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Optimal demand response strategy of a portfolio of multiple
commercial buildings: Methods and a case study

WEILIN LI, PENG XU∗, and FEIFEI JIAO

School of Mechanical Engineering A434, Tongji University, Cao’an Road 4800, Jiading District, Shanghai 201804, China

Commercial building demand response control is an effective way to reduce summer electrical peak demand in cities. However, a
portfolio of a large number of buildings has different demand response control strategies than individual buildings. In this article,
an optimization method is proposed for scheduling demand response strategies for multiple commercial buildings that can be
recognized as a multi-building portfolio during demand response. Through this optimal scheduling, decision makers can determine
which buildings should participate in the demand response program that controls the strategies that should be used as well as the
corresponding optimum starting/ending time. In this article, the optimal scheduling problem is converted into a time series 0-1
programming problem and is solved by the Branch and Bound method, with three optimization objectives of smooth reduction,
maximum reduction, and maximum economic benefits. As a pilot demand response case test, the measured data for 18 large
commercial buildings (as a multi-building portfolio) in a recent large-scale demand response experiment were used to evaluate
the effectiveness of the optimal scheduling method. The results demonstrated that the optimal scheduling scheme can significantly
improve the demand response effectiveness of a large number of buildings together.

Introduction

Demand response (DR) is an effective method to regulate the
unbalance between supply and demand in the electricity mar-
ket. DR refers to a type of short-term behavior through which
users adjust their inherent pattern of electricity utilization to
respond to the notification of pre-signals, which can decrease
or shift the demand peak load, contribute to the stability of
the power grid, and suppress price increases (U.S. Department
of Energy 2006). The traditional power DR mainly occurs in
the industrial sector. However, after 2010, an increasing num-
ber of commercial and residential buildings have participate
in the DR program (Cappers et al. 2010; Torriti et al. 2010).
In Europe, DR has begun to acquire momentum in both com-
mercial and residential buildings (Torriti et al. 2010), and in
the United States, the DR market has begun to mature gradu-
ally (Cappers et al. 2010). In China, demand side management
(DSM) traditionally focuses on energy savings in the industrial
sector only. However, several DR pilot programs for commer-
cial buildings have been established around the country. In all
of these countries, aggregators who are normally responsible
for the DR control a large number of buildings and play an
important role. Normally, aggregators have up to 10 to 100
buildings participating in a DR event as a group. Therefore,
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how to distribute the total reduction objective to each build-
ing, i.e., how to schedule each building optimally, becomes an
essential problem in multi-building portfolio DR events.

In the area of DR of commercial buildings, many re-
searchers have focused on the optimal control strategy of
individual buildings and the impact of DR on comfort and
economic savings. Morris et al. (1994) researched a building
precooling strategy that would contribute to minimum en-
ergy demand and fees by a simulation method and validated
the method through an experiment. Braun and Lee (2006)
optimized air conditioning system control by adjusting the
set points for indoor air temperatures, which could create an
approximately 30% peak load reduction compared with the
night setup control strategy. Then, Lee and Braun (2008) pro-
posed a method for adjusting the indoor air temperature set
point, which made the air conditioning load reduction meet
the objective during the DR period. Ma et al. (2012) proposed
and verified a model predictive control (MPC) technique to
achieve the objective of energy cost reduction for a building air
conditioning system. Keeney et al. (1997) studied and tested
a control strategy on an office building that maintained the
indoor air temperature in the comfort range and reduced the
air conditioning peak cooling load to 75% by using the build-
ing thermal mass when one of four chillers was lost. Song
et al. (2003) conducted several surveys on large office, com-
mercial, and hospital buildings and found no effect on most
of the occupants and indoor air comfort with a 20∼30 min
interruption of air conditioning. Xue et al. (2015) noted that
conventional DRs are usually subject to significant delay and
proposed a fast chiller power DR control strategy for com-
mercial buildings, which solved the disordered chilled water
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flow distribution and uneven indoor thermal comfort degra-
dation caused by simply shutting down some chillers. They
concluded that no matter which strategy was used, such as in-
door air temperature set point adjustment, shutting down part
of the chillers or halting the chiller periodically, the electricity
loads can be reduced to a certain degree. The effects of these
DR control strategies on a single building can be predicted by
building energy simulation software (Madison 1990; Pan et al.
2004) or by the models for the studies mentioned previously.

In general, conventional DR controls for commercial build-
ings focus on an individual building (Gao and Sun 2015).
However, the response buildings are normally connected by
the same power grid (Pavlak et al. 2015). For the grid or de-
cision makers, it is more important to realize a total demand
reduction to satisfy the current power gap. In the case of af-
fecting the normal operation of a single commercial building,
the amount and duration of electricity load reduction are not
important to the decision makers. The amount of reduction
of the entire portfolio is the key concern of grid managers and
DR aggregators.

Some studies noted that integrating multiple buildings as
a portfolio will improve the multi-building performance. Gao
and Sun (2015) proposed a coordinated DR control that tar-
geted minimizing the building-group-level peak demand based
on a genetic algorithm (GA), and they concluded that the con-
trol improved the building-group-level performance compared
with the conventional one. Farzan et al. (2015) proposed an
operation optimization framework for a multi-building port-
folio that demonstrated that plans under the proposed pric-
ing schemes resulted in a 5–10% peak reduction. Pavlak et al.
(2015) studied the synergistic effect of a multi-building portfo-
lio and DR optimal control and showed that optimizing build-
ings as a portfolio achieved up to seven additional percentage
points of cost savings over individually optimized cases.

The advantage of integrating multiple buildings as a group
is obvious (Reddy et al. 2004). The optimal scheduling be-
comes a problem that needs to be solved when multiple build-
ings participate in DR as a portfolio.

Abundant previous research on the optimal scheduling of
buildings has focused on residential buildings (Du and Lu
2011; Mohsenian-Rad and Leon-Garcia 2010; Yi et al. 2013;
Zhao et al. 2013). These investigators studied the optimal
startup and shutdown times in accordance with the equip-
ment schedules and the DR price mechanism (i.e., time of use
[TOU]). The optimization problem for residential buildings
is similar to the optimal scheduling for a commercial multi-
building portfolio DR event. However, the problem is more
complicated for commercial multi-building portfolios because
for each response, a building could have several control strate-
gies, in addition to determining the beginning and ending time
of each building.

For the optimal scheduling problems of multiple commer-
cial buildings, several researchers performed relevant studies.
Berkeley researchers at the Lawrence Berkeley National Lab-
oratory (Department of Energy 2004) developed and tested a
multi-building internet DR control system that used the price
signal to influence the behavior of different buildings. Xing
(2004) studied the control strategy of how to combine the pre-
set through a smart enumeration and GA. Oh et al. (2014)

developed a power scheduling algorithm with the minimum
objective of reducing multi-building portfolio electricity fees,
and they summarized the problem as a convex optimization
that was solved by the Lagrangian relaxation method. Pavlak
et al. (2015) optimized a portfolio based on MPC for a single
building and considered optimizing a portfolio as a general-
ization of the single building problem. Richard et al. (2009)
proposed a multi-building coordinator that can control the
energy use of individual buildings. An energy company can
use the coordinator to control these buildings to accomplish
DR.

Therefore, optimal scheduling is an important issue for
the DR of a multi-building portfolio, especially for decision
makers, such as aggregators, and the curtailment of service
providers (CSPs). This article aims to propose a new optimal
scheduling method for a commercial multi-building portfolio.
The method can be used from the perspective of multi-building
portfolio decision makers to determine which buildings should
respond, as well as their corresponding control strategies and
responding time when multiple buildings participate in DR as
a portfolio. A detailed description of current problems arising
from the multi-building portfolio DR process is presented in
Section 2, and the mathematical solution is provided in Section
3. A case study follows in Section 4 that evaluates a portfolio
DR strategy for 18 commercial buildings in Shanghai. The
conclusion and future work are described in Section 5.

Multi-building DR framework

A multi-building portfolio is defined as a cluster of several
buildings. Not all buildings necessarily participate in a DR
event, and each building has a number of DR control schemes
to select. A DR scheme includes a chilling plant shutting down
or cycling, global temperature reset, and so on. DR aggrega-
tors or utility decision makers determine which building to
use to achieve the desired response, control strategies, and
starting–ending time according to the overall portfolio DR
objective.

The optimal scheduling framework for multi-buildings in
DR is shown in Figure 1. One multi-building portfolio includes
N buildings (capital letter denotes building). Taking building
A as an example, nA (nA ≥ 1, lowercase letters) is the number
of DR strategies for each building. Each control strategy (use
“ST” for short) has its corresponding load reduction curves.
The problem studied can be described as how to choose these
curves and optimize them to match the DR event objective
(corresponding to the task of “optimal scheduling” solver in
Figure 1).

During a DR event, the electricity grid operators determine
the size of the gap between supply and demand for the grid
and when the gap appears and ends. Two indices (Xu and
Haves 2006) can be proposed to evaluate the effectiveness of a
DR: the cumulative load reduction (�Q [kWh]) and the load
reduction (�P [kW]). The DR reduction is calculated by a
comparison to a given baseline. The methods to determine
the baseline have been discussed in many literature studies
(Coughlin et al. 2008). Because the article focuses on an op-
timal scheduling method that is independent of the baseline
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Fig. 1. Optimal scheduling framework for multi-buildings in DR.

method, a similar day of the DR days is chosen as the baseline
day. The date of the similar day should be close to the DR day
to eliminate the influence of building activity, the type (week-
day or weekend) should be the same as the DR day and the
ambient temperature should be similar to the temperature of
the DR day. In this way, the baseline can easily be determined
by comparing these parameters between the 2 days.

The optimal scheduling is then converted into an integer
programming problem in this article. In a DR event, the sta-
tus of a given strategy should be either on or off, which can
be described as 0-1 programming. The Branch and Bound
method, which can be accomplished by the “bintprog” func-
tion in the MATLAB toolbox, is used to solve the problem.
The time when a building DR status transfers from 0 to 1 is
the response starting time.

The DR objectives are varied in depth (�P kW) and width
(�Q kWh). A short-sharp reduction strategy is correct when
the gap is large but the duration is short. Long–smooth re-
duction is required when the gap is small but the duration is
long. Different control strategies for both long–smooth and
short–sharp reduction are required by the power grid on dif-
ferent occasions.

The optimal scheduling strategy for a multi-building port-
folio presented in this article can run optimal scheduling with
three distinct objectives:

Obj. 1: Smooth reduction. Keep the integral reduction to
meet the required quantity and, at the same time, keep
the reduction smooth during the response period.

Obj. 2: Maximum reduction. Maximize the total reduction
during the response period.

Obj. 3: Maximum economic benefit. Maximize the economic
interest of electric charge savings or subsidy in the re-
sponse event.

The mathematical description

Programming and branch and bound

As stated in section 2, the optimal scheduling problem is solved
as 0-1 programming. The typical description of 0-1 program-
ming is formed as follows.

min f (x) (1)

Subject to:

a · x ≤ bor − ax ≥ −b (2)

aeq · x = beq (3)

The value of x is limited to 0 or 1 in the above equations.
The Branch and Bound method is a common method that

is used to solve the integer programming problem. A search
tree is formed by adding constraints to the problem, called
branching. In each step of branching, the noninteger vari-
able xj is branched into two branches by constraining xj
= 0 and xj = 1. The entire process is described as a bi-
nary tree network in Figure 2. In each node, the algorithm
solves a slack problem of linear programming, the result
of which determines whether to branch or shift to another
node.



658 Science and Technology for the Built Environment

Fig. 2. Tree network with three variables.

The solution of the LP slack problem is always regarded
as the lower limit of binary integer programming. Once the
problem is a binary vector, the solution is the upper limit.
With the increase in search tree nodes, the upper and lower
limits of the objective function are updated during the bound-
ing process. The bound on the objective value serves as the
threshold to cut off unnecessary branches. Detailed introduc-
tion of the Brand and Bound method can be can be found in
Introduction to Mathematical Programming (Walker, 1999).

The mathematical description of Obj. 1: Smooth reduction

As defined in Section 2, this objective requires the multi-
building portfolio to keep the reduction smooth during the re-
sponse period. To simplify the optimal problem, the response
duration is divided into a number of time steps. The objective
is to limit the reduction during every time step within a certain
range. The scheduling problem for each time step belongs in
0-1 programming. Time steps are dependent upon each other,
in that the status of each time step is influenced by the status
of the previous time step and influences the status of the next
time step. For example, once the response control strategy is
determined, the corresponding building must retain this strat-
egy until the implementation of the strategy is finished. In all
of the above cases, including no more than one strategy could
be chosen for one building, which constitutes the constraints
of the optimal process.

First, it is assumed that a multi-building portfolio is com-
posed of N buildings, with nN types of DR control strategies
corresponding to each building. The response time is t, time
step is �t, and total number of time steps is mt.

mt = t
�t

(4)

The objective (cumulative and mean) reduction of each time
step is �Qm,goal kWh or �Pm,goalkW, while the actual (cu-
mulative and mean) reduction is �Qm,real and �Pm,real kW,
respectively (m = 1,2,. . ., mt). No matter which �Qm,goal kWh
or �Pm,goalkW is used for evaluation, the optimal scheduling
method has the same form. Therefore, the cumulative reduc-
tion (�Qm) of each time step is determined as the variable
studied hereafter. Even if the objective variable is the average
load�Pm, substitute �Qm with �Pm.

During the optimization process, the certain status of the
previous time step can possibly constrain the status of the

next time step, while the first time step constraint is slightly
different from later ones.

Assuming the load curve nN of the building N has a reduc-
tion of �Qm,nN kWh during time step m, the multi-building
portfolio reduction is described as:

Qm,total =
n A∑

i A=1

xm,i A · �Qm,i A +
nB∑

iB=1

xm,iB · �Qm,iB + · · ·

+
nN∑

iN=1

xm,iN · �Qm,iN (5)

wherexm,i A, xm,iB , . . . , xm,iN are the strategy curve coefficients,
the value of which is limited to 0 and 1. The value of 0 denotes
that the corresponding strategy has not been chosen, and vice
versa. Because the reduction is not required to be less than
a given percentage of the goal reduction in an actual DR
event (for example, ≥90% Qm,goal ) and the surplus part would
not obtain the allowance (for example, ≤110% Qm,goal ), the
decision makers intend to make the reduction exceed the lower
limit and approach the goal.

The optimization problem of the first time step in Obj. 1

Combining Equations 2 and 3, the optimization problem for
the first time step can be converted into a 0-1 programming
problem.

min f1 (x) =
n A∑

i A=1

x1,i A · �Q1,i A +
nB∑

iB=1

x1,iB · �Q1,iB + · · ·

+
nN∑

iN=1

x1,iN · �Q1,iN (6)

Subject to:

⎛
⎝

n A∑
i A=1

x1,i A · �Q1,i A +
nB∑

iB=1

x1,iB · �Q1,iB + · · ·

+
nN∑

iN=1

x1,iN · �Q1,iN

⎞
⎠ ≥ 90% · �Q1,goal (7)

⎛
⎝

n A∑
i A=1

x1,i A · �Q1,i A +
nB∑

iB=1

x1,iB · �Q1,iB + · · ·

+
nN∑

iN=1

x1,iN · �Q1,iN

⎞
⎠ ≤ 110% · �Q1,goal (8)

n A∑
i A=1

x1,i A,

nB∑
iB=1

x1,iB , . . . , and
nN∑

iN=1

x1,iN ≤ 1 (9)

The constraint Equations 7, 8, and 9 denote that the total
reduction of the multi-building portfolio must be no less than
90% but must be no more than 110% of the goal reduction
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and that no more than one control strategy can be chosen for
one building.

The optimization problem of the mth (m > 1) time step in
Obj. 1

When scheduling continues to the next time step, the previous
time step status is a constraint for the next time step. Here,
the buildings involved in the response must keep the response
control strategy until the end.

Ifxm−1,iN = 1, xm,iN 1 (10)

Assuming that the DR ends whenm = m0,iN , the reduction
Qm,,iN = 0, and the value of xm,iN = 0or1 have no impact on
the optimization results. Therefore, the optimal scheduling
objectives and constraints between the second and last time
step can be expressed as follows:

min fm (x) =
n A∑

i A=1

xm,i A · �Qm,i A +
nB∑

iB=1

xm,iB · �Qm,iB + · · ·

+
nN∑

iN=1

xm,iN · �Qm,iN (11)

Subject to:

⎛
⎝

n A∑
i A=1

xm,i A · �Qm,i A +
nB∑

iB=1

xm,iB · �Qm,iB + · · ·

+
nN∑

iN=1

xm,iN · �Qm,iN

⎞
⎠ ≥ 90% · �Qm,goal (12)

⎛
⎝

n A∑
i A=1

xm,i A · �Qm,i A +
nB∑

iB=1

xm,iB · �Qm,iB + · · ·

+
nN∑

iN=1

xm,iN · �Qm,iN

⎞
⎠ ≤ 110% · �Qm,goal (13)

n A∑
i A=1

xm,i A,

nB∑
iB=1

xm,iB , . . . , and
nN∑

iN=1

xm,iN ≤ 1 (14)

x
′
m−1 · xm = length (xm−1 (xm−1 = 1)) (15)

Where

xm = [
xm,1A, xm,2A, . . . , xm,n A, xm,1B , xm,2B , . . . , xm,nB ,

. . . xm,1N , xm,2N , . . . , xm,nN

]
(16)

Constraints for Equations 12, 13, and 14 have the same
form as Equations 7, 8, and 9, denoting that the total reduction
of the multi-building portfolio must be no less than 90% but
should be no more than 110% of the goal reduction and that no
more than one control strategy can be chosen for one building.

Constraint in Equation 15 denoted that the control strategy
involved in the previous time step must be implemented in this
step. Analysis follows:

The product of the two parameters equals 1 only if both
xm−1 and xm are equal 1 at the same time step, and the
length (xm−1 (xm−1 = 1)) isindicated for the number of value
1 in xm−1. Therefore, Equation 15 constrains the number with
a value of 1 in the product results between xm−1 and xm to be
equal to that in xm−1, which implies that if the variable is 1
in the previous time step, it must be 1 in this time step. Con-
versely, if the previous time step value is 0, the value of this
time step can be 0 or 1. These constraints have the limit that
if the control strategy is conducted in a previous time step, it
must be conducted in this time step, while if the control strat-
egy is not conducted in last time step, it could be conducted
or not at this time step.

Equations 6–9 and Equations 11–15 express the mathemat-
ical formulation of Obj. 1. Each problem at every time step is a
0-1 programming problem that can be solved with the Branch
and Bound method.

The mathematical description of Obj. 2: Maximum reduction

The maximum reduction objective can also be reached by
0-1 programming, the objective of which is the cumulative
reduction Qtotal kWh in response duration. Assuming that the
strategy nN for building N contributes to cumulative reduction
QnN kWh, then the total reduction of the whole multi-building
portfolio is:

�Qtotal =
n A∑

i A=1

xi A · �Qi A +
nB∑

iB=1

xiB · �QiB + · · ·

+
nN∑

iN=1

xiN · �QiN (17)

In this total reduction, xm,i A, xm,iB , . . . , xm,iN are the strat-
egy curve coefficients, the value of which is limited to 0 and 1.
The value 0 denotes that the corresponding strategy has not
been chosen, and vice versa.

�Qi A,�QiB , . . . ,�QiN are the total reductions for the cor-
responding control strategy conducted during the response

duration, that is, �QiN =
mt∑

m=1
�Qm,iN . The optimization ob-

jective can be expressed as:

max �Qtotal =
n A∑

i A=1

xi A · �Qi A +
nB∑

iB=1

xiB · �QiB + · · ·

+
nN∑

iN=1

xiN · �QiN (18)
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Transform Equation 18 as 0-1 programming to obtain the
following equations:

min f (x) = −�Qtotal = −
⎛
⎝

n A∑
i A=1

xi A · �Qi A +
nB∑

iB=1

xiB · �QiB

+ · · · +
nN∑

iN=1

xiN · �QiN

⎞
⎠ (19)

Subject to:

n A∑
i A=1

xi A,

nB∑
iB=1

xiB , . . . , and
nN∑

iN=1

xiN ≤ 1 (20)

Equations 19 and 20 are the mathematical descriptions of
Obj. 2. Equation 20 limits each building to choose no more
than one control strategy.

The mathematical description of Obj. 3: Maximum economic
benefits

In DR events, aggregators and individual building owners are
concerned about the economic Benefits more than grid opera-
tors. Therefore, in some DR events, decision makers consider
not only the reduction objective but also the economic index.
Thus, the price mechanism or subsidy policy would directly
influence the scheduling results.

According to the method of definition and category from
the U.S. Department of Energy (2006), DR can be categorized
into two classes: one class is the incentive-based program (IBP)
and the other class is the price-based program (PBP). This
article considers PBP as an example to analyze the optimal
scheduling for Obj. 3.

Assume the response duration, time step and total number
of time steps are t, �t, and mt, respectively, as referred to in
Equation 4. The corresponding subsidy is Am (m = 1,2,. . ..
mt) for each time step, then the total multi-building portfolio
subsidy can be expressed as:

Am,total = �Qm,total · Am (21)

Obj. 3 can be described as:

max Atotal =
mt∑

m=1

⎡
⎣

⎛
⎝

n A∑
i A=1

xm,i A · �Qm,i A +
nB∑

iB=1

xm,iB · �Qm,iB

+ · · · +
nN∑

iN=1

xm,iN · �Qm,iN =
⎞
⎠ · Am

⎤
⎦ (22)

Transform Obj. 3 into 0-1 programming as:

min f (x) = −Atotal (23)

Table 1. Response time for each response building before
optimization.

Building
no. A B C D E F G H I

Staring
time

13:00 13:00 13:00 13:00 13:00 13:00 13:00 13:00 13:00

Building
no.

J K L M N O P Q R

Staring
time

13:00 14:00 14:00 14:00 14:15 14:15 14:00 14:00 14:00

Subject to:

n A∑
i A=1

xi A,

nB∑
iB=1

xiB , . . . , and
nN∑

iN=1

xiN ≤ 1 (24)

Equations 23 and 24 are the mathematical description of
Obj. 3. Equation 24 limits each building to choose no more
than one control strategy.

Equation 22 can be written as the following when the sub-
sidy is constant with time.

max Atotal =
⎛
⎝

n A∑
i A=1

xi A · �Qi A +
nB∑

iB=1

xiB · �QiB

+ · · · +
nN∑

iN=1

xiN · �QiN

⎞
⎠ · Am

= Am · �Qtotal (25)

Transform Equation 25 into the 0-1 programming form of
Equation 23. Obviously, Atotal reaches the maximum when
obtaining the maximum reduction�Qtotal , which equals Obj.
2. Therefore, the Obj. 2 and Obj. 3 share the same solution
when the subsidy is a constant value.

Case study

Simple scheduling strategy

A pilot project was conducted during the summer in Shanghai
in 2014. A total of 29 buildings were involved in this exper-
iment. In this article, 18 buildings were selected as a multi-
building portfolio, and all of them were office buildings, the
basic information for which is listed in Table 1. The DR time
was for 13:00–16:00. In the test in 2014, the control strat-
egy and response starting time for each building was deter-
mined by each building operator. There is no overall portfolio
scheduling.

As mentioned previously, the load curve of the previous
DR day was selected as the baseline to calculate the reduction.
The time step was set as 15 min, and the evaluating index was
the whole building energy consumption accumulated during
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Fig. 3. Daily energy consumption curve of baseline and demand
response day.

every 15 min, which can be acquired directly from the interval
meters for each building. The total energy reduction of the
entire multi-building portfolio can be seen in Figure 3. In the
2 hours before response time, the actual energy consumption
was markedly increased because some buildings used precool-
ing strategies. The energy consumption curve matches well
with the baseline, except for the precooling and response peri-
ods, validating the rationality of the baseline curve. The load
reduction during the response period in the afternoon was
obvious.

However, in this experiment, a large fluctuation exists dur-
ing the response period because of the lack of an overall
scheduling strategy. The load reduction maximized at 14:00,
but after 15:00, the load bounced back. The total reduction
of the whole multi-building portfolio can also be increased

Fig. 4. Structure of DRE.

because some buildings did not participate in the DR in the
beginning (shown in Table 1).

The effects of various DR controls in each individual build-
ing were analyzed with the experimental results. The strategy
used in this experiment is labeled as Strategy 1, and the mea-
sured data are the corresponding reduction result. The DR
effects of the other two strategies (Strategy 2 and Strategy
3) were estimated through a software DR estimator (DRE),
which is a tool that is used to quickly estimate the performance
of DR strategies for commercial building and is based on En-
ergyPlus. The basic structure of DRE, date transmission and
the relationship between each part are shown in Figure 4 (Li
and Xu 2016).

Table 2 shows that the most popular strategies are chiller
cycling and an indoor air temperature reset. The indoor air
temperature reset consisted of setting the temperature to the
lower comfort limit at 22◦C before DR and then setting the
temperature back to the upper limit of comfort at 28◦C dur-
ing the DR. Therefore, “turning off all chillers” is set as
Strategy 2 and “precooling with temperature reset” is set as
Strategy 3. The cumulative load reductions for each time step
for the 3 strategies are shown in Figure 5.

Obj. 1: Smooth reduction

In the previous discussion, the goal of the portfolio decision
makers is to meet the overall DR objective. In the experiment,
the average cumulative reduction in one time step is 708 kWh,
so the objective of the smooth reduction is set at 708 kWh per
time step from 13:00–16:00.

From Figure 3, the energy consumption of the whole multi-
building portfolio is stable from 13:00–16:00 on one baseline
day, which indicated that the independent variable is almost
the same, thus determining that the load reduction curves are
not affected by actual response starting time. Three corre-
sponding curves are listed in Figure 5. The control strategies
and response starting time are determined with this optimal
scheduling method by decision makers.

The objective can be described as
The 1st time step refers to Eq. (6) ∼ (9), and the time steps

from 2 to 12 refer to Eq. (11) ∼ (16). The parameters of
these equations have the following values: N = R, n A = nB =
. . . = nR = 3, Q1,goal = 708kWh, and m = 12.By the Brand
and Bound method, the response buildings and corresponding
starting times are listed in Table 3.

After optimal scheduling, the entire load reduction, simple
scheduling load reduction and objective load reduction are
compared in Figure 6. It can be concluded that the optimal
scheduling method accomplishes the objective well because
the optimal reduction is much closer to the objective with
±10% bias.

Obj. 2: Maximum reduction

The second optimization objective that we investigated was
maximum cumulative reduction during the response pe-
riod. The selection of the optimization strategy is depen-
dent on the financial incentive of the decision maker and the
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Table 2. Basic information for the objective multi-building portfolio.

No. Building area AC system profile Control strategy

A 33,000 Fan coil with four air-cooled heat pumps of
678 kW

Precooling, then one air-cooling heat pump
turned off

B 95,000 Fan coil with four chillers of 337 kW One chiller turnoff
C 35,000 Fan coil with eight chillers of 337 kW Four chiller turnoff
D 39,000 Fan coil with three chillers (one of 210 kW and

two of 175 kW)
One chiller of 210 kW turnoff

E 190,000 Fan coil with eight chillers (five of 681 kW and
three of 322 kW)

Precooling with three chillers of 681 kW
turnoff

F 50,000 Two VRV of 260 kW Adjust indoor air temperature to upper limit
(28◦C)

G 32,000 Fan coil with four chillers of 742 kW One chiller turnoff
H 20,000 All-air system with two chillers of 170 kW Adjust indoor air temperature to upper limit

(28◦C)
I 58,000 All-air system with two air-cooled heat pumps

of 280 kW
One air-cooled heat pump turnoff

J 82,000 All-air system with four chillers of 740 kW Two chillers turnoff
K 50,000 All-air system with three air-cooled heat

pumps of 200 kW
Precooling, then two air-cooled heat pumps

turnoff
L 85,000 Fan coil with eight air-cooled heat pumps of

217 kW
Precooling, then three air-cooled heat pumps

turnoff
M 31,0000 All-air system with three air-cooled heat

pumps of 100 kW
Two air-cooled heat pumps turnoff

N 50,000 Fan Coil with 3 Chillers (1 of 228 kW and 2 of
337 kW)

One chiller turnoff

O 18,000 Fan coil with two chillers of 170 kW One chiller turnoff
P 27,000 Fan coil with four chillers of 187 kW One chiller turnoff
Q 16,000 Fan coil with six air-cooled heat pumps of 111

kW
Three air-cooled heat pumps turnoff

R 30,000 Fan coil with two chillers of 238 kW Precooling with one chiller turnoff

situation on the grid. If the response duration is short, build-
ings are required to respond quickly and achieve a large re-
duction as quickly as possible. In this case study, the objective
reduction is defined as the maximum cumulative reduction
during 13:00–15:00. The optimal equations are same as Equa-
tion 19∼20, where N = R and n A = nB = . . . = nR = 3.

DR strategies for buildings are determined by the Branch
and Bound method. With the assumption that each DR
building starts responding at 13:00, the results indicate that
the objective reduction reaches 9368.2 kWh with the opti-
mal scheduling of Strategy 1 employed on buildings D, E, I,
N, O, and Q and Strategy 2 on the remaining buildings. By
contrast, the reduction under the simple response scheduling
strategy is 6123.3 kWh. Therefore, it can be concluded that
the optimal scheduling method achieves the objective and, in
the meantime, increases the flexibility in scheduling DR for
buildings.

Obj. 3: Maximum economic benefits

The decision makers are sometimes more concerned about
the economic benefits than the shape and depth of the load
reduction. In this case, the decision makers need to determine
the optimal scheduling strategy considering the subsidy policy.
In this case study, the total economic benefits were considered

for 18 buildings and the optimization objective was set as the
maximum economic benefits. For this situation, the optimal
equations are the same as in Equations 22∼24, where N = R,

n A = nB = . . . = nR = 3, and mt = 8.
In this experiment, the incentive policy is 2RMB/kWh in

Shanghai, i.e., Am ≡ 2RMB/kWh and the optimization equa-
tion is written as Equation 25.

Equation 40 has a common solution, where Strategy 1
is used for buildings D, E, I, N, O, and Q and Strategy 2
is used for the others with Equations 36 and 37 because Am is
constant. The total economic benefits increase by 52%, when
the scheduling strategy changes from no optimization to a
reduction of 6123.3 kWh for the maximum benefit strategy
(reduction of 9368.2 kWh).

Conclusions and further work

This research discusses an optimal scheduling scheme for a
portfolio of buildings during DR events. In the present re-
search, optimal scheduling is converted into a time series
0-1 programming problem and solved by the Branch and
Bound method. Three commonly used optimization objectives
are investigated: smooth reduction, maximum reduction, and
maximum economic benefit. Measured data for 18 commer-
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Fig. 5. Load reduction curve from building A to R.
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Table 3. Response time for each response building after optimization.

Building
no. A B C D E F G H I

Strategy no. 3 1 1 3 2 3 3 1 1
Staring

time
13:00 13:00 14:30 14:30 13:00 13:00 14:15 13:00 14:45

Building no. J K L M N O P Q R
Strategy no. 3 3 1 1 1 3 3 2 1
Staring

time
13:00 13:00 13:00 14:30 13:30 13:45 13:00 14:30 14:00

cial buildings during a large scale DR test in Shanghai are used
as the baseline for a case study to test the optimization scheme.
The control strategy implemented in the actual DR experiment
is defined as Strategy 1. The performance of Strategy 2 (all
chillers off) and Strategy 3 (precooling and temperature reset)
is based on data obtained by simulation. Optimal scheduling
is used to determine which buildings should use which strat-
egy and the starting and ending time of each strategy. The
following conclusions were drawn from this experiment and
the optimization study.

• The three optimization objectives of smooth reduction,
maximum reduction, and maximum economic benefit are
all achievable. As long as a goal is set, the optimization
scheme can meet the goal.

• Under the objective of smooth reduction, the multi-
building profile keeps the electricity load within a ±10%
bias of the objective value.

• The goal of the maximum reduction and maximum eco-
nomic benefits can be reached with this optimal scheduling
method. By simulated calculation, the optimal cumulative
reduction increases by 3.2 MWh compared to no overall
optimization.

• Decision makers can use the results of the optimal schedul-
ing to determine which buildings should participate, which
corresponding strategies to use, and the DR starting and
end time.

Fig. 6. Comparison between the optimal and simple scheduling
strategy.

This study is a first step in optimal scheduling for multiple
buildings during a DR event. In the future, the effectiveness of
the scheme should be verified further. In addition, only three
objectives are proposed for the use of the 0-1 programming
to solve the optimal scheduling problem in a multi-building
portfolio. Grid operators and aggregators sometimes have a
specific load curve to match. In that case, the mathematical
description must be further investigated beyond 0-1 program-
ming.
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