the skills and motivation  
of its onsite operator (CIBSE 2000). It has been shown   
by relevant studies that poorly maintained, degraded and 
improperly controlled equipment is estimated to waste about 
a 15%–30% energy use in commercial buildings (Katipamula 
and Brambley 2005). 

The control of HVAC system can be divided into two 
control patterns: one is local control at the bottom level 
and the other is global control, or supervisory control at the 
top level. As far as local control is concerned, it takes control 
of a setting point through an actuator (ASHRAE 2011). For 
instance, the temperature of cooled air after going through 
cooling coil is controlled by valves in supply water loop. 
However, setting points of the system and other related 
operation patterns are designated in global control, which 
sometimes is also named as supervisory control. Global 
control can be further decomposed into the control based 
on setting points, such as chilled water temperature control, 
on the basis of operation patterns, such as chiller sequence 
control. Based on its control logic, global control can be 
either established on the basis of timetable or real-time 
feedback (according to weather condition, building condition, 
electricity price, etc.).   

Actually, the efficiency of HVAC system can also be 
improved through two-level control. It is known that the 
regulation over local control not only can improve comfort 
and reduce oscillations, but also can prolong lifetime of the 
equipment. In global control, the energy efficiency can be 
boosted by the optimization conducted for the setting points 
and operation mode. In this research, unless specifically 
noted, the control strategies concerned in the following part 
refers to global control strategies.  

Nowadays, more and more commercial buildings are 
equipped with monitoring systems for energy consumption, 
and therefore real-time data could be acquired through the 
municipal platform. However, it is usually difficult for the 
platform to obtain the control strategies of the buildings 
and it is also not easy to keep track of the control strategies 
adopted by a variety of buildings with different control 
platforms. Moreover, it is shown by our site survey that 
maintainers are able to record only little information about 
the operation status of the buildings in many buildings, 
which accordingly provides us the precious opportunity to 
identify operation strategies adopted by HVAC systems in 
commercial buildings. For instance, in a commercial building 
surveyed by us, a total of 192 data collecting ports are available 
and the data is collected and saved every 15 minutes. In this 
way, the number of 35,040 pieces of time sequence data is 
collected in a year and the data can be employed to figure 
out what kinds of control strategies are truly carried out in 

this building. This paper attaches great importance to the 
development of algorithm for the purpose of extracting 
control strategy on the basis of these data by the application 
of data-mining algorithm. 

Data-mining (DM) is deemed as an integral branch of 
computer science that can be employed to a big dataset for 
the aim of extracting meaningful knowledge automatically 
or semi-automatically. So far, this technology has been 
adopted in many domains from research to business 
(Witten and Frank 2005). For instance, Mirzaei and Reza 
(2012) conducted relevant analysis on the shopping record 
in a supermarket by applying the algorithm of association 
rule learning, and finally found that a certain goods were 
often bought together. In 2009, Google successfully predicted 
the influenza epidemics in winter through the application 
of data-mining algorithm (Ginsberg et al. 2009). In terms 
of studies related to buildings, the implementation of DM 
has become more and more prevalent, especially in the tasks 
of forecasting and control strategy recognition. In recent 
decades, the technology of DM has been widely employed 
to forecast energy consumption of buildings. There are 
actually many sorts of forecasting models, such as regression 
model (Wang et al. 2015; Bauer and Scartezzini 1998), SVM 
(support vector machine) model (Hong 2009; Niu et al. 
2010; Li et al. 2009), ANN (artificial neural network) model 
(Kusiak et al. 2010; Kalogirou et al. 1997; Yu et al. 2010), and 
decision tree (Yu et al. 2010). Up till now, these forecasting 
models have been found in practical application in the fields 
of demand response, and forecasting control, etc.  

Different from traditional work relevant to forecasting, 
identification conducted for operation strategies refers to 
the extraction of information about operation behaviors 
instead of just attaching importance to energy consumption 
obtained from the operation data. For instance, D’Oca and 
Hong (2014) established a model for the pattern of preference 
for window opening and closing in office buildings, and it 
is shown by the results obtained that those occupants who 
have the preference to open the window for a short period 
of time tend to have a small opening angle. However, the 
research on control identification is still in the infant stage. 
Yu et al. (2012) carried out related research on the statistic 
pattern of the operation data for the aim of understanding 
the control logic of the building better. More than that, 
many “if-then” rules were acquired by ARM (Association 
Rule Mining) so as to identify the bad control strategies. 
Fan et al. (2015) conducted similar studies on the basis of 
QARM (Quantitative Association Rule Mining), and this 
study focuses on the association rules among the time 
series. With the purpose of handling a huge amount of data, 
SAX (Symbolic Aggregate Approximation) was applied to 
preprocess raw data. Yu et al. (2012) also employed the 
same idea of ARM in their studies, but it was based on the  
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top level rather than concentrating on a specific subsystem 
or control logic. However, the disadvantage lies in the fact 
that the depth of data mining is not deep enough for the 
reason that the DM process is so general that it is quite easy 
to become aimless. Moreover, there are some scholars who 
have carried out relevant researches on the application of DM 
in a specific system. Motta Cabrera and Zareipour (2013) 
dedicated to the identification of the control strategies for 
lighting system by ARM in educational institutes and it is 
shown by the results obtained from simulation that the 
electricity waste in lighting is estimated to be as much as 
70%. Li et al. (2017) integrated ARM with cluster algorithm 
for the purpose of obtaining the energy consumption pattern 
of HVAC system and finally came to the conclusion that 
high energy consumption of HVAC system would lead to 
the high frequency of compressors. D’Oca and Hong (2015) 
carried out related studies on a set of occupancy data,  
and four typical working user profile schedules and their 
distributions were obtained by employing decision tree 
model and cluster analysis. Actually, the DM framework 
proposed can be applied to a variety of different data sets, 
but the limitation lies in that the user profiles and patterns 
of occupancy are circumstantial to the given data set and 
the occupancy patterns are not multiple enough. Moreover, 
the accuracy about the implementation of the framework 
on other data sets hasn’t been proved yet.  

Apart from aiming at extracting the information related 
to operation behaviors, there are also some researches into 
the task about obtaining a better DM algorithm at the local 
level. For instance, Li et al. (2014) carried out analysis on 
the relationship between the cyclic features for the operation 
of furnace and the parameters of weather. Feng et al. (2017) 
and Qiu et al. (2019) also developed the algorithms for 
identifying the operation strategies such as sequence control 
and coordinated control with DM algorithms in a local 
control.  

The researches mentioned above are almost all that we 
could find concerning the identification of control strategies. 
However, it is acknowledged that most of them are not 
established on the basis of analysis at the local level. For the 
purpose of better utilizing the operation data at a system 
level, we are required to develop more applicable framework 
and algorithm for identification. Different from the research 
mentioned previously, the method proposed by us can 
extract specific control strategies (chiller reset for instance). 
Considering that an increasing number of commercial 
buildings is taking the initiative to participate in set points 
setback and chillers oscillation under electrical Demand 
Response (DR) controls, an algorithm is also proposed   
by us to identify whether the building gets involved in the 
demand response project or not.  

2 Method 

This paper is actually aimed at developing a framework 
which can be employed for the identification of specific 
control strategies as shown in the left column of Fig. 1. The 
identification method is firstly developed in this section.  
In Section 3 a typical building is introduced to train the 
framework and test the trained framework of a practical 
office building, which is shown in the middle and right 
columns of Fig. 1. With regard to Section 3, it mainly attaches 
importance to the development of the model so as to identify 
specific control strategies introduced, and then how the 
model can be applied to a practical case is presented as  
well. Finally, the discussion over the results obtained from 
model training and case are specified in Section 4.   

2.1 Specific control strategies 

A total of 3 different global control strategies are chosen  
by us, and they are namely DR on/off strategy, DR reset 

 
Fig. 1 Identification framework and research procedure of the case study 
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strategy, and reset strategy of chilled water. The first two 
strategies are actually tailored for the use of DR which is 
adopted when the demand peak occurs through employing 
some regulation methods, and therefore the burden of  
the gird can be relieved to certain extent (Li et al. 2016). 
Besides, as a specific control strategy, the reset method of 
ASHRAE 90.1 (ASHRAE 2013) was also included in the 
research.  

2.1.1  DR on/off strategy 

After a building’s receiving a DR signal, the on/off control 
can be applied to chillers so as to decrease the energy 
consumption. The specific strategy employed in our research 
is that all chillers are shut down with only the chilled water 
loop running. Therefore, it is known that the cooling load 
is partly undertaken by the chilled water in the chilled 
water loop, as well as the thermal mass (building envelop, 
furniture, etc.) in the building. For the purpose of not 
impairing the indoor comfort, the highest acceptable tem-
perature is set. When the indoor temperature is higher than 
the point set previously, chillers are activated accordingly, as is 
depicted in detail in Fig. 2. 

2.1.2 DR reset strategy 

Chilled water reset is able to adjust the temperature of chilled 
water, which as a consequence can decrease the electricity 
consumption and then improve the COP of the chiller 
plant as well. For instance, as shown in Fig. 3, the original 
temperature of the supply is 6.7 °C and the setpoint increases 
to 10 °C, when the system receives the DR signal. At the 
end of DR event, the setpoint temperature is reset back to 
6.7 °C again.  

 
Fig. 2 Chiller state during DR period applying DR on/off strategy 

 
Fig. 3 Temperature reset of chilled water supply during DR period  

2.1.3 Strategy of chilled water reset  

Resetting the temperature of chilled water in accordance 
with the outdoor dry-bulb temperature is deemed as an 
effective energy-efficient approach. The specific strategy 
can be expressed by Eq. (1) and it is depicted in Fig. 4. It is 
easy for us to note from Eq. (1) that the setpoint of chilled 
water has a linear relationship with outdoor dry-bulb tem-
perature and, as a matter of fact, the energy consumption 
of chiller plant could be approximately expressed by a 
quadratic equation about the temperature of chilled water 
supply with a factor of outdoor dry-bulb temperature (Braun 
1989).  
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where Tchw,sup refers to the temperature of supply chilled 
water and Tout,air.db denotes the dry-bulb temperature of air 
outdoors. 

2.2 Data description 

The algorithm is mainly employed for the aim of identifying 
the control strategy that is applied to the building on the 
basis of the data collected. The variables employed in this 
algorithm are listed in detail in Table 1. It is easy to collect  

 
Fig. 4 Schedule of chilled water reset from ASHRAE 90.1 

Table 1 Variables for identification 

Parameter Symbol 

Chilled water supply temperature (°C) Tchw,sup,i 

Chilled water return temperature (°C) Tchw,ret,i 

Outdoor dry-bulb temperature (°C) Tout,air,db,i 

Power of the chillers (kW) Pi 

Indoor dry-bulb temperature (°C) Tin,air,db,i 

Chilled water primary side flow (m3/h) Tchw,pri,i 

Chilled water secondary side flow (m3/h) Tchw,sec,i 

Chilled water bypass flow (m3/h) Tchw,bypass,i 
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these variables from the automation system of building. In 
this research, input data is collected in a day (24 h) with an 
interval of 10 min. 

Therefore, the final input X of the algorithm is specified 
as follows:  
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chw,ret,1 chw,ret,2 chw,ret,
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The output is expressed as y, and the possible value is 
[1,2,3,0], in which 1 refers to the fact that on/off strategy is 
applied during DR period, 2 denotes reset strategy during DR 
period, 3 indicates ASHRAE reset strategy and 0 represents 
the situation that no one of the above-mentioned strategies 
is applied.   

On the basis of the description mentioned above, it is 
easy for us to obtain some features of this problem: 
1) This is a high-dimension problem. A total of 8 parameters 

are available and each parameter can produce 144 
measurement points in 24 h and thus we are able to 
obtain an 1152-dimension input. However, we can only 
obtain about 90 sets of observation data in a cooling 
season (the original model without any specific control 
strategies is included) as far as a building model is 
concerned, and we can obtain about 360 sets of data if 
three specific control strategies are applied to the model.   

2) This is a problem related to multi-classification. The 
output is a discrete value that can be addressed through 
Logistic Regression or Classification Decision Tree.  

3) Every variable in X is a time series that can be 
employed with the purpose of improving the accuracy of 
identification. 

2.3 Extract feature parameter 

It is observed that the data obtained from the specific 
control strategies shows a pattern that is different from the 
normal pattern. Therefore, the image segmentation algorithm 
is adopted by us so as to separate every time-series data 
(Rafael et al. 2009). In the field of computer vision, a digital 
image is usually separated by image segmentation into several 
segments (also named pixel group or superpixel) according 
to its lines and curves. The process of image segmentation 
is typically region-based or edge-based (Morar et al. 2012; 
Pal and Pal 1993). In terms of the edge-based process that 

is adopted in this paper, it is mainly responsible for 
detecting points or lines that change rapidly in comparison 
with that of the neighborhood and then separating the image 
in accordance with these geometrical elements. The work 
of detection is realized through derivative operators such  
as Roberts operator (Dony and Wesolkowski 1999), Prewitt 
operator (Wang and Zhou 2008) and Sobel operator 
(Kanopoulos et al. 1988). 

Two feature parameters, Nzones, and Stdzones, are defined 
to assess the result of segmentation. Nzones refers to the 
number of the segments and Stdzones denotes the mean of 
the standard deviation of these segments, as shown in the 
equation as follows: 

zones
zones

1Std Stdi
iN

= å                            (3) 

where Stdi denotes the standard deviation of the ith segment. 
For instance, Fig. 5 shows a sequence of data and Nzones = 

7 and Stdzones = 0.0428 are obtained after the segmentation 
process. Then, it is also obtained that there are 16 additional 
input and the new input has 1168 dimensions.  

2.4 Dimension reduction 

PCA (Principal Component Analysis) was employed with 
the aim of reducing the dimension of the data. PCA is able 
to transform a set of n-observations of p-dimension variables 
(X1, X2, ..., Xp) into orthogonal principal components (Z1, 
Z2, ..., Zp) which can satisfy the requirements of Eqs. (4)–(6) 
(i.e., these orthogonal components are deemed as a new linear 
combination of the original one, with the former components 
having larger variance while the latter components having 
smaller variance). The original data has a dimension of p and 
the principal component has a new dimension of p' (≤p) by 
using the first i principal components. 

1 1 2 2i i i ip pZ a X a X a X= + +¼+                      (4) 

( ) ( ) ( )1 2Var Var Var pZ Z Z> >¼>                (5) 

( )Cov , 0 ifi kZ Z i k= ¹                          (6) 

The result of PCA obtained from the data of typical 
building in this research is shown in Fig. 6. It is calculated 
that the first 39 principal components account for more  

 
Fig. 5 Time series data 
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Fig. 6 Variance percentage of the first i principal components 

than 90% of the total variance value and therefore these 
components are employed in the following research as 
well. What should be noted is that the quantity of principal 
components is also a parameter whose determination should 
be conducted on the basis of different data sets. 

2.5 Classification algorithm 

Considering that the input is discrete, XGBoost, a DM 
library developed by Chen and Carlos (2016), is used for 
identifying the specific strategies. XGBoost, which integrates 
a bunch of low accuracy decision tree into a high accuracy 
model, is developed with the purpose of solving problems 
related to data science such as ranking, classification and 
regression and it has been successful applied in many cases 
(Chen and Carlos 2016). It has been proved that ensemble 
learning is more efficient and accurate in comparison with 
traditional algorithm for data mining such as Artificial 
Neural Network (ANN) while carrying out classification or 
regression over data about building energy (Foucquier et al. 
2013; Chakraborty and Elzarka 2019). As a comparison, the 
method of Logistic Regression is also applied in the training 
process of model. 

In the algorithm, the trees in the model are trained once 
a time. The objective function of XGBoost can be shown by 
the equation as follows:  

( ) ( )( 1)

1 1

ˆobj ,
n t

t
i i i

i j
l y y Ω f-

= =

= +å å                     (7) 

where yi refers to actual value; ˆiy denotes prediction value; l 
indicates the loss function; ( )iΩ f represents the regularization 
term; t refers to the prediction step and n denotes the 
quantity of data points. 

The lost function is defined in the equation as follows: 

( ) ( )2ˆ ˆ,i i i i
i

l y y y y= -å                         (8) 

The regularization term is defined in the equation as 

follows: 

( ) 2

1

1
2

T

i j
j

Ω f γT λ w
=

= + å                            (9) 

where γ, λ refer to regularization parameters; T denotes 
the quantity of leaves in the tree; wj indicates the scores on 
leaves. 

The final solution to the objective function is shown in 
the equation as follows: 

 j
j
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G
w
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+
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where Hj, Gj are defined in the equations as follows:  
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3 Case studies  

Two case studies are conducted for the purpose of testing 
the algorithm mentioned above developed by us. One of them 
is a building in EnergyPlus prototypical and the other is a 
large commercial building in Shanghai. It is acknowledged 
that the first step to generate the dataset for testing is 
implementing necessary control strategy in EnergyPlus 
properly. 

3.1 Implementation of specific control strategy in 
EnergyPlus model 

With the aim of implementing control strategies in 
EnergyPlus, EMS (Energy Management System) module, 
which allows developers to build up our own control 
strategies in a building using the EnergyPlus Runtime 
Language (Erl), in EnergyPlus is adopted. EMS has two 
input objects: EnergyManagementSystem: Sensor and 
EnergyManagementSystem: Actuator. The former object 
can achieve decision loops in accordance with the outputs 
of EnergyPlus. For instance, this object can be used by us to 
decide whether to turn on the HVAC system on the basis 
of the average indoor temperature in a thermal zone. Then, 
the latter object can control the HVAC system in accordance 
with the different values given. For instance, the object can 
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be employed for the purpose of adapting the temperature 
of chilled water supply. 

3.1.1 Implementation of DR on/off strategy 

In this model, the DR period ranges from 13:00 to 15:00. 
Upon the beginning of DR, all chillers are shut down and 
therefore indoor air will get warmer after being gaining heat. 
The setpoint of indoor air temperature is 24 °C and if the 
indoor temperature in any room goes beyond 28 °C, then the 
chillers will be started again. It is shown by researches and 
experiments that if the chillers are shut down just when the air 
temperature comes to 24 °C, then the air will get heat soon 
and arrive at 28 °C for the reason that the thermal mass has 
not been cooled enough to offset the gained heat. Therefore, 
the chillers should run for at least 1 hour. 

To develop the control algorithm with EMS, 
EnergyManagementSystem: Sensor objects are created for 
each zone so as to obtain the indoor temperature value and 
thus the highest temperature is obtained. Then we are required 
to create EnergyManagementSystem: Actuator objects for 
each chiller for the purpose of controlling its on/off state. 
The two objects are documented in “idf” file as follows:  

 
EnergyManagementSystem:Sensor, 
  ZMA_Core_bottom,     !- Name 
  Core_bottom,       !- Output:Variable or Output:Meter Index Key Name
  Zone Mean Air Temperature;    !- Output:Variable or Output:Meter Name 

 
EnergyManagementSystem:Actuator, 
  Chil1_Disptch,            !- Name 
  CoolSys1 Operation Scheme:CoolSys1 Chiller1,  !- Actuated Component Unique Name
  Plant Equipment Operation         !- Actuated Component Type 
  Distributed Load Rate;          !- Actuated Component Control Type

 
The pseudocode of the algorithm is listed as follows: 
 

Calculate the maximum temperature in all HVAC zones Tzone,max 
if during DR period 

if chillers are on 
shut off chillers 

elseif chillers are off 
if Tzone,max > 28°C 

restart chillers 
else no operation 
endif 

elseif chillers are on 
if chillers have been on over 1 hour 

shut off chillers 
else no operation 
endif 

endif 
else 

apply routine control strategy 
endif 

 
In view that a total of three chillers are available in the 

system, the sequence control of chillers is subjected to the 
cooling demand. In this paper, and the calculation of the 
cooling demand is conducted by EnergyPlus as shown in 
Fig. 7. For instance, when the cooling demand is lower than 
1758 kW, only Chiller 1 will be activated. 

3.1.2 Implementation of DR reset strategy 

As what is mentioned above, the regular temperature of 
chilled water supply is 6.7 °C, and the temperature is reset 
to 10 °C during the DR period. In addition, when the indoor 
temperature goes beyond 28 °C, the supply temperature 
will return to 6.7 °C again. To develop this control algorithm 
with EMS, EnergyManagementSystem: Sensor objects are 
created for each zone for the purpose of acquiring the 
indoor temperature value and then the highest temperature 
is obtained. Then the EnergyManagementSystem: Actuator 
objects is also created with the aim of resetting the supply 
temperature. The algorithm can be realized by replacing the 
action of shutting off the chillers with the reset procedure. 

 
EnergyManagementSystem:Actuator, 
  CLGSETP_SCH_Actuator,      !- Name 
  CLGSETP_SCH_Yes_Optimum,   !- Actuated Component Unique Name
  Schedule:Compact,       !- Actuated Component Type 
  Schedule Value;        !- Actuated Component Control Type

3.1.3 Implementation of the reset strategy for chilled water  

Different from the control strategy mentioned previously, 
the reset strategy for chilled water is able to reset the supply 
temperature by taking into account the outdoor air dry-bulb 
temperature. Thus, an EnergyManagementSystem:Sensor 
abject is created to request this value: 

 
EnergyManagementSystem:Sensor, 
  OAT,       !- Name 
  Environment,      !- Output:Variable or Output:Meter Index Key Name
  Site Outdoor Air Drybulb Temperature;  !- Output:Variable or Output:Meter Name 

 
Fig. 7 Chiller on/off control during DR period 
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3.2 Typical building case 

3.2.1 Building information 

With the purpose of training the identification model, a 
typical building EnergyPlus model is built up so as to obtain 
the training data. The model of building which is a typical 
13-story (one-story basement included) office building 
with the area of 3567 m2 for each floor is established based 
on DOE commercial reference building program—Large 
Office (Climate Zone 1A Miami, Florida) (DOE 2012). 
With the windows evenly distributed, the WWR (window 
to wall ratio) is 40% on four erect walls. Besides, each story 
of the building is split into an inner zone and an outer zone 
by inner walls, and the material walls are set in accordance 
with ASHRAE 90.1.  

As is shown in Fig. 8, the typical HVAC water system 
whose specific control strategies can be identified based  
on the identification framework proposed is composed   
of several chilled water pumps of chillers, condenser water 
pumps, cooling pumps and AHUs. 

3.2.2 Results obtained from the implementation of control 
strategies 

With the previously mentioned EnergyPlus model and 
strategy implementation algorithm as the basis, three 
different control algorithms are implemented (on/off control 
of chiller during DR period, chilled water reset during DR 
period and ASHRAE 90.1 chilled water reset). Figure 9 shows 
the supply temperature of the typical building simulated 
after the application of the three control strategies. As shown 
in Fig. 9(a)), when the chillers are shut off during DR period, 
the temperature of chilled water supply increases quickly 
and arrives at nearly 25 °C upon the completion of DR. 
Figure 9(b) shows that the temperature of chilled supply 
reaches 10 °C during the DR period. Figure 9(c) shows  
that the supply temperature changes along with the passage 
of time due to the change of outdoor temperature. It is easy 
for us to come to the conclusion from the pictures that all 

the three control strategies are well performed on the 
EnergyPlus platform. 

It is widely acknowledged that most commercial buildings 
either use sequential control or coordinated control to satisfy 
specific requirement of control. The first step carried out 
by us is developing an algorithm that can be employed to 
identify these specific control strategies. 

3.3 Case study in a large commercial building 

The building model is a 31-floor office building (one 
basement included) which is located in Shanghai (cooling 
dominated), with a height of 140 m and an area of about 
2500 m2 for each floor. Apart from that, each floor has a 
room for HVAC plants and the 15th floor is employed for 
the establishment of install equipment such as plate heat 
exchangers, pumps, etc. 

3.3.1 HVAC system 

The entire building is equipped with a chilled water system 
including two 2813 kW centrifugal chillers and a 1758 kW 
centrifugal chiller. Similar to Fig. 2, the water loops, which 
consist of typical primary/secondary pumping systems, are 
illustrated in Fig. 10. In addition, the temperature of chilled 
water supply is constant (6 °C). The information about  
the chilled water system is listed in Table 2 in detail. The 
condenser water loop is composed of three cooling towers 
and three water pumps of constant condenser. Moreover, 
two AHUs are set in every story so as to supply air to the 
VAV Boxes in two thermal zones (inner zone and outer 
zone). 

3.3.2 Model calibration 

In the process of calibration, which was carried out to ensure 
that the building model is able to simulate the building, a 
simple control strategy (thermostat on/off control), instead 
of specific control strategies, was applied. Figure 11 shows 
both the measured data and the practical data of lighting  

 
Fig. 8 Diagram of a typical HVAC water system  
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Fig. 9 Temperature of chilled water supply under three control strategies 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and equipment power and it is shown that the Mean 
Absolute Percentage Error (MAPE) is lower than 5%. Since 
there is some inaccurate input such as occupancy data and 
equipment usage rate, the result obtained from simulation 
is acceptable and therefore the model is reliable. 

Figure 12 shows both the simulated and measured input 
power of the chillers in July and August, respectively, and  
it can be observed that the two lines are very close to each 
other and the Mean Absolute Percentage Error (MAPE)  
is lower than 5%. In this process of evaluation, the annual  

 
Fig. 10 HVAC system of the office building   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 11 Simulated and measured power of lighting and equipment  

Table 2 Parameters of the chilled water system 
Equipment Number Cooling capacity (kW) Power (kW) 

Centrifugal chiller 1 1758 314 Chillers 
Centrifugal chiller 2 2813 504 

Equipment Number Flow (m3/h) Power(kW) 
Open loop cooling tower 2 569 7.5×4 

Cooling 
towers 

Open loop cooling tower 1 392 5.5×3 
Equipment Number Flow (m3/h) Head (m) Power (kW) 

Primary pump 2 403 19 30 
Primary pump 1 252 15 15 

Secondary pump (for high floor) 2 351 26 37 
Secondary pump (for low floor) 2 280 28 37 
Chilled water pump (plate HEx) 2 278.5 33 45 

Water pump condenser  2 581 34 75 

Pumps 

Water pump of condenser  1 366 33 55 
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Fig. 12 Simulated and measured power of chillers  

hourly on/off states of each chiller are obtained on the basis 
of the electricity data. Then EnergyPlus can implement this 
control strategy after reading the state file.  

3.3.3 Data generation 

After the calibration, the method of applying three different 
specific control strategies which were discussed in Section 
3.1 was applied for the aim of generating the raw data of the 
case study. After that, both the identical feature extraction 
and PCA transformation were employed so as to satisfy the 
input requirement of the model. 

4 Results obtained from identification of control 
strategy  

4.1 Results of cross validation  

Upon completing the preprocessing, about 360 pieces of 
data related to time series can be generated in a cooling 
season for a single building. With the purpose of realizing 
more reasonable evaluation of the accuracy of XGBoost 
algorithm, k-fold cross validation is applied. The data set 
employed to evaluate the model is then split into a total of k 
groups randomly and each of the k groups in the following 
k validation serves as a test data set and the rest k−1 groups 
function as a training set together. In this way, an overall 
evaluation of the model can be obtained from the given 
data set. 

The evaluation over the identification accuracy of the 
models is shown in Eq. (15) as follows: 

correct

sample
Accuracy n

n
=                               (15) 

where nsample refers to the quantity of samples, and ncorrect 
denotes the quantity of the samples that are correctly 
identified in the model. 

The results obtained from two identification models  
are shown in Fig. 13. It is shown from the boxplot that the 
accuracy of both Logistic Regression model and XGBoost 
model is subjected to great fluctuation and the mean accuracy 
obtained from the two models are approximately 90% and  

 
Fig. 13 Accuracy of k-fold cross validation 

95%, respectively. Since XGBoost shows more reliable 
performance, this model was employed to test in our 
practical case. 

4.2 Practical case identification results 

Figure 14 shows the result obtained from identification of 
the large commercial building model in which cross marks 
indicate the predicted values and circle marks represent the 
actual values. In addition, the predicted value is deemed as 
wrong if no cross mark is located in the center of a circle 
mark. As mentioned above, strategy 1, 2, 3 and 0 refer to DR 
on/off strategy, DR reset strategy, chilled water temperature 
reset strategy, and no specific strategy, respectively. In 40 
simulated data sets including strategies 1, 2, 3, 0, 3 wrong 
predicted values are obtained and therefore the identification 
accuracy obtained is 92.5% in accordance with Eq. (15). 

Considering that the control strategy in adjacent days  
is usually fixed, the mode of identification result of several 
adjacent days can be employed for the purpose of improving 
the accuracy. Therefore, a total of 11 groups of data sets are 
generated in the process, and 3 adjacent days’ data is available 
for each group which is applied to the same strategy. As 
shown in Fig. 15, blue lines indicate the results obtained 
from identification of these 11 datasets. The principle for 
3 adjacent days’ identification is that if more than 2 days’ 
data in 3 adjacent days is identified as being obtained by  

 
Fig. 14 Results from identification using one-day data 
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Fig. 15 Results obtained from identification using 3 adjacent days’ 
data 

using a specific strategy, then the strategy is deemed as the 
strategy adopted in the 3 days. Taking the second blue line 
from the left of the figure as an example, it is easy to observe 
that the strategy of the first day is incorrectly identified as 
strategy 2 and the result obtained from the rest two days is 
correct. In accordance with the principle, it is then known 
that the final predicted strategy is strategy 1. Despite the fact 
that some single days are not identified correctly in this test, 
the algorithm can achieve an accuracy of 100% in these 11 
datasets with the data from 3 adjacent days.  

5 Conclusion 

In this research, some DM algorithms are proposed for the 
purpose of identifying the control strategies in large com-
mercial buildings. These identified strategies can serve as the 
basis in analyzing and improving building operation.  

The major contribution made by this research can be 
summarized as follows: 
(i)  A framework was developed to identify the specific 

control strategies on the basis of data mining algorithm 
on system level. In this framework, a typical building 
model with HVAC control strategies and three specific 
control strategies was built up and then it was applied 
to the model through Erl. The results obtained from 
simulation could well reflect the effects of different 
strategies. Then two algorithms were applied to pre-
processing the raw data generated from EnergyPlus 
and therefore the feature of the raw data could be well 
preserved and the dimension could be reduced. Finally, 
both the XGBoost and Logistic Regression were employed 
to train the model. 

(ii) It is shown by the k-fold cross validation that the 
identification method employed is able to achieve an 
accuracy of 95% using XGBoost algorithm, which is 
obviously higher than that of Logistic Regression (90%). 
With the purpose of testing the identification algorithm, 
the case model was developed and calibrated on the 
basis of submetering data, then the test data was obtained 
accordingly through the same procedure of simulation 

and preprocessing. It is then shown by the result that 
the precision of identification can reach 92.5% if the 
data collected is used in a day and 100% if 3-day data is 
employed.  

In this research, the identification method is tested by 
adopting the data generated from the EnergyPlus which 
has been calibrated from the practical building. In the future, 
the framework will be further tested in real buildings by 
employing the measured data of different specific control 
strategies, and the feasibility about whether the present 
framework can be further extended to buildings of other kinds 
except for office buildings. Furthermore, specific control 
strategies may also be added to the framework as well. 
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