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This paper presents an ensemble algorithm based on a new load decomposition method to forecast short-
term metropolitan-scale electric load. In this method, a decision tree for hourly seasonal attributes and a
weighted average method for daily seasonal attributes are first applied to divide seasons into a com-
pletely different way. Then, the load of transition seasons is chosen as a basic component according to
power load characteristics, and the differences between total load and the basic component are extracted
as the weather-sensitive component. Finally, a time-series method is selected to forecast the basic com-
ponent and SVM (Support Vector Machine) to the weather-sensitive component. This paper takes the
annual electricity load of Shanghai as a case study to verify this ensemble method. The results show that
compared with the traditional model based on overall daily load and other load decomposition meth-
ods—EMD (Empirical Mode Decomposition) and WT (Wavelet Transform), this ensemble model reduces
the error from 3 to 5% to lower than 2% when forecasting the power load of workdays, and for non-work
days, the error is decreased from 4 to 5% to lower than 4%.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

The close tracking of electricity generation in response to the
load requirements is an important aspect of the operation of a
power system. Accurate load forecasting is a necessity of most util-
ities for energy purchasing, transmission and distribution plan-
ning, operations and maintenance, demand side management,
etc. Load forecasting has different requirements for the lead time
ranging from the short term (a few minutes, hours or days ahead)
to the long term (up to 30 years ahead) [1]. It is important for
Demand Response, which is defined as ‘‘changes in power con-
sumption by demand-side resources from their normal consump-
tion patterns in response to changes in electricity price or to
incentive payments designed to reduce electricity use during peak
load periods” [2]. By reducing energy consumption from on-peak
periods to valley period, DR could improve the efficiency of power
stations and ensure grid security. And one of the most important
DR strategies is the forecasting of a fair and accurate baseline,
especially during peak hours. That’s why short-term load forecast-
ing is important. In addition, a forecast error, no matter under-
prediction or over-prediction, could result in increased operating
costs. For example, it was estimated that an increase of 1% in the
forecasting error was related to 10 million pounds increase in oper-
ating costs in the British thermal power system [3]. With the
deregulation of the competitive electricity markets, the short-
term load forecasting (STLF) has become increasingly important
to be more accurate and faster.

A significant amount of research on electric load forecasting has
been conducted over the past 60 years to improve forecasting
accuracy. Methods of short-term electric load forecasting can be
roughly categorized into three groups: statistical approaches, arti-
ficial intelligence (AI)-based approaches, and hybrid approaches.
Statistical approaches attain a mathematical model to build the
relationship between the electric load and input parameters, such
as multiple regression [4], exponential smoothing [5], ARIMA
(Autoregressive Integrated Moving-average) [6], etc. However, for
the models mentioned above, the electric load has typically been
divided into basic and weather-dependent components based on
assumptions of linearity, which is not very effective because of
the distinctly nonlinear functions of exogenous variables. There-
fore, artificial intelligence (AI)-based approaches have been devel-
oped to predict the electricity load, the most commonly used are
fuzzy logic [7], artificial neural networks [8], and support vector
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regression [9]. The hybrid approaches are to combine more than
one forecasting method together to overcome the shortcoming of
each single method, which includes sequential and parallel hybrid
method [10]. For example, Fatemeh Chahkoutahi and Mehdi Kha-
shei [11] used multiplayer perceptrons neural network, Adaptive
Network-based Fuzzy Inference System, and Seasonal Autoregres-
sion Integrated Moving Average methods to predict electric load
separately, then a direct optimum parallel hybrid model was pro-
posed to attain the relative weight of each model. The final forecast
was calculated by combing the weighted average of predicted val-
ues of aforementioned methods. Although the predicting accuracy
was improved, it is difficult to generalize the weightage calculating
method of each model. Thus, the other way to accomplish parallel
modeling has been proposed, of which the electricity load was
decomposed into several components and different components
were predicted by different models. And the final forecasting result
was the sum of each model’s forecasted value.

For the load decomposition method, it is important to select
proper inputs to infer the electricity load and use proper method
to divide the electricity load into several sub-components based
on the load characteristics. The electric load characteristics are
influenced by four major types of factors: economic factors, time
factors, weather factors, and random effects, summarized by Gross
and Galiana [4]. Weather plays an important role in load variations,
and a variety of weather variables and treatment methods have
been reported in literature. Liu, et al. [12] investigated the effects
of meteorological parameters on building energy consumption
based on the sensitivity analysis in China. Results show that tem-
perature has the strongest effect on heating and cooling, while
wind speed has the least impact on air conditioning energy, and
solar radiation is not an important parameter affecting building
energy consumption in both winter and summer. Therefore, among
meteorological parameters, temperature (dry bulb temperature) is
the most important because of its effects on cooling load and elec-
tric heating. Hong [13] summarized various ways to treat temper-
ature information in different models, such as current hourly
temperature, previous hourly temperatures, the difference
between the last hourly temperature and the current one, and
the maximum, minimum, or average temperatures over several
hours, for example. The most used temperature parameter used
as STFC model input is daily average temperature. However, this
approach is not always appropriate. When the temperature differ-
ence between day and night is large, cooling or heating require-
ment mainly appear only during a certain time of a day, either
daytime or nighttime. In this case, comparing the daily mean tem-
perature to a threshold is not justifiable. Cooling would not be
needed for a whole day, and, conversely, heating requirements
would sometimes last for a short period as well. Therefore, cooling
or heating requirements cannot be evaluated correctly based on
the above rule. To address this problem, this paper presents a
new rule to re-divide seasons into heating, cooling and transition
seasons carefully based on HVAC (Heating, Ventilation, and air con-
ditioning) fundamentals, and meteorological parameters are evalu-
ated comprehensively, including temperature, relative humidity,
wind speed, and air enthalpy. In addition, to reflect the lagging
effect caused by the thermal inertia of building structures, average
meteorological parameters of the forecast time and the previous
three hours are used as inputs [14].

To date, researchers have presented a number of methods for
signal decomposition and transformation, such as Fourier analysis,
which is less effective for capturing short-duration transient varia-
tions [15]. Wavelet transform has been shown to overcome the dif-
ficulties encountered using Fourier methods for non-stationary
signal presentation. It also presents an excellent local performance
in analyzing a signal in both the time and frequency domains.
Although wavelet analysis has been applied successfully in signal
processing, pattern identification, image processing, and other
fields, the selection of the mother wavelet and scaling function is
largely based on experience and is therefore non-adaptive. Conse-
quently, different decomposition results would be obtained with
the same signal with the selection of different wavelet basis [16].
To improve the performance of decomposition, Empirical mode
decomposition (EMD) was presented by Huang in 1998 [17], which
is a processing method suitable for non-linear and non-stationary
series analysis. EMD overcomes the difficulty of selecting the opti-
mal wavelet basis in wavelet transform as a type of self-adaptive
signal decomposition method, which has been effectively applied
by many researchers [18 19 20]. Fan et al. [21] used the differential
empirical mode decomposition method to decompose the electric-
ity load into several detail parts and an approximate part, and then
SVR and auto regression were used for prediction. And Zhang et al.
[22] have proposed a hybrid model based on improved empirical
mode decomposition, autoregressive integrated moving average
and wavelet neural network optimized by fruit fly optimization
algorithm.

Although EMD can provide better decomposition results than
wavelet transform method, these methods depend on the reliabil-
ity of the data. Typically, high-quality and widely ranging data can
make load decomposition more effective and adaptive. The sample
data set is often limited, so the load decomposition method cannot
be generalized. Moreover, application of signal processing methods
to decompose load is complex and cannot reflect the physical laws
behind load changes. Therefore, a new method for load decompo-
sition and separating out basic load and weather-dependent load
based on realistic conditions and physical laws is proposed in this
paper, thus the characteristics of electricity load could be extracted
more accurately and effectively. Then, a time-series method was
applied to forecast basic load and SVM for weather-sensitive load
according to the features of each component. The forecasting
results were also compared with the traditional model based on
overall daily load and other load decomposition methods—EMD
(Empirical Mode Decomposition) and WT (Wavelet Transform).
Results show that the prediction accuracy was significantly
improved.

The remaining parts of the paper are organized as follows. Sec-
tion 2 provides data analysis on the electricity load series charac-
teristics to find the relationship between weather data and
electricity load. Section 3 overview the proposed forecasting
method, consisting of seasonal attributes to redefine the seasons
(Section 4) and load decomposition method to divide the load into
basic load and weather-based load based on physical laws (Sec-
tion 5). Section 6 describes the forecasting results. And Section 7
concludes the paper.
2. Power load characteristics

The case study used in this article was the annual electricity
load of Shanghai in 2014, which were sampled at 15-minute inter-
vals. In 2014, the total electricity consumption in Shanghai was
135,834.37 GWh; the peak load was 26,790.6 MW in summer
and 22,202.1 MW in winter. The data set covers the total electricity
consumption of Shanghai for the entire year, including the pri-
mary, secondary, and tertiary industrial sectors, as well as the res-
idential power consumption of urban and rural residents. Different
load demands had disparate power characteristics; for example,
office buildings consumed the most power from 7:00 to 18:00 on
weekdays, whereas the power consumption of commercial build-
ings was concentrated mainly within the period of 8:00–21:00.
For secondary industries, the load change tended to be mild and
varied with different techniques and schedules.
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The electric load can be further divided based on different types
of end-use, such as air conditioning load, lighting load, and equip-
ment load. The air conditioning load is primarily influenced by
weather, and the lighting load is mainly affected by the timing,
duration, and intensity of sunlight. Therefore, the characteristics
of electric load are the result of the combined effects of these influ-
ential factors based on the total energy consumption of these dif-
ferent items. For this reason, power load characteristics are first
analyzed to establish the basis of the load decomposition method
and ensemble forecasting.

The meteorological data used in this study was obtained from
the Shanghai Weather Station and Weather Underground website,
coming from the twometeorogical station in Pudong and Hongqiao
Airport in Shanghai. These weather profiles have been compared to
the typical weather .epw file used in Energyplus [23] – the most
popular building energy simulation software, results show that
the weather patterns are similar, indicating the weather profile
could be representative for the entire Shanghai district. These data
were sampled every 30 min, and include dry bulb temperature,
dew point temperature, relative humidity, moisture content, wind
speed, and air enthalpy. To combine the power load data and
weather data, the weather data were filled by applying the cubic
spline interpolation method to each pair of adjacent data. Fig. 1
indicates the electricity load profiles of Shanghai in this study.

Fig. 1 (a) shows load curves in typical days of the summer, tran-
sition season and winter of 2014. There are two peaks and two val-
Fig. 1. Load profiles of
leys on a typical summer day, with large differences between
morning and evening peak loads. Winter has similar characteris-
tics, but the differences between the two peaks not as large as that
in summer, and the winter evening peak occurred relatively early.
The daily load in the transition season was significantly lower than
those in winter and summer, and the load curve was relatively flat
in the daytime. Because Shanghai is in a weather zone with hot
summers and cold winters, the change of weather conditions gave
rise to differences in load characteristics. As shown in Fig. 1 (b), the
typical week load curve fluctuated periodically; the daily load on
weekends was markedly lower than that of weekdays because of
the social patterns in production and behavior.

Fig. 1 (c) illustrates the daily peak load on weekdays throughout
the year. Electricity consumption was concentrated in July and
August (the cooling season), when the daily load was much higher
than in other months and reached a maximum of 26,560 MW on
August 6. January, February and December (the heating season)
follow July and August in electricity consumption, and the lowest
daily load appears during February because this time represents
the first week after the Spring Festival when production and
behavior have not yet returned to normal levels. The daily load
fluctuations of other months were relatively mild.

Fig. 1 (d) indicates peak load distribution throughout a year. The
distribution frequency during different periods varied from month
to month because different weather conditions over the year led to
differences in power consumption behaviors. The distribution was
Shanghai in 2014.
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also different between weekdays and weekends. On weekdays, the
peak load was concentrated from 10:00 to 11:00, except for July
and August, and some peak loads appeared after 17:00 from
November to January. For weekends, peak load often occurred after
17:00, mainly because household electricity consumption com-
prised large proportions in the non-working period. As the cooling
season began, peaks became focused within the period of 12:00–
16:00 when the temperature was very high.

Based on the above analysis, outdoor weather has a significant
impact on the power load. Outdoor temperature influences the
heat transfer of the building envelop and changes human behav-
iors, thus affecting the electricity consumption. The relationship
between weather and electricity consumption shows complex
nonlinear characteristics, which is difficult to be expressed by
mathematical models. In the current study of load forecasting, only
dry bulb temperature is treated as the main influencing factor.

Due to the heat transfer characteristics of buildings with sur-
rounding air, the variation of cooling and heating load is delayed
in comparison with outdoor weather parameters because of the
thermal inertia of building envelopes. There exists attenuation
and delay in the process of transforming the heat gained from
the envelope into indoor cooling load. And the degree of the atten-
uation and the delay time are related to the thermal properties of
building materials. The heat gain of the building envelope at s
moment in the Fourier series form is shown in the following equa-
tion [24]:
Qs ¼ hF tZ � tN þ aN

K

Xm
n¼1

DtZ�n
mn

cos wns�un � enð Þ
" #

ð1Þ

Where, h is the heat transfer coefficient of the building envelop,
W=m2 � K; F is the area of the wall or roof, m2; aN is the heat emis-
sion coefficient of the building envelop; tZ is the outdoor average
temperature; tN is the indoor temperature; DtZ�n is the hourly
change of outdoor solar-air temperature, oC; wn is the frequency
of the outdoor solar-air temperature changes at order n; un is
the epoch angle of outdoor solar-air temperature changes at order
n, deg or rad; mn is the disturbance attenuation of solar-air temper-
ature at order n; en is the phase delay of the solar-air temperature
at order n.

In harmonic response method that calculates cooling load, the
relative lagging of the inner surface temperature wave to the exter-
nal temperature is defined as the heat transfer delay time of the
wall, denoted by e1, and the relative lagging of indoor temperature
wave to the inner surface temperature is defined as the heat trans-
fer delay time of the room, denoted by e2. The heat release charac-
teristics of different types of rooms and their enclosure are
summarized based on engineering experience, as shown in Table 1.

Table 1 shows that the delay time of light structure is 1.6 h and
is 4.4 h (e1 þ e2Þ for heavy structure. So when analyzing the rela-
tionship between power load and weather factors, we selected
the average weather parameter at the forecast time and the previ-
ous three hours to reflect the effect of delay more accurately. In
addition, this method is further used to implement correlation
coefficient analysis to verify its reasonability.

We already know that weather variation was the dominant fac-
tor driving load change. Therefore, the Pearson correlation coeffi-
Table 1
Different types of rooms and envelop characteristics [24]

Item Light structure Medium struct

Floor Ceiling Wall Floor

e1 1 0.8 1.5 2.2
e2 0.6 0.5 1.2 1.3
cient (CCP) and Grey relational analysis (GRA) methods were
implemented in this study to investigate the relationships between
electric load and meteorological parameters. PPC describes the
degree and direction of relativity between two variables based on
calculating the correlation coefficient, which simplifies the correla-
tion of the two variables into a linear relationship but is not com-
prehensive. Therefore, when the degree of correlation was low,
GRA was used instead to demonstrate the associations of the
variables.

July was chosen as a representative month of the cooling sea-
son, January for the heating season and April for the transition sea-
son to calculate correlation coefficients and perform GRA between
daily power load and meteorological parameters. The median daily
correlation coefficient for each month was then selected to repre-
sent the typical value for that month, as summarized in Table 2.
Table 2 shows that the correlation coefficients of the cooling and
heating seasons were high, whereas that of the transition season
was relatively low, which further verified the rationality of select-
ing the average weather parameter at the forecast time and the
previous three hours as the meteorological parameters.
3. Methodology

3.1. Seasonal attributes

In this paper, the seasons were redefined first because the
hourly meteorological parameters were chosen as inputs instead
of daily mean values to better represent the actual heating and
cooling demands in buildings. Seasonal attribute means each day
is judged to be belonging to one of the three categories: cooling,
heating, and transition season by using certain criterion, according
to the hourly meteorological parameters. Fig. 2 shows the flow
chart of the determination of the daily seasonal attributes, as well
as load decomposition. The hourly seasonal attributes were deter-
mined by the decision tree first, and then the daily seasonal attri-
bute was determined based on the weighted mean seasonal
attributes of different periods. The Effective Temperature [25]was
chosen as the indicator in the decision tree, which considers the
effect of relative humidity, wind speed and air enthalpy. Finally,
the load was decomposed into basic load and weather-sensitive
load based on daily seasonal attributes, followed by the load pre-
diction for each load component.

3.1.1. Hourly seasonal attributes
In this study, hourly seasonal attributes were determined using

a decision tree. Compared to other methods, the significant advan-
tage of the decision tree is that it uses a white box model, so the
decision tree output results could be easily understood. The classic
algorithm ID3 (Iterative Dichotomiser 3 algorithm) [26] was imple-
mented, which calculates the information gain [27] of each attri-
bute and select the attribute with maximum information gain as
the root node. Then the branch of the root node will be examined
to capture the best attribute, and the similar procedure will be
repeated till all attributes have been examined to formulate the
decision tree. The advantage of this method is that the statistical
nature of all training cases can be used to make decisions to resist
noise.
ure Heavy structure

Ceiling Wall Floor Ceiling Wall

0.6 2.8 3 1.8 2.9
0.3 1.6 1.5 1.3 1.4



Table 2
Correlation coefficients between power load and weather parameters for representative months.

Method Month Temperature Wind speed Relative humidity

PPC July 0.835 �0.362 �0.402
January 0.711 0.566 �0.005
April 0.572 0.362 �0.389

GRA July 0.614 0.645 0.622
January 0.605 0.683 0.514
April 0.554 0.490 0.310

Fig. 2. Seasonal attribute judgment and load decomposition methods.
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Since only the maximum information gain of a single attribute
is taken into consideration at each node, the effective temperature
(ET) was chosen as input instead of dry bulb temperature to con-
sider the combined effects of wind speed and relative humidity
on temperature. Other input parameters were air enthalpy, humid-
ity and dew point temperature. To reflect the lagging effect of
weather parameters on load changes, average parameters for the
forecast time and the previous three hours were chosen. The
hourly seasonal attribute was then decided by using the resulting
decision tree, which was defined as a variable a (-1 � a � 1), where
it represent heating season if a is positive, cooling season if a is
negative and a = 0 for transition season. If a = 1, it represents com-
plete heating season, a = 1 means complete cooling season. And 0 <
|a| < 0.5 represents a partial transition season, while 0.5 < |a| < 1
indicates a partial heating/cooling season.
3.1.2. Daily seasonal attributes
As shown in Fig. 2, each day was decomposed into three periods

of time: a peak in the daytime within the period of 8:00–18:00, a
peak at night within the period of 19:00–23:00, and a valley at
night within the period of 0:00–7:00, according to the power load
profiles in Section 2. Then the largest mode was chosen as the sea-
sonal attribute for that period, followed by the weighted average
seasonal attribute of each period, which was used as the daily sea-
sonal attribute. The weight coefficients were determined based on
the potential to use HVAC facilities as 0.45 for peaks and 0.1 for
valleys during different periods based on engineering experience.
If the weighted average 0 < |a| < 0.5, the daily seasonal attribute
was identified as a partial transition season, while partial cooling
or heating season was defined if 0.5 < |a| < 1. The traditional tran-
sition season was then subdivided into four parts: the complete
transition season, partial transition season, partial cooling season
and partial heating season based on weighted average daily sea-
sonal attributes.
3.2. Load decomposition

As discussed in Section 2, the weight of the influence of meteo-
rological factors on the power load varied in different seasons. The
degree of correlation was relatively low during the transition sea-
sons and high during the cooling and heating seasons. Therefore,
the total load in the transition season was inferred to be insensitive
to weather changes and dominated by the time schedule. This load
was defined as the basic load. Then the total load in the cooling and
heating seasons was divided into the basic loads and the weather-
sensitive loads. Therefore, the average electric load of days with
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a = 0 during the complete transition season was taken as the basic
load, and the periods with a = 0 during the partial transition season
was also added to the sample. Periods that did not have a = 0 dur-
ing the partial transition season are divided into the basic and
weather-sensitive components. For cooling/heating seasons, or
the cooling/heating attributes during partial transition seasons,
the difference between the total power load and the basic load
component was evaluated to determine the weather-sensitive
load. In this study, the weather-sensitive load is mainly decided
based on the electricity consumption for cooling and heating since
the influence of weather on the other types of load is not nontrivial,
such as lighting load, hot water load, etc. Based on the Building
America House Simulation Protocols [28], the normalized hourly
lighting profiles for different months of a year are quite similar,
indicating that the influence of the weather on the interior lighting
is very small, and the lighting load is stable, especially for the inner
zone which will not be largely affected by the outdoor environ-
ment. The same as the hot water load, there are certain hourly pro-
file for each end use, including clothes washer, common laundry,
dishwasher, shower, bath, sink, etc., as well as the combined
profile.

Other traditional load decomposition methods were also imple-
mented to be compared with the proposed load decomposition
method, including EMD (Empirical Mode Decomposition) and WT
(Wavelet Transform), in order to compare the performance of the
proposed load decomposition method with that of the traditional
methods.
3.3. Load prediction

The power load was divided into the basic and weather-
sensitive components based on seasonal attribute analysis. The
basic load was noticeably periodic and had consistent and stable
characteristics for days of the same type. Therefore, a time-series
algorithm was chosen to forecast the basic component, while
SVM [2] was applied to forecast the weather-sensitive load compo-
nent. For training dataset, the input parameters include effective
temperature of the forecast time and the previous three hours,
and the load at the corresponding time.
4. Seasonal attributes

4.1. Hourly seasonal attributes

In Shanghai, the heating season traditionally begins in January;
the cooling season in July, and the transition season begins in both
April and October. Therefore, the seasonal attribute of January was
assigned as a = 1, and a = -1 for July. According to [2930], the Effec-
tive Temperature falling within the range of 15–23 �C ensures
human thermal comfort; therefore, the seasonal attribute of peri-
ods when the ET falls within this range was assigned as 0 in April
and October.

The hourly data for January and July were selected as the train-
ing data set, along with data for April and October when the Effec-
tive Temperature falls between 15 �C and 23 �C. For the remaining
periods, the decision tree was used for further judgment. The rules
for determining hourly seasonal attributes using the decision tree
are shown in Fig. 3.

In Fig. 3, mET is the moving average Effective Temperature for
four hours (�C), mEnth is the mean air enthalpy (kJ/kg), and md
is mean humidity (g/kg). The precision of the decision tree classifi-
cation model was 92.5%. The classification error was smallest for
cooling season, which is 4%, however, it was 10% for transition sea-
son, and the error between the transition season and heating sea-
son was 7%. The possible reasons for this difference are that there
are a lot of overlapping between weather parameters of the transi-
tion and heating seasons, and the number of branches on the left of
the decision tree is relatively small. However, the precision level
cannot be adjusted too high to avoid over-fitting.
4.2. Daily seasonal attributes

Table 3 shows the results of seasonal attributes from the pro-
posed weighted mean method, as well as the comparison with
the traditional degree-days method. Based on this new rule, the
seasonal attributes of the traditional cooling, transition and heat-
ing seasons were determined more reasonably. For example, the
daily mean air temperature on April 9 was 17.04 �C. According to
the degree days method, this day falls into the heating season
because the mean air temperature was lower than 18 �C [31]. In
effect, the mean temperature in daytime was 17–24 �C, so that
heating was only required at night. The seasonal attribute was
assigned as a = 0.1 due to the weighted mean method, indicating
partial transition season which is more accurate. Similarly, the
cooling season can be separated from the transition season more
specifically. For instance, the daily mean air temperature on June
6 was lower than 26 �C [31] and would be ascribed to the transition
season based on the conventional degree days method, however, it
is likely that cooling was required during the peak time. The sea-
sonal attribute was a = � 0.9 that indicate partial cooling season
based on the new seasonal attribute’s method. For other months,
such as November, December, January, February, and early March,
the seasonal attributes were attributed to the heating season, and
July, August and early September were ascribed to the cooling sea-
son, which are identical to the results of the traditional method.
5. Load decomposition

5.1. Load data preparation

The existence of abnormal load data, including missing values
and outliers, will influence the accuracy of predictions. Therefore,
data should be processed before load decomposition to improve
data quality.

According to the electric load analysis, the typical load curve
was smooth and had no abrupt changes over time, and adjacent
days with the same weather conditions should have similar load
patterns. Accordingly, values with hourly jumps or distinct varia-
tions between similar days were considered outliers. Outliers do
not necessarily indicate poor data. Whether a value was considered
an outlier depended on different points of view. For example, if the
load curve at a certain moment was smooth, then it could be con-
sidered a non-outlier from a local point; however, from a global
point of view, the same data point may be abnormal compared
with adjacent similar days and should therefore be considered an
outlier. In this paper, load data were divided into two groups,
workday data and non-workday data, which were detected from
both local and global points of view. The three-sigma rule was used
to detect the global outliers, which means the data is considered to
be outliers if it lies in the region of values of the normal distribu-
tion of a random variable at a distance from its mathematical
expectation of more than three times the standard deviation [32].

In addition to outliers, there are also missing values that were
filled using the linear interpolation of adjacent values. After check-
ing the whole data set, it was very likely that all values for that day
(96 values in total) were global outliers. As shown in Table 4, the
total number of workdays was 243 in 2014, and there were eight
global outliers, which consisted of three days before the Spring Fes-
tival, two days after the Spring Festival, and one day before and
two days after National Day. On these days, power load was lower



Fig. 3. Decision tree for hourly seasonal attributes.

Table 3
Daily seasonal attribute contrast of two methods.

Date Daily mean
temperature

Degree-days
method

Weighted mean
method

April 9 17.04 �C 1 0.1
May 9 18.28 �C 0 0.55
June 6 25.64 �C 0 �0.9
September

4
24.70 �C 0 �0.45

October 28 17.67 �C 1 0.1

Table 4
Global outliers.

Type of day Number of days Number of outlier days Proportion

Workday 243 8 3.29%
Non-workday 122 3 2.45%
Total 365 11 3.01%
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than on adjacent workdays. In addition, there were three global
outliers out of the 123 non-workdays from January 31 to February
2 during the Spring Festival. Thus, we could draw a conclusion that
holidays had a great influence on the characteristics of the power
load, and that the load during holidays, as well as several days
before and after holidays should be considered separately.
5.2. Power load decomposition

After processing the abnormal load data, the total power load
could be decomposed into the basic and seasonal weather-
sensitive components due to the seasonal attribute results, as
shown in Fig. 4.

Taking the heating season (January, February and March) of
2014 for example, its basic load should be calculated based on
the weighted average of the late transition season (September
and October) in 2013. However, data from September and October
2014 were used instead because of a lack of data for 2013. For the
cooling season of 2014 (July, August and early September), the
basic component was calculated based on the weighted average
of the near transition season (April and May) in 2014. For the heat-
ing season of November and December, the weighted average of
the former transition season (April, May, September and October)
was used. The weather-sensitive component was the difference
between the total load and the basic component.

The above basic loads of the heating and cooling seasons were
fixed for similar days in different months because the value was
dependent on identical transition seasons. However, the basic
component of the partial transition season (0 < |a| < 0.5) varied
slightly with increasing number of samples, as illustrated in
Fig. 4 (b).

Fig. 4 shows load decomposition on typical days with different
seasonal attributes: heating, cooling and transition season. Red
curves represent the basic load, and blue curves represent the total
electricity load. The gap between the two curves is the weather-
sensitive component. As illustrated in Fig. 4 (a) and Fig. 4 (c), the
basic component remained unchanged between two similar days
in the heating or cooling season.

In Fig. 4 (b), the basic load during the partial transition season
varied slightly from day to day. The day peak from June 23 to 25
was classified as cooling season, whereas the nights of those days
were classified as transition season. The basic component at night
generally coincided with the total power load, and the weather-
sensitive component appeared almost exclusively in the daytime.
The basic load of June 23 was calculated based on the mean value
of complete transition days just before that day. For June 24, hourly
data with a = 0 on June 23 was also added to the samples, and for
transition days approaching the heating season, the basic compo-
nent during daytime coincided with the total load and the
weather-dependent component, which appeared at night.

Fig. 4 (d) shows the load profile from October 8 to 10. These
were days after National Day, and the overall electricity load was
significantly lower than the ordinary level. Therefore, certain days
before and after special holidays should be considered separately
for load decomposition and load forecasting. The influential num-
ber of days could be decided by comparing the daily load before



Fig. 4. Load decomposition on typical days.

Fig. 5. Basic load adjustment of special days.
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and after the holidays with previous workday load. If the absolute
value of the changing rate is more than 4%, that day will be influ-
enced by holidays, and the load will be scaled up or down to be
close to the real load profile.

The difference between the basic load and total load is defined
as the weather-sensitive component. According to the calculations,
this component accounted for 6–15% of total electric load during
the heating season and 10–26% of the total during the cooling sea-
son, which approximates the proportions of the HVAC load of
building energy consumption; therefore, the decomposition
method presented in this paper is reasonable. Load decomposition
on non-workdays of different seasons was the same as that on
workdays; therefore, there is no need to provide additional details.

5.3. Basic load adjustment of special days

Based on the above analysis, the global outliers of long holidays
and days before and after these holidays need to be treated sepa-
rately. Otherwise, abnormal situations like that shown in Fig. 4
(d) may occur.

To take the Spring Festival as an example, the daily mean load
decreased linearly day by day during the festival and increased
after the festival. In terms of the average load, the mean changing
rate of the daily mean load on adjacent workdays and non-
workdays were normally � 0.06% and � 0.28%, respectively. It
was found that the mean changing rates of the daily mean load
before and after long vacations became higher. For example, the
total load on January 27 decreased by 14% from January 24 (the
previous workday), and on the first day of the Spring Festival (Jan-
uary 31), the load was 29% lower than that of the previous day.
Therefore, when the absolute value of the changing rate is more
than 4%, it can be inferred that significant changes of load were



Y. Chu et al. / Energy & Buildings 225 (2020) 110343 9
caused by holidays. The basic component during these special days
would be scaled up or down after load decomposition, as shown in
Fig. 5. The basic loads of special days after modulation were lower
than the total electric load during the Spring Festival, however, it
could still fully reflect the changing trend of the load pattern.
5.4. Characteristics of weather-sensitive load

Weather-sensitive load, separated from the total load based on
the above method, is shown in Fig. 6.

The properties of the weather-sensitive component included
several aspects that differed from the total load:

1) The periodicity of change of the weather-sensitive load was
weak between adjacent days and appears as a varying curve trend
between two adjacent days in Fig. 6. This curve also highlights the
influence of unpredictable weather conditions on electric load. The
change patterns of power load were similar between similar days,
because they were mainly affected by daily life.

2) The pattern of the weather-sensitive component became less
smooth and more random, as shown in Fig. 6. The function of load
decomposition was like a magnifier, such that the observation can
be zoomed in to scale of 103 instead of 104. Therefore, the initially
obscure fluctuation at the scale of 104 was manifested at the 103

scale.
3) The daily load pattern of weather-sensitive component dif-

fered from that of the power load. For example, the peaks appeared
at different times. For the total load, the daytime peak was essen-
tially consistent with the nighttime peak during heating seasons.
For the weather-sensitive component, Fig. 6 shows that the night-
Fig. 6. Weather sensitive load profile during typical heating and cooling season.
time peak is noticeably larger than the daytime peak, which agreed
with the power load pattern during cooling seasons.

6. Load prediction

6.1. Model Evaluation index

After models were established, the prediction performance was
evaluated, including the fitting degree and prediction accuracy.

The fitting degree was expressed by coefficient of determina-
tion, denoted by R2. R2 lies between 0 and 1. The fitting degree
becomes higher with the value of R2 approaching 1. The formula
for R2 calculation is as follows:

R2 ¼ 1�
Pn

i¼1 xi � bxi
� �2Pn

i¼1 xi � xð Þ2
ð2Þ

RMSE (Root mean square Error) was used to characterize the
differences between predicted values and the observed values.
The smaller the RMSE value is, the higher the model accuracy is.
The formula for calculation is as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � bxi
� �2

n

vuuut ð3Þ

MAE (Mean absolute error) was regularly employed to tell the
difference between predicted and observed values, which pre-
vented the offset of positive–negative error, which is given by:

MAE ¼
Pn

i¼1jxi � bxij
n

ð4Þ

MAPE (Mean absolute percentage error) is another indicator of
prediction accuracy. We can compare the accuracy of different
models based on data with different orders of magnitude. MAPE
is given by:

MAPE ¼ 1
n

Xn
i¼1

jxi � bxij
xi

ð5Þ

Where xi is observed values, bxi is predicted values, n is the sam-
ple size.

6.2. Model evaluation

As described in previous sections, the electricity load was
divided into basic and weather-sensitive components based on
seasonal attributes. Different models were compared, and these
models are listed in Table 5. In this table, w, w’, and s denote week-
day, weekend and special day, respectively, and h and c denote the
heating and cooling seasons respectively.
Table 5
Models of power load forecasting.

Day type Seasonal
attribute

Basic load Weather-sensitive
load

Weekdays /
weekends

Heating
season

Weighted mean
method

SVR_wh/ w’h

Cooling
season

Weighted mean
method

SVR_wc/ w’c

Transition
season

Time-series
method

SVR_wh/wc/ w’h/
w’c

Special days Heating
season

Weighted mean
method

SVR_sh

Cooling
season

Weighted mean
method

SVR_sc

Transition
season

Time-series
method

SVR_sh/sc



Table 6
Performance of models of basic load.

Evaluation index Workday Non-workday

R2 0.921 0.953

RMSE 312.450 343.390
MAE 255.180 265.370
MAPE 2.03% 1.75%
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First, the model established for basic load based on a time-
series method was evaluated, using various indicators. The 96 elec-
tric load data points for March 24 as a workday and May 25 as a
non-workday were calculated using the time-series method. The
calculated results were then compared with the actual load data,
as shown in Table 6. Generally, applying the time-series method
to forecast the basic load achieved good prediction accuracy with
MAPE<2.5%, and the R2 value was also high. These findings indicate
that the imitation degree of the model was good.

The ensemble prediction method was then used to compare
with the traditional method, including load forecasting based on
total electric load and other load decomposition method EMD
and WL, to evaluate the performance of this new load decomposi-
tion method.

Forecasting models were built based on both the load decompo-
sition method presented in this paper and the traditional methods.
For workdays, taking the heating season and cooling season for
examples, the training set for the heating season from January 7
to 16 was used to forecast the power load from January 17 to 20,
and the training set for the cooling season from July 24 to August
6 was chosen to forecast the power load of August 7 and 8. For
non-work days, models were established for the Spring Festival
and an ordinary weekend of the cooling season to evaluate perfor-
mance. The performance of the different forecasting models is
summarized in Tables 7, which covers different day type in each
season, including workday during heating season, workday during
cooling season, special holiday during heating season, and week-
ends during cooling season.

As shown in Table 7, for workdays, the RMSE and MAE of the
model based on the new load decomposition method were lower
than that of the traditional method. Compared to load forecasting
method with total electric load, MAPE decreased from 4.08% to
1.91% by using the ensemble model during the heating season,
and MAPE of the cooling season dropped from 3.66% to 1.65%.
Besides, results show that the ensemble algorithm performs better
than the other two decomposition methods EMD and WL, and less
training time is required for the ensemble model.
Table 7
Performance of the four models on different day types and seasons.

Period Evaluation index R2

Workday during Heating Season Traditional method SVR_wh
EMD EMD_SVR_wh
WL WL_SVR_wh
Proposed method P_SVR_wh

Workday during Cooling Season Traditional method SVR_wc
EMD EMD_SVR_wc
WL WL_SVR_wc
Proposed method P_SVR_wc

Special Holidays on Heating Season Traditional method SVR_sh
EMD EMD_SVR_sh
WL WL_SVR_sh
Proposed method P_SVR_sh

Weekends on Cooling Season Traditional method SVR_w’c
EMD EMD_SVR_w’c
WL WL_SVR_w’c
Proposed method P_SVR_w’c
For special holidays and weekends, the new ensemble method
based on load decomposition performs superior to the traditional
methods in terms of RMSE, MAE, MAPE and training time. How-
ever, the basic load on special days after adjustment could not per-
fectly reflect this special characteristic when peak load at night
was much greater than that during daytime. The ensemble model
was also unable to reflect this characteristic. The R2 value of the
traditional model based on the power load was higher, and MAPE
was only slightly lower by using the ensemble model. The main
reason may be because the data samples for long holidays are
too few and the load pattern was noticeably different from those
of other day types, it would be better to use the traditional model
based on total power load to forecast electric load. However, for
most other weekends, the ensemble model tends to perform better
than others, and MAPE decreased to 3.09%.

Table 7 shows that the proposed load decomposition method
and the ensemble algorithm perform better than the other two
load decomposition schemes. Although the electric load can be
divided into low and high frequency components from the signal
field by the two methods, the components cannot exactly be
explained by physic laws. It is also seen that the MAPE of
EMD_SVR_w’c model is much bigger than that of others, indicating
that the EMD_SVR model’s prediction accuracy relies much more
on strong regularity of the load itself. On the contrary, the new load
decomposition method was constructed based on realistic condi-
tions and physical laws behind the power load, which could avoid
the excessive reliance on the load data itself. Results show that the
forecasting accuracy is significantly improved.
7. Discussion and conclusions

Improving the precision of short-term load forecasting has long
been a focus of researchers. In this article, the electricity load char-
acteristics of the Shanghai metropolitan area were first analyzed,
the load decomposition approach was put forward, and an ensem-
ble forecasting model was developed. The results of the ensemble
model show high accuracy and superior applicability for weekdays,
weekends, and holidays in different seasons. The main conclusions
are as follows:

1) A new load decomposition method was developed to divide
the electric load of the heating and cooling seasons into basic
and weather-sensitive components effectively. Unlike the tradi-
tional degree-day’s method, a decision tree was built to determine
hourly seasonal attributes, and daily seasonal attributes were then
calculated based on the weighted averages of different periods of
time throughout the day. After the seasonal attribute judgment,
RMSE MAE MAPE Training time

0.933 740.83 664.88 4.08% 1 min 48 s
0.919 714.98 572.31 3.44% 10min20s
0.856 955.25 833.1 5.03% 20min22s
/ 408.9 332.54 1.91% 1 min 33 s
0.967 997.24 820.64 3.66% 1 min 48 s
0.501 2457.84 1781.23 7.84% 11 min
0.8863 1173.64 779.64 3.69% 19min34s
/ 464.82 362.31 1.65% 1 min 33 s
0.868 587.63 496.61 4.30% 1 min 21 s
0.835 582.18 428.93 4.03% 6 min
0.826 597.12 465.51 4.56% 6 min
/ 337.52 336.85 3.98% 1 min 9 s
0.886 923.42 809.26 4.36% 35 s
0.359 2016.95 1669.48 10.33% 15min50s
0.938 625.6 570.01 3.30% 9min34s
/ 558.81 442.54 3.09% 27 s
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the load of the transition season was chosen as the basic compo-
nent based on power load characteristic, and the difference
between total load and the basic component was separated out
as the weather-sensitive component.

2) The characteristics of the basic load during the transition sea-
son tended to be steady and had apparent periodic cycles. Regres-
sion models based on the time-series method were built to forecast
the basic load. The results indicate that this method ensured high
prediction accuracy with MAPE of<2.5%. SVM was employed to
forecast the weather-dependent components during the heating
season and cooling season because SVM can approximate nonlin-
ear functions with great precision. The predicted total electric load
was the sum of the predicted basic load and the weather-sensitive
load. Compared with the traditional model based on daily overall
load and other decomposition methods (EMD andWL), this ensem-
ble model reduced error from 3 to 5% to lower than 2% when fore-
casting the power load of workdays. For non-workdays, the error
was decreased from 4 to 5% to lower than 4%.

The loads on special event days are still hard to forecast. For
example, on Spring Festival and National Day, the load was scaled
up or down the trend which cannot reflect the variation pattern of
the overall load. In addition, the impact of the sudden change of the
weather on power load was not considered in this paper. The load
data of similar days with sudden weather changes should be col-
lected over the years to research the relationship between the
degree of meteorological parameters and power load. The solar
irradiance not only varies with seasons, it is also an important fac-
tor influencing human electrical behavior. Due to the lack of
sources of solar irradiance, its relationship with power load has
not been researched, which can be supplemented in the following
studies.
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