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A B S T R A C T

A building heating, ventilation, and air-conditioning (HVAC) system consumes large amounts of energy. Energy
consumption prediction is an effective strategy for operation optimization and energy management in a building.
The energy consumption of an HVAC system in a building is influenced by many factors, such as weather
conditions, building usage, and thermal performance. However, it is impractical to consider all factors for
predicting energy consumption. In this paper, a simplified data-driven model is proposed for predicting the
energy consumption of an HVAC system in a building. A novel feature transformation method is introduced to
select the most relevant features. Three input features (i.e., degree-day, day type, and month type) are finally
adopted in this model. Compared to models developed in previous studies, this simplified model largely reduces
the computation time and is easier to operate. The cross-validated root mean square error of this method for
cooling energy prediction is less than 20%, indicating its suitability for use in engineering applications.

1. Introduction

The building industry is one of the largest primary energy con-
sumers worldwide, accounting for over 30% of global energy usage
(Ürge-Vorsatz, Cabeza, Serrano, Barreneche, & Petrichenko, 2015). In
China, heating, ventilation, and air-conditioning (HVAC) systems con-
sume over 40% of the energy used in all building service systems. Re-
lated research has stated that most HVAC systems have different levels
of energy-saving potential, ranging from 15% to 30% (Pérez-Lombard,
Ortiz, & Pout, 2008). Building energy efficiency is of great significance
to global sustainability. Thus, techniques such as fault diagnosis (Li,
Bowers, & Schnier, 2010) and optimized system control, which help
improve system efficiency, are gaining attention. In addition, energy
quota management, which refers to setting the amount of energy that
can be used over a certain period of time (e.g., day or week), is also an
efficient approach to reduce consumption. It has now been adopted by
large commercial groups, to improve property management levels.
Reliable energy prediction is essential for all of the energy-efficient
methods mentioned above. The energy predicted acts as baseline a
building would consume under normal condition.

There are two main approaches for energy prediction: physical
modeling and data-driven modeling. Physical models rely on explicit
thermodynamic rules whose formulas and calculating mechanisms are
easy to understand. Thus, physical-based models are also called white-
box models. Widely used simulation tools, including EnergyPlus and

eQuest, have been developed based on physical models. However, de-
tailed building information is necessary for building physical models. In
contrast, data-driven models (also known as black-box models) do not
require such detailed data of the building (Amasyali & El-Gohary,
2018). In recent years, the data-driven approach has been gaining at-
tention because of its high efficiency and accuracy. One of the biggest
advantages of the data-driven model is that there is no need to build
complex physical models. The relationships between input and output
variables are captured automatically through advanced data analytics
such as machine learning and artificial intelligence. In this sense, the
data-driven model is more efficient and flexible. A data-driven model
comprises three major parts: input features, training algorithms, and
output features. The input features for a data-driven model should in-
corporate all major driving factors of the output variables. Insufficient
input features will decrease model precision, whereas too many re-
dundant input variables may cause model overfitting and increase ex-
ecution time (Zhao & Magoulès, 2012). Thus, model input selection is
vital for building an efficient data-driven model. As building load is
closely related outdoor weather condition and usage, variables such as
dry-bulb temperature, wet-bulb temperature, relative humidity, wind
speed, solar radiation and occupancy schedule were typically selected
as model inputs (Benedetti, Cesarotti, Introna, & Serranti, 2016; Yang,
Rivard, & Zmeureanu, 2005) Input features of previous studies are
summarized in Table 1. Besides from directly using measured data as
input variables, several studies transformed the raw data into a more
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compact format as model input. This process is called feature trans-
formation (Bourdeau, Zhai, Nefzaoui, Guo, & Chatellier, 2019). The
feature transformation methods can be classified into two types, i.e.,
engineering and statistical. Engineering feature extraction is based on
engineering experience. Grolinger, L’Heureux, Capretz, and Seewald
(2016) used the data at previous time step as model input considering
building thermal capacity. Cui, Wu, Hu, Weir, and Li, (2016) used both
specification data and lagged data as model input features and pointed
out that the combined features gave superior performance over models
which built solely on lagged data. Statistical method uses statistical
methods to reduce feature dimension. Summarizing statistical in-
dicators such as maximum, minimum or medium values of the raw data
are often used as model input features (Lemke & Gabrys, 2010). This
method is easy to interpret and operate. Another commonly used sta-
tistical method is principle component analysis (PCA). PCA uses an
orthogonal transformation to convert a set potentially correlated vari-
ables into a set of unrelated variables called principal components. The
principle components have no physical mean but contain major in-
formation of the original data (Jolliffe, 2002). PCA is applicable for
circumstances when feature space is large and it is hard to select
dominant features manually. Li et al. (2018) applied PCA for relevant
input feature selection and then used a combined model for building
electrical energy consumption prediction. Nilashi et al. (2017) im-
plemented PCA with an adaptive network-based fuzzy inference system
for residential building load prediction.

A machine learning algorithm is the core of a prediction model.
Algorithms such as multi-variable linear regression (MLR), support
vector machine (SVM), artificial neural network (ANN), decision tree
(DT), random forest (RF) and extreme gradient boosting (XGBoost) are
commonly used as training algorithms. The first four of aforementioned
algorithms belongs to single prediction algorithms. The last two are
ensemble algorithms. Several studies suggest that ensemble algorithms
are more effective than single prediction algorithms (Foucquier, Robert,
Suard, Stéphan, & Jay, 2013; Martínez-álvarez, Troncoso, Asencio-
Cortés, & Riquelme, 2015). Table 1 summarizes machine learning al-
gorithms used in previous studies.

In previous studies, a number of meteorological parameters were
adopted as model input features. However, parameters such as relative
humidity, solar radiation, and wind speed are often excluded from
weather forecast reports. Thus, it is impractical to use such complicated
models for energy prediction. This paper proposes a simplified predic-
tion model that can be operated easily and yield accurate results.

Weather data is transformed into degree-day as model input features.
Different from traditional degree-day methods based on fixed balance
point, the degree-day used in this study is based on energy profile
pattern of a specific building. Compared to the structure of previous
models, the structure of this model is simpler and more concise. This
paper adopted four machine learning algorithms, i.e., MLR, SVM, and
ANN owing to their wide application and high performance. The pre-
diction accuracy of four algorithms is discussed in Section 4. The output
variable is the daily electricity consumption (kWh) of an HVAC system.
This approach is applied to predict the energy consumption of an HVAC
system of a large commercial building. The prediction performance
indicates that this approach is suitable for use in engineering applica-
tions.

2. Research methodology

2.1. Selection of input features

Building energy is mainly influenced by five factors: (1) the climate
and location of the building, (2) the desired temperature and humidity,
(3) the number of occupants and period of occupancy, (4) the thermal
performance of the structure itself, and (5) the building use (Zhang,
Cao, & Romagnoli, 2018). For this research, energy prediction is con-
ducted on a specific building and no retrofitting work is carried out
during the analysis period. Thus, factors 1 and 4 are excluded from this
prediction model. Factors 2, 3, and 5 are the driving forces of the en-
ergy variance in a specific building. In previous studies, meteorological
parameters such as dry-bulb temperature, relative humidity ratio, wind
speed, and solar radiation were used as prediction indicators. However,
most of these parameters are difficult to obtain. To reduce the com-
putation burden and avoid overfitting, we will not take all meteor-
ological parameters into consideration. A correlation analysis between
HVAC energy and weather parameters is performed first, to determine
the most prominent parameters. In this research, we adopt the Pearson
correlation coefficient as the indicator to represent how closely two
variables are related. For a given pair of random variables ( YX, ), the
Pearson correlation coefficient can be easily calculated using Eqs. (1–4).
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Table 1
Summary of data-driven models for building energy prediction.

Reference Input features Output features Training Algorithm

Li, Ding, Lǔ, Xu, and Li (2010) Date, daily average temperature, daily lowest temperature,
daily highest temperature

Hourly cooling
energy

Support vector machine (SVM), Principal component
analysis SVM (PCA-SVM), Kernel PCA-SVM (KPCA-
SVM)

Li, Meng, Cai, Yoshino, and
Mochida (2009)

Dry-bulb temperature, relative humidity, solar radiation Hourly cooling
energy

SVM, Artificial neural network (ANN)

Li, Lǔ, Ding, Xu, and Li (2009) Dry-bulb temperature, relative humidity, solar radiation Hourly cooling
energy

Least squares SVM (LS-SVM), ANN

Yun, Luck, Mago, and Cho
(2012)

Historical cooling energy Hourly cooling/
heating energy

Average regression (AR)

Ahmad and Chen (2019) Wet bulb temperature, dew point temperature, pressure,
relative humidity

Hourly cooling and
heating energy

nonlinear autoregressive model(NARM), linear model
using stepwise regression (LMSR), random forest(RF)

Chou and Bui (2014) Relative compactness, surface area, wall area, roof area,
overall height, orientation, glazing area, glazing area
distribution

Hourly cooling/
heating energy

ANN, SVM, Decision tree (DT), etc.

Wang, Lu, and Li (2019) Dry bulb temperature, dew point temperature, relative
humidity, wind speed, solar radiation, time of day

Hourly cooling and
heating energy

extreme gradient boosting (XGBoost), RF, ANN)
gradient boosting decision tree (GBDT), SVR

Safa, Safa, Allen, Shahi, and
Haas (2017)

Average monthly temperature, full-time employee Monthly cooling and
heating energy

MLR, ANN

Penya, Borges, and Fernández
(2011)

Day of week, type of day, season, wind direction, humidity,
perception, sigma direction, sigma speed, air temperature,
average speed

Hourly cooling and
heating energy

AR, ANN, SVM, Bayesian network

Liu and Chen (2013) Number of people in building, solar radiation Lighting energy SVM, ANN
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where R is the Pearson correlation coefficient, σxy is the covariance of X
and Y , σx is the standard deviation of X, σy is the standard deviation of
Y , x̄ is the mean of X, ȳ is the mean ofY , and xi and yi are the individual
sample points indexed with i.

The Pearson correlation coefficients between the electricity con-
sumption of an HVAC system and four meteorological parameters are
calculated, and listed in Table 2. Data of the electricity consumed by an
HVAC system and the four meteorological parameters used here are the
same as those in the case study discussed in Section 3. A positive value
indicates that the two variables are positively correlated, and vice
versa. A higher value indicates a stronger relationship. It is evident that
dry-bulb temperature is the factor that is most relevant to the energy
variance of an HVAC system, in both summer and winter. The absolute
value of the correlation coefficients between the other three parameters
and the energy consumption of an HVAC system is less than 0.5, so they
are excluded from the prediction model.

Another factor that influences energy consumption is the building
internal load, which is largely determined by the building usage pattern
of density and occupancy schedules, lighting, etc. However, it is diffi-
cult to obtain data such as occupancy schedules. For commercial
buildings such as office and retail buildings, the usage pattern is reg-
ular. In other words, the usage pattern for a certain day is similar to that
for all similar days. For example, the usage pattern on a Sunday will be
similar to that on all Sundays. For simplicity, the day type and month
type are used to represent the building usage pattern. The research
outline of this model is shown in Fig. 1.

2.2. Prediction algorithms

In this study, three popular machine learning algorithms are se-
lected: SVM, ANN, and MLR. The first two are capable of capturing
complex nonlinear relationships between input and output variables.
MLR is one the most commonly used methods for linear regression
analysis. It is selected as a performance benchmark.

This paper uses the extension algorithm of SVM, i.e. support vector
regression(SVR). SVM is a supervised machine learning algorithm that
is used as a classification method. It aims to find a hyperplane that
separates samples of different labels with maximal margins in the ori-
ginal space or a higher dimensional space, using a kernel function for
mapping. Commonly used kernel functions include linear functions,
polynomial functions, and Gaussian functions. The SVR employs the
same principles as the SVM, with a few minor differences. In SVR, a loss
function is defined that ignores errors situated within a certain distance
of the true value. This type of function is often called an epsilon-in-
sensitive loss function (Smola & Schölkopf, 2004).

ANN is also a popular algorithm that can solve both linear and
nonlinear problems. It is usually composed of a number of connected
units or nodes organized in several layers. A typical neural network
structure is shown in Fig. 2. Once the structure is determined, the
weights and parameters can be trained through a back propagation (BP)
algorithm. Thus, it is sometimes called a BP network. ANN has been
proven useful in solving problems of pattern recognition, prediction,

Table 2
Correlation coefficients (R) of HVAC system electricity consumption and me-
teorological parameters.

Dry-bulb
temperature

Relative humidity
ratio

Wind
speed

Solar
radiation

Summer 0.91 −0.21 −0.05 0.47
Winter −0.83 −0.15 0.21 0.07

Fig. 1. Research outline of energy prediction model.

Fig. 2. Typical structure of ANN.
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and function approximation (Ruppert, 2004).
MLR is an extension of simple linear regression analysis. It attempts

to model the relationship between several independent variables and a
single dependent variable by fitting a linear equation to the observed
data. MLR is usually given in the following form:

= + + + …+b b x b x b xμ p p0 1 1 2 2 (5)

where μ is the dependent variable to be predicted, …x x x, p1 2 are p in-
dependent explanatory variables, …b b b, p1 2 are the estimated regression
coefficients, and b0 is the intercept. In addition to capturing the re-
lationship between explanatory and prediction variables, MLR can de-
termine the explanatory variables that are more important than others.
MLR can be easily implemented and interpreted; hence, it is very
widely used in research. However, MLR does not perform well when the
explanatory and prediction variables are non-linearly correlated.

3. Case study

3.1. Data description

The energy data to be analyzed in this study are obtained from a
large retail building in Nanjing, China. The data are a daily time series
collected from 1/1/2016 to 8/30/2018. The data includes the total
electricity consumption of various units including chillers, chilled water
pumps, cooling water pumps, cooling towers, and heat pumps. The
historical energy data profile is shown in Fig. 3. As there is no energy
consumed by the HVAC system during the transition season, this period
is not considered. In Nanjing, the transition season is in April and No-
vember. The cooling season is from May to October. The rest of the
months are considered part of the heating season. The meteorological
data are obtained from the National Meteorological Information Center
(Anonymous, 2019).

3.2. Development of energy prediction model

As described in Section 2.2, a correlation analysis is conducted first
to derive the meteorological parameters most relevant to the energy
consumed by an HVAC system. The dry-bulb temperature is selected as
one of the input features for predicting the energy consumed by an
HVAC system. However, we will not directly use the dry-bulb tem-
perature as the model input feature. Instead, the dry-bulb temperature
is transformed into degree-day for analysis. Degree-day method is a
simple but effective method for building energy analysis (ASHRAE,
2009). Degree-daycompares the mean (the average of the high and low)
outdoor temperatures recorded at a location with a balance point

temperature. The balance point temperature is defined as that value of
the outdoor temperature when total heat loss is equal to heat gain of a
building. A high number of degree-days generally results in higher le-
vels of energy use for space heating or cooling. Balance point tem-
perature is influenced by building thermal characteristics and usage
pattern. Thus, the balance point temperature may to different building
to building. It is also hard to calculate mathematically. Here we pro-
posed an intuitive method to obtain the balance point temperature.
When we plot the daily electricity consumption data of an HVAC system
against the daily mean temperature (i.e., mean value of the maximum
and minimum temperature), we find that when the mean temperature is
higher than 15 °C or lower than 10 °C, the electricity consumption of the
HVAC system varies almost linearly with the temperature variation
(Fig. 4). Thus, Tc =15℃ and Th =10℃ are selected as the cooling and
heating standard temperatures, respectively. Therefore, the daily
cooling degree-day (CDD) and heating degree-day (HDD) are calculated
using Eqs. (5) and (6), as energy prediction model input features:

= + −T T TCDD max (( )/2 ) , 0)max min c (6)

= − +T T THDD max ( ( )/2) , 0)h max min (7)

where Tmax and Tmin are the maximum and minimum hourly tem-
perature of a day, respectively.

As discussed in Section 2.2, the day type and month type are also
used as indicators for energy prediction. Integers 1–8 are adopted to
represent Monday to Sunday and holidays, whereas 1–12 are used to
represent January to December. Accordingly, for this research, the
energy prediction model includes three input features: CDD (for
summer) or HDD (for winter), day type (1–8), and month type (1–12).
The model output is the daily electricity consumption of the HVAC
system. Compared to the models used in previous studies, this model is
largely simplified.

The entire dataset is divided into training and testing data in pro-
portions of 70% and 30%, respectively. The model hyperparameters are
found through minimizing five-fold cross-validation loss. For SVR, the
parameters to be optimized are the complexity parameter C, smoothing
parameter sigma, and kernel function. C controls the structure com-
plexity of the model. A larger C would increase the likelihood of the
model overfitting, and vice versa. The parameter sigma controls the
model decision boundary. A larger sigma leads to a more flexible and
smoother boundary. Three kernel functions (i.e., Gaussian, linear, and
polynomial) form the decision pool, from which the most suitable de-
cision is chosen at each calculation step. For ANN, the model structure,
as determined by the number of hidden layers and neurons of each
layer, has a prominent influence on the model performance. In this

Fig. 3. Profile of historical HVAC system electricity consumption.
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research, we obtain the optimized model structure (i.e., two hidden
layers and four neurons in each layer) through manual adjustment.

4. Results and discussions

The model prediction performance is evaluated using three indexes,
as defined in Eqs. (7–9). They are the root mean squared error (RMSE),
mean absolute error (MAE), and coefficient of variation of the root
mean squared error (CV-RMSE). The first two indexes are scale-de-
pendent, whereas CV-RMSE is scale-independent. Scale-independent
metrics can be used to evaluating performance with other studies.
Previous studies have specified that model of CV-RMSE below 30% is
sufficient for engineering purpose (Reddy, Maor, & Panjapornpon,

2007). For a given variable noted as Y and the predicted variable noted
as Ŷ :

=
∑ −
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y y
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where yk is the value of the k th point of Y , ŷk is the value of the k th
point of Ŷ , and n is the sample number of Y .

Tables 2 and 3 summarize the training and testing performance in
terms of the obtained MAE, RMSE, and CV-RMSE. Figs. 5 and 6 in-
tuitively show the model performance during the cooling and heating
seasons. The training and test results are plotted in the same figure for
convenience, using a dotted line as a boundary.

Table 2 shows that the prediction accuracy of a model based on
average dry-bulb temperature is lower than that based on degree day.
This proves that degree day is more suitable as an indicator for pre-
dicting energy consumption. From Table 3, it can be seen that SVR and
ANN perform better than MLR in predicting the energy consumed by an
HVAC system. This is because a building thermal process is a complex
nonlinear process. MLR is too simple an algorithm to map a nonlinear
relationship between input and output variables. The SVR prediction

Fig. 4. Pattern of HVAC system energy consumption.

Table 3
Training and testing performance of three algorithms (using degree-day as
input feature).

Model Type MAE RMSE CV-RMSE

Cooling Heating Cooling Heating Cooling Heating

SVR Training 1757 377 2399 539 17.9% 22%
Testing 2542 644 3137 855 19.3% 32.3%

ANN Training 1819 535 2352 668 17.6% 27.5%
Testing 2672 736 3327 889 20.6% 33.6%

MLR Training 2337 536 3074 656 23% 20%
Testing 2552 709 3341 891 21% 31.4%

Fig. 5. Prediction performance during cooling season.

H. Sha, et al. Sustainable Cities and Society 51 (2019) 101698

5



performance is slightly better than that of ANN because SVR is more
suitable for cases with a small dataset. However, the discrepancy be-
tween the SVR and ANN cooling models is very small, and hence, it can
be ignored in engineering applications. In addition, the cooling CV-
RMSE values of SVR are less than 20%, which means that the model is
sufficiently suitable for engineering applications (ASHRAE, 2002;
FEMP, 2008).

It is evident that for all three algorithms, the cooling model per-
forms much better than the heating model. The main reason for this is
that the heating data are insufficient. For this study, 505 samples were
collected during the summer season, and only 261 samples during the
heating season. The model prediction performance degrades rapidly as
the amount of data decreases. Another interesting phenomenon is that
MLR performs better than SVR and ANN during the heating season. The
main reason for this is that the SVR and ANN models are more likely to
overfit than the MLR model when the data is insufficient. Thus, suffi-
cient data is vital for building a reliable data-driven model.

5. Conclusions

Predicting the energy consumed by a building is essential for im-
proving its energy efficiency in terms of building operation optimiza-
tion and fault detection and diagnosis. This paper proposed a simplified
energy prediction method for engineering applications. For this
method, only three variables were adopted as model input features. The
first one was weather related data. Instead of directly using average
daily dry-bulb temperature as the model input feature, we innovatively
transformed it to degree-day. The result showed that using degree-day
as input had better performance. It should be noted that the balance
point temperature for calculating degree-day should not be a fixed
value, because it is influence by building characteristics and usage
pattern. This paper also proposed an intuitive way to obtain the balance
point temperature. Another two features were the building usage
characteristics represented by day type and month type. Although the
model structure and input features used in this study were largely
simplified as compared to the models employed in previous studies, its
prediction accuracy is favorable. This study adopted three popular
machine learning algorithms (i.e., MLR, SVR, and ANN) as prediction
models. The results showed that the SVR and ANN models performed
better than the MLR model, indicating that a building thermal process is
usually nonlinear and complex. When trained with sufficient data, the
CV-RMSE of the SVR model was less than 20%, proving that this

approach can be applied in practical applications. The large dis-
crepancy between the cooling and heating energy prediction perfor-
mance indicated that the size of the training dataset is vital for model
prediction performance. All three methods exhibited poor performance
in heating energy prediction; however, their performance can be im-
proved if the training dataset is large.
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