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Global climate change is making California’s mild Mediterranean climate significantly warmer, and
a substantial impact on building energy usage is anticipated. Studies on building cooling and energy
demand have been inaccurate and insufficient regarding the impacts of climate change on the peak load
pattern shifts of different kinds of buildings. This study utilized archived General Circulation Model
(GCM) projections and statistically downscaled these data to the site scale for use in building cooling and
heating simulations. Building energy usage was projected out to the years of 2040, 2070, and 2100. This
study found that under the condition that the cooling technology stays at the same level in the future,
electricity use for cooling will increase by 50% over the next 100 years in certain areas of California under
the IPCC (Intergovernmental Panel on Climate Change)’s worst-case carbon emission scenario, A1F1.
Under the IPCC’s most likely carbon emission scenario (A2), cooling electricity usage will increase by
about 25%. Certain types of buildings will be more sensitive to climate change than others. The aggre-
gated energy consumption of all buildings including both heating and cooling will only increase slightly.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The energy consumption of commercial buildings accounts for
about one third of California’s total electricity consumption, which
costs about $9 billion per year. The energy consumption associated
with space cooling accounts for a significant proportion of
commercial building electricity use in California, and it is increasing
at a significant rate, particularly in the hotter inland areas. Space
cooling plays amajor role in determining themagnitude and timing
of peak electrical demand.

Global climate change warming trends are shifting California’s
mild Mediterranean climate to a significantly warmer climate, and
a particularly large impact on building cooling electricity usage is
anticipated. It is important to estimate and predict the impacts of
climate change on statewide building energy usage because this
information may help policy-makers, utilities, and other stake-
holders to respond to concerns about the impact of climate change
on energy production, distribution, and consumption in the
building sector.

Title 24, the existing building code in California, is based on old
weather data and does not reflect future climate change. As a result,
All rights reserved.
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to prevent building energy consumption per unit from increasing,
the building code may need to become stricter in certain climate
zones. Climate change could also change the balance between
cooling and heating requirements in the code. For example,
because the weather is getting warmer in winter, the insulation
level could be made less strict. However, because cooling energy
consumption plays amore important role in overall building energy
usage, the requirements for shading devices, windows, and glazing
materials could be made stronger. In this paper, “cooling energy
use” refers to the electricity consumption of building cooling, while
“heating energy use” refers to the gas consumption of building
heating.

Many other existing national codes are based on weather data
generated from observations from previous years. For example,
Typical Meteorological Year (TMY) data were prepared by the US
from hourly data files of the Weather Services from 1954 to 1972.
Typical months were identified by their closeness to long-term
cumulative distribution functions. The current widely used TMY2
data are derived from the 1961e1990 National Solar Radiation Data
Base (NSRDB).

Engineers use the TMY2 data not only for building code
compliance calculations but also for equipment sizing and selecting
an appropriate HVAC (Heating, Ventilation, and Air Conditioning)
system. Some low-energy-use cooling systems, such as natural
n building heating and cooling energy patterns in California, Energy
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ventilation and radiant cooling ceilings, may not work in the future
when the temperature is higher.

Because of climate change, the energy demand in various
regions of California could change at different rates. In general, the
demand for gas for heating could decrease, and the demand for
electricity could increase. The demand for cooling energy in the
coastal area of California is relatively low now because of the mild
weather in the summer. However, more heat waves and overall
temperature increases could increase the loads more drastically in
these areas than in the inland areas, and if so, the energy distri-
bution requirements for the grid will change. This study will help
the state decide how to respond to climate change in various
regions of California.

The goal of this project is to better understand and predict the
changes in building energy usage due to global climate change. The
primary objective of this project is to develop a detailed analysis of
building space heating and cooling requirements based on climate
change projections. This analysis will provide guidance for needed
changes in California building codes to address global climate
change impacts at the building level.

The central questions addressed in this study are the following:

� How will climate change affect building cooling and heating
energy consumption?

� How will climate change affect the energy consumption of
different types of buildings in the different regions of California
and in the state as a whole?

In previous studies, Huang estimated that energy use for space
cooling, when averaged over the four IPCC global climate change
scenarios, will increase in Los Angeles by as much as 42% in resi-
dential buildings and 31% in commercial buildings [14], whereas
heating will go down by 62% and 24%, respectively. For more
information about these scenarios, see reference [3,19,33,44].

In addition, changes in the patterns of extreme weather events,
such as the intensity, persistence, and extent of heat waves, will
have a significant impact on peak cooling electricity demand.
General Circulation Model (GCM) analyses of extreme heat and
energy demand by Miller [27] have shown that the number of
summer days in Los Angeles in the hottest 10% will increase from
the present 12 days to 28e96 days toward the end of this century.
This increase in extreme days was shown to correspond with
energy demand peaks that may result in capacity shortages.

Studies to date on building cooling and energy demand have
been based on simplified analyses using constant increases in
annual average temperature or changes in cooling degree-days.
These results are insufficient in detail and, hence, may be inaccu-
rate for predicting the climate change impacts of different building
energy technologies. For example, the lack of information on
changes in humidity, diurnal temperature swings, and solar radi-
ation make it impossible to assess the impact of climate change on
the use of low-energy cooling systems such as natural ventilation,
evaporative cooling, and nighttime cooling.

Recent improvements in global and regional climate modeling
can be combined with detailed building energy simulations to
study the impacts of climate change in much greater detail and
with more discernment. GCM project changes in temperature,
diurnal temperature range, cloud cover fraction, and relative
humidity at 0.5� resolution globally for a range of IPCC emission
scenarios extending out to 2100. Furthermore, Miller’s climate
modeling group at Lawrence Berkeley National Laboratory (LBNL)
downscales GCM output both dynamically via regional climate
models (RCMs) and statistically via regression techniques and
canonical correlations for domains (including California) with
resolution as high as 3 km. These modeling results, in conjunction
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with Huang’s adjusted hourly weather data, provide the input
needed for energy simulations of prototypical commercial and
residential buildings to analyze climate change impacts.

In this study, the following research tasks were conducted to
address these important issues:

� Modified hourly weather predictions were created for the 16
California climate zones under four IPCC carbon scenarios.

� Prototypical models were developed for buildings in California.
� Both residential and commercial building stocks in the state
were estimated.

� Building heating and cooling energy use were simulated using
the models for both residential and commercial prototypical
buildings; aggregate energy usage in the future was estimated.
2. Literature review

Scott [39] observed that many studies worldwide have analyzed
the climate sensitivity of energy use in residential, commercial, and
industrial buildings and have used estimated relationships to
explain energy consumption and to assist energy suppliers with
short-term planning (Quayle and Diaz [34]; Badri [2]; Lehman [18];
Lam [16]; Yan [46]; Morris [28]; Pardo [31]; Elkhafif [10]). The
number of studies in the US analyzing the effects of climate change
on energy demand, however, is muchmore limited. In the early and
mid-1990s, there was a handful of studies that attempted an “all
fuels” approach and focused onwhether net energy demand would
go up or down in residential and commercial buildings as a result of
climate change [20](Scott [38]; Rosenthal [35]; Belzer [4]), whereas
some focused on other climate-sensitive uses of energy such as
transportation, agricultural crop drying and irrigation pumping
(Darmstadter [6]; Parker [32]; Scott [39]; Tario [40]; Nelson [41]).

Previous authors have taken different approaches to estimating
the impact of climate change on energy use. Most of these
researchers have used simple uniform increases in annual average
temperature as the “climate” scenario, and they have not focused
on transient temperature increase scenarios from General Circu-
lation Models (GCMs) such as those analyzed by the IPCC [36].
Previous research has used building energy simulation models to
analyze the impact of climatewarming on the demand for energy in
individual commercial buildings [39] and on energy consumption
in a variety of commercial and residential buildings in a variety of
locations (Loveland [20]; Rosenthal [35]). Additionally, economet-
rics and statistical analysis techniques have been used (most
notably, the Mendelsohn papers discussed below, but also Belzer
[4], Amato [1], Ruth and Amato [37], and Franco and Sanstad [12]).
Another recent study “mapped” the climate changes in four IPCC
scenarios on top of existing weather files for 16 US locations and
then used building energy simulations of prototypical commercial
and residential buildings to analyze the impacts of those climate
changes on building energy use [14].

Mendelsohn performed cross-sectional analyses to determine
how energy use in the residential and commercial building stock
relates to climate (Morrison [29] and Mendelsohn [25]; Mendel-
sohn [23]), and he then used the relationships to estimate the
impact of climate change in the year 2060 on all residential and
commercial buildings. Mendelsohn [24] used a two-step cross-
sectional model of the commercial and residential building stock,
which uses US data and accounts for the probability that a building
is being cooled (which increases with the amount of warming), and
its overall energy consumption as a function of climate (matched on
a county level to the Energy Information Administration (EIA)
buildings in the Residential Energy Consumption Survey (RECS)
[11] and Commercial Building Energy Consumption Survey (CBECS)
n building heating and cooling energy patterns in California, Energy
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[42,43]). This was further elaborated by Mansur [21] into
a complete discrete continuous choice model of energy demand in
residential and commercial buildings separately. In this analysis,
when natural gas is available, the marginal impact of a 1 �C increase
in January temperatures in their model reduces residential elec-
tricity consumption by 3% and natural gas consumption by 2% [38].
Working with end uses rather than fuels, a 16%e60% reduction in
the demand for residential space heating energy is projected by
about 2080 given no change in the housing stock and winter
temperature increases ranging from 2 �C to 10 �C, or roughly
a 6%e8% decrease in space heating per degree Celsius increase.

Thus far, studies on building cooling and energy demand have
been based on simplified analyses using constant increases in
annual average temperature or changes in cooling degree-days.
These results may be inaccurate and insufficiently detailed to
accurately quantify the climate change impacts of different building
energy technologies. Huang [14] used results from the Hadley
Centre Climate Model (HadCM3). Projected changes in monthly
average temperature, daily temperature range, cloud cover, and
relative humidity by month for 0.5� sectors of the earth’s surface
under four IPCC carbon emission scenarios (A1F1, A2M, B1, and
B2M) for the year 2080 were used to adjust hourly TMY2 (Typical
Meteorological Year) weather files for 16 US locations. These
modified weather files were then used in the DOE-2 building
energy simulation program [9] to simulate the energy demand of
a set of 112 prototypical single-family houses covering 8 vintages in
each of the 16 locations. For the entire US residential sector, the
simulations showed an increase in energy use from 0% to 7%, rep-
resenting up to a 10% increase in space conditioning energy use. At
the regional level, the impacts varied from a 9%e12% decrease in
energy use (12%e16% decrease in space conditioning) in Boston,
to as much as a 29%e58% increase in Miami, with a space
conditioning increase ranging from 46% to 92%. Across the
different building vintages, the impact was most adverse in
newer houses (2%e11% increases of total, 2%e18% of space
conditioning for 90’s vintage houses) and less adverse in older
houses (-1% to 6% increases of total, -1% to 10% of space-
conditioning).

Archived General Circulation Model (GCM) projections were
used and statistically downscaled to the site scale to use as input for
building cooling and heating simulations. The GCM projections
were based on the high temperature sensitivity (HadCM3) and low
temperature sensitivity Parallel Climate Model (PCM) climate
models for the IPCC SRES high-emission (A1F1) and low-emission
(B1) scenarios. The temporal downscaling procedure was based
on a series of third- to fifth-order regression equations that have
parameters using the observedweather station data as predictands.
Temperature and other weather variables were generated through
this technique, and the resulting climatological fit closely replicates
historical climatology. Sub-daily temporal resolutionwas generated
by shifting from the historical to the projected probability distri-
bution function (PDF) for each variable and mapping this onto the
historical hourly observations to obtain an imperfect high-
resolution time series for application.

The statistically downscaled temperature is an additive term,
whereas precipitation is a multiplicative factor. The minimum and
maximum daily temperatures and the daily cumulative precipita-
tion provided by the GCMs were used as predictands and fitted to
third- to fifth-order regressions based on the daily (and finer)
temperature and precipitation observations from the nearest
measurement sites. The resulting changes in temperatures and
precipitation are based on the samemethods used in the TAR (Third
Assessment Report) and AR4 reports. Variability is not captured
through statistical approaches, and consequently, the upper limits
of daily maximum temperature may be underestimations.
Please cite this article in press as: Xu P, et al., Impacts of climate change o
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The researchers that applied the statistical methods stress
caution in the interpretation at such high temporal resolution. The
methods show good agreement climatically (i.e., as 10-year mean
values), but hourly results are viewed with concern. Upper limits
values are smoothed out; hence, we request that a second set of
calculations be performed when the dynamically downscaled full-
field values are made available through the California Energy
Commission Public Interest Energy Research (CEC PIER) climate
projections project.

Researchers around the world did research on the impact of
climate change on energy use recently. A research team from China
proposed a new method to develop typical weather years for
different climates and the method has applications for regular
updating of weather years and climate change study [5]. The effects
of climate change on the Norwegian energy system toward 2050.
The impact of climate change is evaluated with an energy system
model, the Market alocation model (MARKAL) Norway model, to
analyze the future cost optimal energy system [8]. Hekkenberg
et al. critically analyze these implicit or explicit assumptions and
their possible effect on the studies’ outcomes. First we analyze the
interaction between the socio-economic structure and the
temperature dependence pattern (TDP) of energy demand [17].

3. Methodology

3.1. Typical year weather files for future time periods

Using the procedure described in the previous section, hourly
weather files were created for 63 California locations that had
sufficient historical data for reliable downscaling [47]. The weather
file for each location consists of hourly records of dry-bulb
temperature, dew point temperature, pressure, and total hori-
zontal solar radiation from 1995 through the year 2100, of which
the data up to and including 2006 are historical, and that from 2007
are downscaled from the GCM model. The report to the California
Energy Commission also lists the 73 California locations included in
the new TMY3 data set based on either 24-year (taken from 1976 to
2005) or 12-year (taken from 1991 to 2005) historical data; the 10
locations included in the TMY2 data set based on 1961e1990
historical data; and the 16 California Thermal Zone (CTZ) loca-
tions based on 1941e1970 historical data. These historical “typical
year” weather files are useful for determining how much climate
change has already occurred in California locations and to what
degree the CTZ weather files used by the Commission to analyze
building energy performance may have already been outdated.
Fig. 1 shows the same locations on a state map of CTZ boundaries
for easier identification.

Plots of the temperature and solar radiation data for four
representative locations (Oakland, Sacramento, Burbank, and San
Diego) are shown in Fig. 2, with the historical data shown in red and
the downscaled data in blue. It is apparent that in all four locations,
the downscaled data show a gradual rise in average dry-bulb
temperature over the time period to 2100, but no evident change
in solar radiation.

3.2. Hourly weather predictions

Future weather data were generated for three carbon emission
scenarios using the IPCC SRES scenarios [30], namely A1F1, A2, and
B1. These scenarios are described in the IPCC’s Third Assessment
Report (TAR) and Fourth Assessment Report (AR4). A1F1 is the
worst carbon scenario, and it is characterized by rapid economic
growth and an emphasis on fossil fuels. The A2 family of scenarios
is characterized by slower and more fragmented technological
changes and improvements in per capita income. B1 is the best
n building heating and cooling energy patterns in California, Energy
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carbon scenario. It relies on reductions in material intensity and the
introduction of clean and resource efficient technologies.

Developing statistically downscaled input requires the avail-
ability of observations of state variables for a time period sufficiently
long that model calibration and verification can be performed for
separate time periods that capture the variability of today’s climate.
Potential obstacles include ensuring that there are adequate data
and the assumption that the projected climate is stationary. Cal-
ifornia has sufficient data available anddoes not pose a problem. The
stationarity of the climate cannot be determined in advance. Testing
to evaluate dynamic climate regimes was performed through an
ongoing California Energy Commission (the Energy Commission)-
supported project, the Regional Climate Model Intercomparison
and Baseline Evaluation (REBI), wherein statistically and dynami-
cally downscaled climate projections were tested [26].

Miller [26,27] has produced climate analyses for the Energy
Commission as a contribution to the California Climate Assessment.
Miller has simulated downscaled climate fields both through
statistical and dynamic procedures using state-of-the-art tech-
niques. This work is representative of the current knowledge base.
Site scale models downscaled at hourly intervals provide an
Fig. 2. Temperature and solar radiation d
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extension of current techniques. The statistical downscaling tech-
nique applied in this study is based on statistical approaches
developed by Wilby and Dettinger [7] and a projected variance
transform based on mapping distribution functions developed by
Miller and his group. The variance transform is simply an added
temperature or multiplied precipitation ratio based on the statis-
tical downscaling that reflects the climate change sensitivity of
each variable for each location.

The statistical downscaling approach is based on the application
of third- to fifth-order linear equations with coefficients trained
using historical observations. The predictors are the set of single-
point observed temperature and precipitation observations for
each location, and the predictands are the resulting temperature
and precipitation outcomes with high temporal resolution. The
observations only covered 8e15 years, resulting in minimally
trained regression models. We fitted the 3rd- to 5th-order coeffi-
cients using odd years and verified them using even years as shown
in the following equation.

Predictor ¼ A�predictandþB�predictand2þC�predictand3

Statistical downscaling through regression is a common
approach that has been well documented in the literature (Wigley
et al. 1990; Wilby et al. 1998; Huth 1999; Wilby et al. 2002; Wilby
and Dawson 2004). Statistical downscaling procedures have the
advantage of being computationally efficient, but as they rely on
historical relationships between large-scale climate fields and local
variables, partial stationarity (non-changing conditions with regard
to the extreme end-members of the historical period) over time
must be assumed.

Grid-cell values of each predictor and for the reference period
were rescaled by simple monthly regressions. This ensured that
the overall probability distributions of the simulated daily values
closely approximated the observed probability distributions at
selected long-term weather stations located in urban centers.
Observed daily maximum and minimum temperatures, cumula-
tive precipitation, and humidity for each of the weather stations
were used to develop a set of third-order regression equations to
transform the large-scale temperature values from the GCM
simulations into local-scale daily maximum temperatures while
preserving the distribution of the observed mean and variance.
The resulting model was then verified using observations from
ata for four representative locations.

n building heating and cooling energy patterns in California, Energy
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a separate time period. The downscaled time-series results in
a near-exact fit to observations. The ability of this method to
successfully reproduce observed daily distributions is illustrated in
Fig. 3, which provides a comparison between the observed and the
statistically downscaled annual distributions of maximum daily
temperature for Sacramento and Los Angeles. Although the
modeled distributions tend to be somewhat smoother than the
observations, in general the Geophysical Fluid Dynamics Labora-
tory (GFDL) and PCM-based simulations capture a distribution
very similar to what was observed, whereas the HadCM3-based
simulations tend to show a slightly broader distribution.

The same regression relations were then applied to future
simulations such that the rescaled values share the weather
statistics observed at the five stations. At the daily scale addressed
by this method, the need to extrapolate beyond the range of the
historically observed parts of the probability distributions was rare
even in the future simulations (typically <1% of the future days,
implying that stationarity is valid for this type of analysis) because
climate change involves more frequent warm days more than it
involves warmer-than-ever-observed days [7].

Future projections were then averaged for three time periods
(2005e2034, 2035e2064 and 2070e2099) to produce near-term,
mid-term, and long-term climatological projections of daily
maximum, average, and minimum temperatures for California on
which to base estimates of future shifts in the timing and magni-
tude of electricity demand.

Because of the stochastic variations inweather fromyear to year,
building energy simulations have generally been done using
“typical year” weather data that reflect average weather charac-
teristics over a selected period of record. Recent data sets devel-
oped by the National Renewable Energy Laboratory (NREL) include
239 TMY2 weather files developed from historical weather data
from 1961 through 1990 [22] and 1020 TMY3 weather files devel-
oped using either 24 years taken from the 1976e2005 historical
data for 226 locations or 12 years taken from the 1991e2005 data
for the remaining 800 or so locations [45].

The above-mentioned “typical year” weather files were created
by splicing together twelve calendar months from the historical
period of record judged to be the most representative using
different criteria and weighting. In developing the original TMY
weather files, NREL established a methodology for selecting
a typical month that is straightforward and flexible. In brief, the
selection is made by calculating the Cumulative Distribution
Fig. 3. Comparison of observed and statistically downscaled annual maxim
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Function (CDF) of each climate variable (temperature, solar radia-
tion, and wind speed) for each month of historical data and
comparing these CDFs to the long-term CDF using the
FinkelsteineSchafer (FS) statistic as ameasure of the closeness of fit
[13]. The FS statistic is the sum of the differences between the
individual and long-term CDFs. The FS statistic for each variable is
multiplied by its weight and then added to produce a cumulative
FS. The month with the smallest cumulative FS is selected as the
typical month.

There are at least threemethods of creating typical year weather
files for future time periods based on downscaled data, each with
its advantages and disadvantages:

Treat the downscaled data the same as historical data to select
typical months and build “typical year” weather files for future
periods from them. The problem with this method is that the
downscaled data do not contain all the climatic variables needed in
a simulation weather file, such as wind speed and direction.
Although these variables are available in the original GCM data,
they are not regardedwithmuch credibility or relevance. Therefore,
even if such weather files based completely on computer model
results could be created, there would be an open question whether
differences from the historical data are due to the modeled climate
change or are artifacts of the synthetic weather data.

Obtain a long-term CDF from the downscaled data but use the
historical data set to select the typical months. The advantage of
this method is that the future year weather file produced would
still be “real” data, and thus, it avoids the questions mentioned for
the previous method. The two assumptions of this method are (a)
the long-term CDFs predicted up through 2100 are within the range
of variability in the historical data, and (b) climate change does not
affect the underlying climate patterns. The first assumption can be
tested by comparing the CDFs from the downscaled data to those
from the historical data, but the second assumption is impossible to
test. Although this method has its appeal, it was not used in this
project because it was not assured to work in all cases and because
it also requires much more effort than the third method described
in the following paragraph.

Compute the average changes in climatic variables (i.e.,
temperature, humidity, solar) in the downscaled data over time and
then map those changes onto existing “typical year” weather files
such as the CTZ, TMY2, and TMY3 data sets. This method shares the
same assumption as the previous one that climate change would
not cause large changes in the underlying climate pattern. The
um-daily temperature distributions for Sacramento and Los Angeles.

n building heating and cooling energy patterns in California, Energy
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advantage of this method is that it relies on the existing “typical
year” weather files to establish the underlying climate patterns
(such as the occurrence of heat storms, the correlations of wind and
solar with other variables) and uses the downscaled data only to
adjust the average monthly values for dry-bulb temperature, dew
point temperature, solar radiation, pressure, and the diurnal swings
of dry-bulb and dew point temperatures. In other words, this
method uses the downscaled data not to represent future weather
but only to represent the expected deviations in the weather from
the historical record.

For both technical and practical reasons, we chose Method 3 to
generate the future year “typical year” weather files. The same
method was used by Huang for a previous study on the potential
impact of climate change on building energy use in the US [14], and
software procedures had already been developed. The downscaled
data for the 63 California locations consist of large (56 MB) text files
with 106 years of hourly records of dry-bulb and dew point
temperature, pressure, and total solar radiation from 1995 through
2100. These were analyzed and condensed first into average daily
mean and range for the dry-bulb and dew point temperatures and
into average daily mean only for the total solar radiation for each
month of every year. These data were then further condensed into
monthly means and ranges for each decade starting with 1995, i.e.,
1995e2004, 2005e2014. Because they were obtained from histor-
ical data, the means and ranges calculated for the first decade, i.e.,
1994e2005, are taken as the baseline against which the means and
ranges for the subsequent decades are compared. The changes in
the monthly means and ranges are then “mapped” onto the TMY3
weather file for that location, resulting in a modified weather file
for each decade extending to 2100.

Although the technique has been developed to produce future
“typical year” weather files for any decade up through 2100, only
four snapshot decades were analyzed: TP2 (2005e2014), TP4
(2035e2044), TP6 (2055e2064), and TP9 (2085e2094). Further-
more, due to the absence of building stock data for the smaller
locations, computer simulations were conducted in only 16 of the
63 available locations corresponding roughly to the locations used
to develop the original 16 CTZ weather files. Table 1 shows the
heating and cooling degree days for downscaled locations under
three climate change scenarios in four future time periods (the first
25 locations), and Fig. 4 shows the heating and cooling degree days
for the 63 locations for the TMY3 base case and the four snapshot
decades.

The degree-day statistics in Fig. 4 are shown with the stations
grouped by color depending on their geographical location: dark
blue for mountain areas, dark green for the northern coast, orange
for the north Central Valley, yellow for the south Central Valley,
light green for the southern coast, and red for desert areas. Fewer
lines extend to the left because therewere only 16 CTZ and 11 TMY2
locations compared to the 53 downscaled locations with either
TMY3 or NCDC weather data.

3.3. Commercial building prototypes

Building energy usage was estimated through a bottom-up
approach by simulating prototypical commercial buildings
differentiated by vintage, building use, and climate. By combining
these simulation results with the building stock information and
the amount of building floor area represented by each prototype,
a reasonable assessment of energy use characteristics of the entire
building stock in California can be produced. Sixteen commercial
and residential building prototypes were used e most of these
prototypical building models were developed during previous
LBNL research projects [15]. These building models were used as
the basis for developing future prototypical building models by
Please cite this article in press as: Xu P, et al., Impacts of climate change o
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referring to the trends in building technologies and to the building
code. The models were developed by two building simulation
models, EnergyPlus and DOE-2.1E [9]. The simulation analysis was
started using EnergyPlus, but then it was switched to DOE-2.1E
when it became clear that using EnergyPlus would require
several weeks of time for the simulations alone. Detailed
descriptions of these building simulation models are also given
elsewhere [47]. Table 2 is a classification of different commercial
building prototypes.

4. Result

4.1. Impact on building energy intensity

In the calculation, we assumed building square footage to be
constant. Therefore, the change in peak energy usage intensity is
proportional to the change in the aggregated energy usage. Energy
intensity is defined as total energy usage per square foot (KBtu/ft2).

We ran a simulation for each type of building using the gener-
ated hourly future weather data. The simulations were for the years
2005e14, 2035e44, 2055e64, and 2085e94.

Because the overall temperature will increase over the next 100
years, cooling energy consumption will increase and heating
energy consumption will decrease. However, the increases and
decreases associated with each type of building are different. For
large office buildings, the shift will be less significant than for
warehouses and small retail stores, which rarely need air condi-
tioning. In general, cooling electricity usage will increase more for
small buildings than for large buildings. The impact will be greater
on sit-down restaurants and small retail stores than on large offices
and supermarkets.

4.2. Future energy end-use

We plotted four types of energy intensity change for each
type of building under different carbon scenarios. Fig. 5 shows
a comparison of different types of predicted energy
consumption in large office buildings and small office buildings
(A2 Scenario).

The first type of energy intensity change is the change in
heating energy over the next 100 years. The trend is very clear.
Because of global warming, heating energy usage decreases under
all carbon scenarios. For example, the heating energy consump-
tion of a large office building will be reduced by almost 50% in all
regions. In general, the percentage reduction in southern Cal-
ifornia will be more than that in northern California because
buildings in southern California barely need heating now.
Reductions in heating energy usage are generally larger for small
buildings than for large buildings. Small buildings are more
sensitive to weather changes because of their low volume to
surface area ratio.

The second type of energy intensity change is the change in
cooling energy over the next 100 years. Energy used for building
cooling will increase significantly in all regions. For example, in
southern California, under the A2 scenario, the cooling energy
consumption of large office buildings will increase by 70% from
their current level. This is assuming the internal load will be
constant over the next 100 years. Cooling energy usage in northern
California will also increase, but not as much as in southern Cal-
ifornia. Under the A2 scenario, in northern California, the cooling
energy usage of large office buildings will remain nearly constant
until 2044. After 2044, the cooling energy usage will start to
increase significantly. It seems that until 2044, under the A2
scenario the weather in northern California will still not be hot
enough to trigger a large cooling demand.
n building heating and cooling energy patterns in California, Energy



Table 1
Heating and cooling degree-days from downscaled locations under three climate change scenarios in four future time periods (the first 25 locations).

Location CC
scenario

Heating degree days 18C Cooling degree days 18C (Cooling degree hours)/24 26 C

CTZ TM2 TM3 2005
e2014

2035
e2044

2055
e2064

2085
e2094

CTZ TM2 TM3 2005
e2014

2035
e2044

2055
e2064

2085
e2094

CTZ TM2 TM3 2005
e2014

2035
e2044

2055
e2064

2085
e2094

Arcata
(CTZ01)

A1FI 2700
(2184)

2779 2650 2759 2577 2244 1827 0
(0)

1 1 0 1 3 10 0
(0)

0 0 0 0 0 0
A2 2633 2792 2394 1994 0 0 1 6 0 0 0 0
B1 2623 2426 2478 2346 1 2 1 2 0 0 0 0

Bakersfield A1FI 1152 1111 1124 1027 858 682 1335 1295 1467 1825 2142 2586 411 405 506 704 889 1181
A2 1102 1116 939 752 1461 1590 1738 2273 487 580 646 960
B1 1105 1003 974 963 1442 1564 1558 1726 492 545 541 624

Bishop A1FI 2139 2189 2009 1750 1434 806 943 1223 1504 1850 346 425 579 742 954
A2 2159 2167 1875 1610 960 1050 1196 1595 425 498 561 791
B1 2139 1957 1942 1906 920 1025 1041 1156 417 464 472 538

Burbank
/ Glendale
(CTZ09)

A1FI 966
(755)

755 808 819 655 434 249 510
(575)

575 746 843 1103 1376 1793 116
(166)

166 167 217 315 400 580
A2 752 825 571 313 839 868 1039 1503 198 219 277 453
B1 754 613 579 532 828 928 896 1071 206 240 225 279

Camarillo A1FI 1055 1034 827 549 325 171 196 344 507 817 20 22 38 55 91
A2 973 1054 744 415 213 230 309 592 21 24 34 62
B1 991 804 801 706 212 239 229 325 26 26 27 38

China Lake
(CTZ14)

A1FI 1316
(1655)

1489 1508 1371 1162 933 1694
(1032)

1546 1713 2062 2395 2856 686
(377)

633 751 968 1177 1483
A2 1474 1493 1274 1040 1710 1830 1988 2547 734 835 908 1260
B1 1481 1338 1318 1286 1686 1805 1807 1969 733 793 792 883

Daggett
Barstow

A1FI 1013 1100 1098 978 836 647 1651 1717 1949 2374 2739 3309 605 668 820 1098 1333 1757
A2 1093 1090 936 714 1946 2130 2283 2940 802 946 1026 1471
B1 1061 974 923 922 1928 2054 2084 2214 811 874 892 968

El Centro
(CTZ15)

A1FI 606
(486)

476 491 437 367 225 2487
(2308)

2436 2627 3018 3343 3849 1116
(1010)

1046 1202 1474 1679 2082
A2 496 500 397 233 2616 2753 2914 3530 1168 1290 1372 1829
B1 448 410 369 382 2594 2732 2766 2888 1174 1245 1267 1346

El Toro
(CTZ08)

A1FI 933
(755)

615 631 480 298 154 375
(448)

326 447 783 1153 1667 70
(83)

10 23 60 108 259
A2 563 635 403 204 460 478 690 1296 16 21 40 143
B1 556 425 406 361 434 557 517 775 19 29 24 44

Fresno
(CTZ13)

A1FI 1504
(1243)

1435 1274 1317 1203 1023 821 1017
(1127)

1092 1238 1383 1704 2016 2422 346
(386)

380 419 515 697 888 1153
A2 1300 1311 1097 943 1409 1507 1677 2136 514 594 670 954
B1 1292 1162 1138 1128 1370 1500 1500 1636 505 564 568 644

Fullerton A1FI 736 774 590 299 89 607 712 980 1245 1740 89 120 189 251 421
A2 676 778 447 161 720 717 900 1424 107 121 158 300
B1 673 509 482 431 686 792 754 949 114 134 121 160

Inyokern A1FI 1489 1508 1371 1162 933 1546 1713 2062 2395 2856 633 751 968 1177 1483
A2 1474 1493 1274 1040 1710 1830 1988 2547 734 835 908 1260
B1 1481 1338 1318 1286 1686 1805 1807 1969 733 793 792 883

Lancaster A1FI 1574 1571 1418 1179 914 1165 1334 1692 2013 2468 386 489 693 888 1193
A2 1538 1555 1322 1032 1328 1462 1610 2145 470 565 635 957
B1 1540 1396 1372 1331 1306 1423 1419 1585 477 525 524 612

Lemoore A1FI 1472 1424 1296 1094 870 1041 1195 1511 1792 2190 375 467 634 789 1204
A2 1402 1413 1212 967 1187 1310 1434 1904 450 535 584 844
B1 1396 1277 1258 1225 1168 1269 1270 1413 454 495 495 563

Lompoc A1FI 1849 1891 1607 1084 616 5 8 22 85 240 4 4 7 15 30
A2 1738 1953 1381 858 8 7 27 107 4 3 7 17
B1 1743 1471 1575 1311 9 20 10 27 7 8 6 10

Long Beach
(CTZ06)

A1FI 827
(844)

744 647 666 535 344 177 392
(216)

443 458 535 752 976 1320 49
(7)

39 35 53 92 130 231
A2 603 671 446 238 533 553 692 1080 42 49 74 158
B1 606 495 463 433 527 612 580 731 48 63 55 75

Los Angeles A1FI 720 648 656 530 345 182 232 223 270 419 577 833 6 2 3 7 12 32
A2 596 655 452 241 262 275 369 650 2 2 4 18
B1 601 504 469 438 263 329 295 404 3 4 4 5

(continued on next page)
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The last column in the figure is total energy usage. Total energy
usage is the sum of heating, cooling, domestic hot water, and fan
energy consumption (which is not listed here in this paper). In
general, the decrease in heating energy offsets the increase in
cooling energy. However, for each region, because the changes in
cooling and heating are different, the total energy consumption
may either decrease or increase.

For example, under the A2 scenario, the total energy
consumption of large office buildings will stay flat in northern
California. However, the total energy consumption of large office
buildings will increase slightly in southern California. Under the
worst scenario (A1F1), total energy usage will increase slightly in
northern California but drastically in southern California.

4.3. Building type variance

Although in general, cooling energy will increase and heating
energy will decrease for all types of buildings, the magnitude of
the changes varies among different building types. In general,
small buildings are more sensitive to global warming than large
buildings because the envelope heat gain (loss) of small buildings
is a larger portion of their cooling (heating) load than that of
large buildings.

For example, in northern California, the total energy
consumption of large and medium office buildings will increase.
However, the total energy usage of small office buildings in CZ16
will actually decrease. The heating consumption of small offices
in this region will decrease sufficiently to offset the increase in
cooling energy usage in the summer so that the total energy
usage will decrease.

We observed similar results for other types of small buildings
such as fast-food restaurants, primary schools, and small hotels. For
small hotels, in northern California total energy usage will decrease
in all 7 climate zones. For fast food restaurants, total energy usage
in CZ16 will in fact decrease in the future. Total energy usage in the
other 6 northern climate zones will remain flat.

4.4. Carbon emission scenarios

A1F1. In the high carbon emission scenario, cooling energy
consumption increases drastically for nearly all building types.
Large offices and supermarkets have the largest share of energy
consumption among all types of commercial buildings. The cooling
energy consumption of these two types of buildings increases by
almost 50% in all major climate zones. The overall building energy
usage increases slightly by about 15e30%.

B1. Under the low carbon emission scenario, cooling energy
consumption does not increase as much as it does in A1F1.
However, the increase is still significant. For large offices and
supermarkets, overall building energy usage increases by about
15%.

A2. Scenario A2 is in between A1F1 and B1. Cooling energy
consumption increases for major building types by approximately
20%. Total building energy consumption for both heating and
cooling increases only slightly. However, the change is not
uniform across all climate zones. For certain climate zones such
as the cold zones, the increase in total energy use is higher than
in the others.

4.5. Impact on aggregated building energy usage

The current building stock in California was used as a basis for
the calculation [47]. Forecasting the growth of each type of
building in each climate zone is difficult. The goal of this study is
not to figure out the overall energy consumption changes for each
n building heating and cooling energy patterns in California, Energy



Fig. 4. Heating and cooling degree-days for 53 downscaled CTZ and 11 TM2 locations under different scenarios.

Table 2
Commercial building prototypes.

Hotels Hospitals Offices Retail Schools Other

Large
hotel

Hospital Large
office

Retail Secondary
school

Sit down
restaurant

Small
hotel

Outpatient
health care

Medium
office

Supermarket Primary
school

Fast-food
restaurant

Small
office

Strip mall Warehouse
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type of building but instead to determine the impact of climate
change alone. Therefore, current building stock information was
used as the baseline to separate out other changes such as
demographic changes and new development in the Central
Valley.

From the building stock data, one can determine which building
type has the largest impact on total energy usage. For example,
large office buildings, supermarkets, and retail stores comprise
more than 60% of the total air conditioned building square footage
Please cite this article in press as: Xu P, et al., Impacts of climate change on building heating and cooling energy patterns in California, Energy
(2012), http://dx.doi.org/10.1016/j.energy.2012.05.013



Fig. 5. Comparison of different types of predicted energy consumption in large office buildings and small office buildings (A2 scenario).

P. Xu et al. / Energy xxx (2012) 1e1310
in California. The energy usage trends of these types of buildings
will dominate the total aggregated building energy usage. More
than 70% of these large buildings are located in climate zones 3, 6, 7,
8, and 12. The heating load of large buildings is not as sensitive to
weather changes as that of small buildings. The total energy
consumption will increase between 8% (zone 3) and 20% (zone 8)
Please cite this article in press as: Xu P, et al., Impacts of climate change o
(2012), http://dx.doi.org/10.1016/j.energy.2012.05.013
under the worst carbon scenario. Under the low carbon scenario,
the increase in total energy consumption is between 0 (zone 3, 12)
and 5% (zone 7, 8).

Table 3 shows the aggregated energy consumption changes in
2100 (A2 scenario). The total energy consumption of all buildings in
the current year (2005) has not been calibrated to the actual
n building heating and cooling energy patterns in California, Energy



Table 4
Total building energy consumption in the year 2100 relative to 2005.

Current A1F1 A2 B1

100 108 105 102

Table 3
Aggregated energy consumption changes in year 2100 (A2 scenarios).

A2, Year 2100, Total energy consumption for 16 California climate zones (MMBtu)

Climate zones
1 2 3 4 5 6 7 8

Hospital 0 559,675 2,324,360 901,642 198,543 1,414,551 382,689 2,908,929
Outpatient health care 190,783 181,937 1,201,735 1,028,461 0 2,965,205 647,674 2,137,380
Large office 218,949 2,199,321 31,112,152 8,171,651 566,808 18,931,121 19,336,246 14,721,328
Medium office 351,273 349,070 1,498,193 1,407,547 0 752,059 514,422 1,017,468
Small office 300,138 328,328 1,336,338 1,359,073 0 692,835 487,963 1,197,133
Store 40,632 1,134,605 4,248,190 1,812,191 480,964 3,212,770 2,665,720 4,713,582
Sit down restaurant 0 0 3,265,696 1,515,569 221,761 4,159,757 1,239,714 2,895,601
Super market 0 8,715,829 23,925,528 7,590,198 2,642,898 23,024,292 17,241,294 39,189,314
Strip mall 2628 55,757 157,172 34,187 8061 108,867 110,015 302,008
Small hotel 0 0 1,881,509 1,250,568 0 3,791,664 4,277,527 1,399,138
Large hotel 385,231 447,944 6,107,097 1,820,870 622,442 4,362,783 2,658,222 2,944,296
Primary school 0 3,934,933 4,498,155 4,898,516 139,505 2,798,875 3,285,755 5,546,800
Secondary school 0 1,801,687 1,521,173 715,417 0 1,635,712 1,485,231 1,894,172
Warehouse 0 2,593,511 8,828,063 4,845,720 904,024 7,484,353 3,325,760 16,425,838
Other 0 1,321,533 13,584,974 10,907,368 1,465,911 11,413,146 9,659,701 2,637,402

Climate zones
9 10 11 12 13 14 15 16

Hospital 1,619,077 1,192,947 71,481 2,516,188 1,032,163 57,249 181,333 988,897
Outpatient health care 3,204,894 2,201,303 501,446 1,946,272 273,400 79,180 0 1,355,111
Large office 9,763,068 5,041,510 1,822,063 21,938,249 5,160,703 1,419,293 564,823 1,101,893
Medium office 765,975 1,208,152 2,020,673 1,228,160 2,831,799 227,444 120,897 888,503
Small office 790,429 1,214,143 2,073,122 1,217,374 3,094,786 245,651 141,122 865,707
Store 2,562,334 4,128,105 1,333,179 3,365,729 11,602,527 1,134,161 35,289 152,894
Sit down restaurant 589,159 1,487,585 0 2,293,796 1,716,611 471,108 0 671,755
Super market 14,624,134 16,209,536 4,952,766 39,407,711 19,124,501 8,336,916 3,357,176 0
Strip mall 266,089 343,987 61,738 221,259 213,205 21,747 2240 3590
Small hotel 536,767 5,160,774 0 1,692,363 2,012,375 248,157 1,289,432 134,528
Large hotel 1,447,849 891,288 0 2,459,549 1,183,494 0 546,828 780,939
Primary school 5,344,325 4,469,190 2,445,850 8,166,719 2,172,340 892,206 0 1,153,897
Secondary school 2,687,882 1,889,170 534,529 2,509,160 2,798,374 338,548 719,409 0
Warehouse 8,886,817 14,107,055 1,375,018 11,449,881 2,755,606 1,046,845 1,309,787 285,169
Others 4,086,311 18,568,587 16,825,419 6,332,602 4,946,038 4,933,990 1,238,661 1,186,783
Total 815,608,124
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building consumption in California. The relative term is more
important here because we want to understand the trends in
energy growth [47].

In total, California building energy consumption increases about
8% under the worst carbon scenario and about 2% under the low
carbon scenario if the building stock stays the same (as shown in
Table 4).
5. Conclusions

In all three SRES scenarios used in this study (A1F1, A2 and B1),
consistent and large increases in temperature and extreme heat
drive significant impacts on temperature-sensitive sectors in Cal-
ifornia. The most severe impacts occur under the A1F1 scenario.
With the rising temperature, low-energy intensity cooling systems
may not work equally well in the future. For example, natural
ventilation may not be as applicable to buildings in the bay area as
it is now. Increased cooling demand may require buildings with
traditional HVAC systems to retrofit and expand their cooling
capacity. Another example is direct and indirect evaporative cool-
ing systems in the dry inland area. Because of rising dry bulb and
wet bulb temperatures, the efficiency of evaporative systems may
start to decrease and the systems may no longer be economically
Please cite this article in press as: Xu P, et al., Impacts of climate change o
(2012), http://dx.doi.org/10.1016/j.energy.2012.05.013
feasible. The prediction of energy use change lies on the reliability
of the temperature model prediction. Under each carbon scenarios,
this study predicts the pattern change reasonably accurate, but not
the exact energy consumption change.

The weather changes will not change the energy usage of
different types of buildings in the same way. For example, the
total energy usage of small buildings in northern California will
actually decrease as the weather becomes warmer. The variance
among different types of buildings needs to be considered care-
fully when developing future building codes. Code requirements
for small buildings in northern regions should focus more on how
to reduce cooling loads than heating loads. In the mean time,
fresh air load is perhaps the number one contributor to the
increased cooling loads in southern California for large
commercial buildings. Building codes in these areas may need
more rigorous requirements to address fresh air load than codes
in other areas.

These findings support the conclusion that climate change will
have a larger effect on areas such as the San Francisco Bay Area than
inland regions where space cooling (air conditioning) dominates
power usage. As such, it represents a solid starting point for
assessing the detailed effects of location.

This study represents one approach to understanding how
building energy consumption will change in the future. However,
more fundamental issues, such as how engineering practices
should be changed in response to the weather changes, have not
been addressed. For example, this study shows that total energy
consumption in southern California will increase by 30% over the
next one hundred years under the worst scenario. To keep energy
usage at the same level, engineers in the futurewill need to develop
n building heating and cooling energy patterns in California, Energy
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better building envelopes and HVAC systemswith higher efficiency.
A series of these more efficient buildings could be simulated to
determine at which level the added efficiency will be enough to
compensate for the energy increases from climate change.

This study generated future data files not only for 16 climate
zones but also for virtually every weather station in California. The
difference between these weather stations can sometimes be
significant. For example, as presented in the results section above,
in climate zone 16, the energy consumption of buildings at different
weather stations may change differently. Future climatic data will
be helpful for re-classifying the climate zones in California. Hourly
data for each weather location will be useful for decision makers
making long-term city plans and assessing various adaptation
approaches.
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List of acronyms

AR4 IPCC’s Fourth Assessment Report
CBECS Commercial Building Energy Consumption Survey
CEUS California Commercial End-Use Survey
CDF Cumulative Distribution Function
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