Applied Energy 195 (2017) 659-670

Contents lists available at ScienceDirect

AppIie!' ergy

Applied Energy >
.

journal homepage: www.elsevier.com/locate/apenergy

Short-term electrical load forecasting using the Support Vector
Regression (SVR) model to calculate the demand response baseline for
office buildings

@ CrossMark

Yongbao Chen?, Peng Xu®*, Yiyi Chu?, Weilin Li?, Yuntao Wu?, Lizhou Ni®, Yi Bao®, Kun Wang”

2School of Mechanical and Energy Engineering, Tongji University, Shanghai 201804, China
b Hangzhou Tianli Technology Co., Ltd., Zhejiang 310000, China

HIGHLIGHTS

« A new SVR model to forecast the demand response baseline for office buildings.

« Take temperature two hours before DR event can improve the forecasting accuracy.

« The forecasting accuracy is better than other seven existing methods in DR programs.
« The model is very generic and can be applied to a wide variety of office buildings.

ARTICLE INFO ABSTRACT

Article history:

Received 19 August 2016

Received in revised form 7 March 2017
Accepted 9 March 2017

Demand Response (DR) aims at improving the operation efficiency of power plants and grids, and it con-
stitutes an effective means of reducing grid risk during peak periods to ensure the safety of power sup-
plies. One key challenge related to DR is the calculation of load baselines. A fair and accurate baseline
serves as useful information for resource planners and system operators who wish to implement DR pro-
grams. In the meantime, baseline calculation cannot be too complex, and in most cases, only weather
data input is permitted. Inspired by the strong non-linear capabilities of Support Vector Regression

g?;:; Or:gsées ond (SVR), this paper proposes a new SVR forecasting model with the ambient temperature of two hours
SVR model P before DR event as input variables. We use electricity loads for four typical office buildings as sample data

to test the method. After analyzing the model prediction results, we find that the SVR model offers a
higher degree of prediction accuracy and stability in short-term load forecasting compared to the other
seven traditional forecasting models.

Short-term baseline
Load forecasting

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Demand response (DR)

Demand Response (DR) is defined as “changes in electric use by
demand-side resources from their normal consumption patterns in
response to changes in the price of electricity or to incentive pay-
ments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized”
[1]. By moving some energy packages from on-peak periods to val-
ley periods, DR can improve the efficiency of power stations and
ensure grid security. At the same time, DR participants can also
enjoy benefits such as electricity price decreases and economic
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subsidies. DR programs are even more important for grids that pre-
sent high levels of fluctuating generation penetration from renew-
able energy sources (e.g., photovoltaic power and wind turbines)
[2-8].

DR is an important potential demand-side resource for both sys-
tems and market operation [9,10], and it has undergone rapid
development in the United States and Europe and in the rest of
the world. In the United States, due to existing DR resource contri-
butions, the peak load reduction has increased by approximately
10% since 2006 [11]. In Europe, prospects for the future are brighter
due to assistance from the European Commission [12]. There are an
overall study the regulatory reforms, mark changes and technology
development of DR [13]. For China, Beijing, Tangshan, Foshan and
Suzhou were selected as DR pilot cities of the National Develop-
ment and Reform Commission in 2012, meaning that the Chinese
government has made DR available to the public. Generally, almost
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Nomenclature

AE absolute error

BL baseline

DR demand response

FUC fan coil units

ME mean error

MAE mean absolute error

PBL provisional predicted baseline
SVR support vector regression
VRV variable refrigerant volume
P predicted loads, kW

D electricity loads, kW

M,N days

N dataset

w weight factor

C weight coefficient

X; i-th element of the N-dimension vector
¥i actual value, kW

m the number of sampled buildings
j one of sampled building

b adjustable factor

e residual

& & training error

ap,a1,a; polynomial factors

t time, h

flx;) forecasting values, kW

@ (x;)  feature space

all types of buildings can participate DR programs, while office
buildings contribute to a large portion of DR reduction in practices,
because their large volume. Thus, in our paper, office buildings are
our study object. This does not mean that the SVR model only suit-
able for the office buildings. The general framework and the models
work for other type of buildings as well.

Recently, several studies have introduced DR strategies [14-19].
While an important aspect of DR strategies concerns how perfor-
mance should be measured, a key challenge relates to forecasting
a fair and accurate baseline. A DR baseline is an estimate of the
electricity that would be consumed by a customer in the absence
of a DR program. Such baselines are a challenging aspect of DR pro-
grams, as they must represent what a load would be if a customer
were to not apply curtailment measures.

DR performance is calculated as the difference between the
baseline and actual load during a DR event. Customers’ compensa-
tion depends on the amount of electricity demand reduction dur-
ing DR events, as show at Fig. 1. This figure serves as an example
of a DR baseline and of DR reduction. Typically, a DR event lasts
for only a few hours on the hottest/coldest day, and thus the DR

baseline as a short-term load forecasting measure differs from
other long-term load forecasting mechanisms such as building
energy-saving retrofitting and energy efficiency benchmarking.

In commercial DR applications, electricity loads and ambient
temperatures before the DR events and real-time ambient weath-
ers during DR event can be acquired from the DR platform. Thus,
a real-time forecasting method that uses the historic data as input
parameters is feasible. Because a large number of customers take
part in a DR at the same time, a fast and accurate online method
to forecast DR baselines and calculate the actual reductions for
every customer is needed. For example, accurate baselines support
the fair compensation of DR program participants, and particularly
of those who pay directly for load reductions. Besides, such baseli-
nes also serve as useful information for resource planners and sys-
tems operators who wish to employ DR programs. Thus, a key
question concerning DR pertains to how baselines must be deter-
mined. A generic and high accuracy method to calculate the base-
line is imperative. The motivation of this paper is proposed a
generic method to forecast a more accurately and fair baseline in
DR programs.
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Fig. 1. Schematic of demand response baseline and reduction.
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1.2. Existing load forecasting research

Several studies have been conducted on electric load forecast-
ing. Guo-Feng Fan et al. presented a SVR model hybridized with
the differential empirical mode decomposition (DEMD) method
and with auto regression (AR) for electric load forecasting [20].
Similarly, Boroojeni KG et al. proposed a novel method to forecast
power demand based on auto regression integrated moving-
average model (ARIMA) [21-23]. Srivastav A et al. presented a
novel approach to Gaussian Mixture Regression (GMR) for model-
ing building energy baselines via parameterized and locally adap-
tive uncertainty quantification [24]. These two methods require
the use of complex algorithm models to calculate baselines, and
they can be used to predict long-term loads as well.

Huilong Wang et al. used a multiple linear regression algorithm
with classified load data from a sub-metering platform to calculate
baselines. The authors showed that predicted sub-metering data
can improve the accuracy of forecasts [25]. Ying Ji et al. proposed
an “RC-S” model for estimating hourly cooling loads in commercial
buildings using electricity sub-metering data [26]. Sub-meter sys-
tems are being used increasingly more often in buildings to sepa-
rate out loads of air conditioning, lighting, power, or other
equipment in buildings. Air conditioning loads are sensitive to
weather conditions while light and other equipment are not. With
sub-metering data, it is easy to predict whole building loads by dis-
tinguishing between weather sensitivity loads (air conditioning
loads) and total loads. Xiwang Li and Jin Wen proposed a means
of developing building energy estimation models for online build-
ing control and optimization using a system identification
approach, and they concluded that this model can achieve 95%
forecasting accuracy under one second intervals for small buildings
and 88% accuracy for mid-sized office buildings [27].

The PJM Load Management Task Force [28] has conducted sev-
eral DR baseline studies, analyzing a total of 11 baseline models
with load additive adjustment, load ratio adjustment, weather sen-
sitive adjustment and no adjustment, resulting in up to 44 different
baselines included in the analysis. The results show that an appro-
priate baseline should consider empirical analysis results, expected
administrative costs, and any other known issues based on previ-
ous practical experience (e.g., strategic behaviors) to maximize
baselines and the applicability of baselines for customers that fre-
quently respond. Goldberg ML. et al. examined a number of meth-
ods used by utilities and electrical system operators across United
States and evaluated them in terms of accuracy and bias levels.
They defined baseline calculation methods based on three funda-
mental components: a set of data selection criteria, an estimation
method, and an adjustment method [29].

However, DR baselines require simple forecasting models, and
models must be generic and thus specific building simulation mod-
els are not allowed. Otherwise, utility companies cannot use them
in their DR programs. Some progress in simple methodological
development has been achieved. Coughlin K et al. analyzed non-
residential building baseline models, classified buildings into four
types with different degrees of load variability and weather sensi-
tivity, and found that the accuracy of baseline load models can be
improved substantially by applying morning adjustments to all
sampled buildings [30]. A White Paper [31] concluded that for most
peak load management applications, high X of Y baselines with day-
of adjustments create an optimal balance between accuracy, sim-
plicity, and integrity. Kissock JK and Eger C built a multi-variable
change-point model that measures industrial energy savings, and
this model takes into account weather and production changes,
and it is able to disaggregate savings into weather-dependent,
production-dependent and independent components [32].

The above described forecasting models still present some
deficiencies in terms of the short-term load forecasting of DR from

predecessors. For example, researchers [20] have considered com-
binations of two algorithm models, which are too complex for util-
ity companies to use. Researchers [2,28,30-32] have also used the
average method based on historical data, which presents a degree
of prediction accuracy when the load is relatively stable, but when
the load is not stable, results are not very good. Finally, researchers
[25,26] have used sub-metering data, which can improve predic-
tion accuracy levels but which require sub-meter installation.

In recent years, Support Vector Regression (SVR) models have
been used for load forecasting. SVR algorithms perform well in time
series and nonlinear prediction. European Network on Intelligent
Technologies for Smart Adaptive Systems hosted a global short-
term load intelligent prediction contest in 2001. A team from Tai-
wan University that used the SVR algorithm won the contest [33].

In this paper, we propose a new SVR based method for calculat-
ing DR baselines. The SVR model proposed in this paper does not
require the use of sub-metering data, as only historic electric load
and weather data are needed. The method is generic, so specific
building information is not needed. The SVR model offers a higher
level of prediction accuracy and can achieve rapid computer calcu-
lation due to its simplicity. General speaking, this SVR model is
useful to all DR participants. DR customers, can know whether
the actual DR reduction is higher or lower than the anticipated
reduction so that they can take some measures in advance. The
planners can use the model to estimate the aggregated DR reduc-
tion of all customers. Thus, they can make reasonable policies in
the power grid markets which integrated with more intermittent
energy like solar and wind.

We selected workday electricity load data from July 23, 2014, to
August 5, 2014, for four large commercial office buildings as our
training sample dataset, and we collected data from 9 AM to
5PM as a test dataset for August 6, 2014. The two-hour averaged
dry-bulb temperature before DR is used as the temperature vari-
able in the SVR model. The results show that this time window is
the best in terms of DR forecasting accuracy.

This paper presented the selected criteria that ambient dry-
temperature several hours before DR and verified two hours before
is the best, this results could be a reference for other prediction
models in office buildings and other different building types. This
novel method has higher prediction accuracy and more stability
compared with the existing methods in the DR programs nowa-
days. Furthermore, this generic approach can be easily extended
to more homogenous building environment. We provided a
detailed description of this innovative methodology compared
with other existing methods, in this paper, we validated all of these
models using four different office buildings.

The remainder of this paper is organized as follows. In Section 2,
we introduce Support Vector Regression theory and other forecast-
ing methods. In Section 3, we describe the SVR model developed
and methodological development involved in the SVR model, the
data source, building load impact factors and the baseline evalua-
tion method. In Section 4, we describe each forecasting model
investigated in this paper and the corresponding results. In Sec-
tion 5, we present our conclusions and avenues for future research.

2. Methodology
2.1. Support Vector Regression (SVR)

SVR constitutes a new and promising approach to data regres-
sion. SVR principles for regression are as follows. Given a dataset
of N elements {(X;,y;)i=1,2,...N}, N denotes samples in the
training dataset, X; is the i-th element of the N-dimension vector,
ie, Xi={X1,X2,...x,} €R", and y; € R is the actual value corre-
sponding to X;.
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In SVR, by mapping training data X; into the high I -dimensional
feature space, this feature space formulates an optimized hyper-
plane that also represents the non-linear relationship between
input (independent variables) and output data (dependent vari-
ables). This is the SVR function, which is written as Eq. (1).

f)=W'o@x) +b (1)

where f(x) denotes the forecasting values, W is the I-dimensional

weight factor, b is the adjustable factor, and ¢(x) is the map func-

tion of mapping X; into the high I-dimensional feature space.
Here, introduce the ¢ insensitive loss function defined as Eq. (2).

v = f(®)], = max(0, [y — f(%)| — &) (2)

Define the residual between the actual value y and forecasting
value f(x) using Eq. (3).

R(x.y) =y -f(x) (3)

The ideal regression includes the full residual within a range of
¢ as shown in Eq. (4).

—e<R(xy) <e (4)

The hypothesis for the entire training dataset satisfies Eq. (4).
Thus, the data are farthest from the hyperplane when the residual
is satisfied with R(x,y) = +¢. The distance between data (x, y) and
the hyperplane R(x,y) = 0 is defined as |R(x,y)|/||[W"|, and W" is
defined as Eq. (5).

w=(1,-w" (5)
We hypothesize that the maximum distance between the data
(x,y) and hyperplane R(x,y) = 0 is é. Thus, all training data are sat-

isfied by Eq. (6). Maximizing 6 means that the SVR model offers
maximum generalization capacity.

[R(x,y)| < oW (6)

A maximum distance is reached when |R(x,y)| = ¢, and thus Eq.
(6) can be rewritten as Eq. (7). To maximize §, |W"|| should be a
minimum value, and |W*|® = |W|]> +1 with the optimization
issue changing to a minimum ||W]||.

&= 68||W| (7)

However, some training errors may exceed the (—¢,¢) region,
and training errors of less than —¢ are denoted as & whereas a
training error exceeding ¢ is denoted as ¢&;. & and ¢& are defined
as Egs. (8) and (9), respectively. A schematic of ¢ and ¢&; is shown
in Fig. 2.

PR { 0 R(xf’yi) —& < 0 (8)
i R(x;,y;) — & others

_— 0 &€—R(x,y;) <0

= { e—R(x:,y)) others ®

The SVR focuses on finding the optimum hyperplane and mini-
mizing the training error between training data and the ¢ insensi-
tive loss function. Therefore, the SVR optimization objective
function is written as Eq. (10).

. 1 N
minF(W.b,&, &) =5 IWI?+CY (& +¢&) (10)
i=1

with the constraints:

Vi-Wlox)-b<e+g i=12,....N
Wox)+b-y <e+& i=12,... N
£>0¢8>0 i=12,....N

+ &

IR(x,v) =0

— &

-
X

Fig. 2. Schematic of &, &, —¢, +¢&.

where C is the parameter that trades off training errors and the
maximum distance between training data and the hyperplane
space. The first term of Eq. (10) is used to penalize large weights
to maintain regression function flatness, and the second term deter-
mines the balance between confidence and experience risk using
the ¢ insensitive loss function.

After the quadratic optimization problem with inequality con-
straints is solved, the [-dimensional weight factor W in Eq. (1) is
obtained as Eq. (11).

w—

=

(Bi = B)p(xi) (11)

1

Il
—_

where f; and f; are obtained by solving a quadratic program and are
the Lagrangian multipliers. Finally, the SVR regression function is
written as Eq. (12).

N
f@) =Y (B — B)K®x —x)+b (12)
i=1

1

where K(x; — x) is referred to as the kernel function, which is cap-
able of nonlinearly mapping the training data into a high [-
dimensional space. Thus, it is suited to addressing nonlinear rela-
tionship problems (e.g., electricity forecasting).

2.2. Other forecasting baselines

Several existing models focus on baseline load forecasting.
These models include the historic data average model, the historic
data average with morning adjustment method, the polynomial
regression model, etc. All of these models offer differing degrees
of prediction accuracy within specified limits [28-32]. Table 2 lists
all of the forecasting models examined in this paper. These base-
line models are explained below.

2.2.1. Baseline 1-3: M out of N baseline (N > M)

This baseline consists of hourly loads averaged across the “high-
est M out of N” most recent days with a selection criterion of the M
highest load days out of the preceding N days, where the N
excludes holidays and weekends. In this study, we selected three
typical models including 4 out of 5 baseline (BL-#1), 10 out of 10
baseline (BL-#2) and 5 out of 10 baseline (BL-#3) to compare with
our SVR baseline.
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Table 1
Baseline adjustment algorithms.

Number Type Simplified algorithm Pre-event hours
BL-#5 Load additive PBL + [load(pre-event hours)-PBL(pre-event hours)] 2 pre-event hours
BL-#6 Load ratio PBL * [load(pre-event hours)/PBL(pre-event hours) 2 pre-event hours

Note: in this table, PBL denotes the provisional predicted baseline, which uses historical data for calculations via the average method.

Table 2
Existing baseline models and the new SVR baseline.

Serial number Forecasting models

BL-#1 4 out of 5 baseline

BL-#2 10 out of 10 baseline

BL-#3 5 out of 10 baseline

BL-#4 Middle 4 out of 6 baseline

BL-#5 5 out of 10 baseline (morning additive adjustment)
BL-#6 5 out of 10 baseline (morning ratio adjustment)
BL-#7 10 day dry-bulb temperature regression baseline
BL-#8 New SVR baseline (10 pre-event days)

2.2.2. Baseline 4: Middle M out of N baseline (M = N —2)

The middle M out of the N baseline is similar to the M out of N
baselines except that the selection criterion for comparison days
involves dropping the lowest and highest load days out of the most
recent N days with no holidays or weekends. We chose the middle
4 out of 6 (BL-#4) as the model to compare with our SVR model.

2.2.3. Baseline 5 & 6: M out of N morning adjustment baseline
(N=M)

Two different baseline morning adjustment algorithms are con-
sidered in this evaluation method. One is the directed load additive
adjustment, and the other is the load ratio adjustment. We chose 5
out of 10 as the morning adjustment model with no holidays or
weekends. Table 1 provides a simplified overview of the two pro-
posed adjustment methods.

2.2.4. Baseline 7: N days regression baseline

The N days regression baseline is calculated using a regression
model consisting of a daily energy equation that uses the total
electric load as the dependent variable and 24 hourly energy frac-
tion equations. In each energy fraction equation, dependent vari-
ables constitute the fraction of the daily load occurring in each
hour of a day. Independent variables in this model include work
schedule variables and dry-bulb temperatures.

We chose the 10-day regression baseline type (BL-#7), with
hourly loads averaged over 10 days to form the dependent variable
and with the hourly dry-bulb temperature averaged over 10 days
to form the independent variables. The polynomial fitting function
is defined as Eq. (13).

Y=o+ ay * X + G + X2, (13)

where y is the dependent variable, which is standard hourly elec-
tricity loads. x; denotes the independent variables, which is stan-
dard for hourly temperature. ag, a; and a, are the polynomial
factors.

3. SVR baseline model and methodological development
3.1. SVR model

In this study, we propose a short-term load forecasting method
based on the SVR model. A set of historical data is used to train the
model to determine the optimal function relationship between the
input (independent variables) and output (dependent variables).
We then use this optimal function to predict outcomes. An SVR

model development and validation flow chart is shown in Fig. 3.
This model only needs real-time weather data to forecast the DR
baseline. The weather data is easily accessible from local meteoro-
logical agencies or field measurements. A case study of four office
buildings is used to evaluate the proposed model and the result is
promising.

3.2. Data source

We selected four large office buildings in eastern China as our
target sample. They are referred to as Office_1, Office_2, Office_3
and Office_4 as showed in Table 3.

We collected electricity load data (data time interval of 15 min)
for workdays from July 23, 2014, to August 6, 2014. The average
value per hour was recorded in the dataset. As in several metering
datasets, we found that a small amount of data were missing,

Historic data

Pre-processing

Valid data

Data divide

Normalization
v

Test dataset

Training

Impact factor analysis

Feature dataset

Normalization

A

Dataset

QWIOJINO UONIIPAL] |¢

SVR optimization

Fig. 3. SVR model development and validation flow chart.

Table 3
The detailed information of office buildings.

Office Floor Occupancy  HVAC system
number area rate (%)
(m?)

Office_1 42,820 85 Chillers for summer cooling and steam
heaters for winter heating

Office_2 45,000 95 Same as Office_1

Office_.3 40,111 85 Variable refrigerant volume (VRV) units
for cooling and heating

Office_.4 32,000 95 Same as Office_1
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potentially due to signal transmission failures or acquisition
instrument malfunctions. The pre-processing of these missing data
is necessary. For example, we employed a data interpolation
method to calculate the hourly average load for missing Office_3
11:30 AM, July 31th data. The interpolation method is defined as
Eq. (14):
D(tm):D(t 15)-5D(t+15) (14)
where D(t,) is the electricity load at time t,,, D(t — 15') is the elec-
tricity load 15 min before at time t,;, and D(t + 15') is the electricity
load after 15 min at time t,,.

When more than two data points were missing for one hour, all
data corresponding to that given hour were eliminated, and Eq.
(15) was used to calculate the load:

D(t—1)+D(t+1)
2

where D(ty,) is the electricity load at time t,,, D(t — 1) is the electric-
ity load before one hour at time t,, and D(t + 1) is the electricity
load after one hour at time ¢;,.

When more than two data points are missing over two consec-
utive hours, all data for that given day are eliminated. Fortunately,
we did not experience this when analyzing our sample dataset.

The load profile after data processing is shown in Fig. 4. In our
analysis of the SVR, we removed the weekend day load from the
model so that it did not include the weekend electricity load. DR
programs are usually applied for the hottest summer day. There-
fore, we used August 6th as the DR event day. Weather data were
collected from the local weather bureau, and weather files mainly
include dry bulb temperatures, dew point temperatures, pressure
levels, etc. Only dry bulb temperatures are used here.

D(ty) = (15)

3.3. SVR method development

The electricity loads of office buildings can be influenced by
several factors, including ambient parameters, electrical equip-
ment, working hours, etc. Therefore, there are many optional inde-
pendent variables in the SVR forecast model. In this study, to easily
calculate baselines, we use weather parameters and building work-
ing schedules as independent variables in the SVR model, as these
two variables are easy to obtain from DR programs. We use the
work schedule factor to reflect changes in building electricity con-
sumption. Furthermore, the EnergyPlus software program was
used to simulate the weather parameter’s influence on electricity

1800 ; . . i

consumption. These two independent variables are validated as
follows.

3.3.1. Working schedule factor

Working schedule factors referenced here mainly include the
times at which occupants come and leave. For the four office build-
ings examined, working hours run from 9:00 AM to 17:00 PM.
Fig. 5 shows the load profiles of four office buildings for August
6, 2014. The figure shows that the work load began to increase
two hours before working time and reached a stable value at
9:00. We also found that the increments for each building vary,
Office_2’s increment is the most abrupt while Office_4 and
Office_3’s increments are more gradual. The load increments of
each building are shown in Table 4. Likewise, most electrical equip-
ment was turned off at 17:00 PM, causing electricity loads to
decline. We conclude that working schedules critically affect elec-
tricity loads in different buildings.

3.3.2. Weather factor

We use EnergyPlus to establish a simulation office building.
This building model is based on the Chinese Design Standard for
the Energy Efficiency of Public Buildings. The standard require-
ment is very similar to ASHRAE 90.1 [34]. The main input param-
eter settings in EnergyPlus IDF files are illustrated in Table 5. The
total load demand for buildings is calculated separately under dif-
ferent meteorological parameters, where temperature parameter
settings for each model are illustrated in Table 6. In keeping other
parameters constant in EnergyPlus while only changing weather
parameters (dry bulb temperature), we obtained the building load
profile from 8am to 6 pm, which is shown in Fig. 6. From this fig-
ure, we can find that when the dry-temperature increase a small
little proportion (e.g. 10%), the total electricity load of the modeling
building increased nearly 20%. It can be concluded that building
electricity loads increase as outdoor dry bulb temperature is aug-
mented, which is also an important factor affecting building elec-
tricity loads, thus, we choose the dry-temperature as one of key
impact factor in our SVR model.

Furthermore, building construction and furniture constitute
cold/hot thermal storage mass, and this stored energy is released
when ambient temperatures change to act as a temperature buffer
(i.e., “thermal inertia”). Thermal inertia is defined by Ferrari S as
the heat storage capacity of a building structure and as its perfor-
mance in delaying heat transmission [35]. The thermal storage
mass delays ambient temperature effects on building interior tem-
peratures, delaying weather sensitive equipment electricity con-
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Fig. 4. Historic hourly electricity load profile.
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Fig. 5. Electricity load profile for August 6, 2014.

Table 4

Pre-event load increments of the four buildings studied.
Building NAME 7:00 to 8:00 AM 8:00 to 9:00 AM Average
Office_1 17% 26% 22%
Office_2 22% 1372% 697%
Office_3 136% 92% 114%
Office_4 488% 20% 254%

sumption. To improve the accuracy of the SVR forecast model, we
selected pre-event outdoor dry bulb temperature variables, includ-
ing six conditions: SVR real-time temperature (real-time T), SVR
pre-one-hourly average temperature (pre-one AT), SVR pre-two-
hourly average temperature (pre-two AT), SVR pre-three-hourly
average temperature (pre-three AT), SVR pre-four-hourly average

Table 5
Building information settings used in EnergyPlus.

temperature (pre-four AT) and SVR pre-six-hourly average temper-
ature (pre-six AT). We used electricity usage data for the four office
buildings for our analysis. The corresponding results are shown in
Table 7.

Table 7 shows that using the pre-event temperature can
improve prediction accuracy levels, and the pre-two AT model is
the most accurate. We use this forecasting model in the following
prediction.

From the above analysis, we conclude that working time and
outside dry bulb temperatures heavily influence the building elec-
tricity load. Thus, they were selected as independent variables, and
electricity load was used as a dependent variable. Table 8 presents
the training and test dataset of the SVR model (BL-8#).

In Table 8, x; denotes the dry bulb temperature, x, denotes the
daily time, y, denotes the forecasting load, i denotes the day, j

Input parameters Value Input parameters Value
Exterior wall heat transfer coefficient 0.97 W/(m?K) Infiltration wind 1ACH
Roof heat transfer coefficient 0.346 W/(m? K) Lighting 12 W/m?
Window heat transfer coefficient 2.5 W/(m?K) Equipment 15.7 W/m?
Shading coefficient 0.4 Air conditioning VRV

Building/air conditioning area 3800 m?

Table 6
Outdoor dry-bulb temperature settings used in EnergyPlus.

Time (h) Model_T1 (°C) (real-time) Model_T2 (°C) (10% increments) Model_T3 (°C) (20% increments) Model_T4 (°C) (30% increments)
8:00 25.3 27.8 304 329
9:00 26.2 28.8 314 34.1
10:00 27.1 29.8 325 35.2
11:00 28.0 30.8 33.6 36.4
12:00 28.8 31.7 34.6 374
13:00 29.5 325 354 38.4
14:00 30.0 33.0 36.0 39.0
15:00 303 333 36.4 394
16:00 304 334 36.5 39.5
17:00 30.1 33.1 36.1 39.1
18:00 29.4 323 35.3 38.2
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Fig. 6. Electricity load profiles based on different temperature models.
Table 7
Predicted mean errors of the different models.
Building Real-time T Pre-one AT Pre-two AT Pre-three AT Pre-four AT Pre-six AT
Office_1 1.77% 1.89% —0.62% 0.42% 1.02% —0.84%
Office_2 5.67% —1.90% 1.52% 1.85% 3.28% 2.65%
Office_3 6.28% 3.2% 2.05% 1.31% 1.04% 2.17%
Office_4 —3.41% —1.55% —2.08% —2.75% —3.12% —5.29%
MAE 4.28% 2.14% 1.57% 1.58% 2.12% 2.74%
Table 8 prediction accuracy in this paper, and evaluation methods are

Training and test dataset.

Variables Symbol Dataset category The range of i and j

X1 T(d;t;) Training dataset (i=1,...11;j=1,...24)
X Hj; wheni=11;j=1,...8
A 2] P(d;t;) Test dataset (i=11;j=9,...17)

denotes the hour corresponding to a given day, T(d;t;) denotes the
dry bulb temperature recorded during the j hour corresponding to
the i day, H; denotes the hour, P(d;t;) denotes the forecasting load
recorded during the j hour corresponding to the i day.

This novel SVM method aim at DR programs short time baseline
forecast. In our study, we choose the real office buildings’ electric-
ity data of ten days before the DR event (a virtual DR event from
9 am to 5 pm) as training dataset, then predicted the eight hours
electricity load during the DR event. There are 248 training data
points, eight test data points to validate the SVM predicted model
and concluded. This baseline is up to eight hours, thus, the novel
forecast methods is suitable to most of the office buildings’ DR pro-
grams nowadays which usually continually two to four hours.

3.4. Forecasting evaluation methods

Load forecasting involves the estimation of future loads. The
difference between the estimated future load and actual load is
the prediction error. This paper focuses on short-term DR electric-
ity load forecasting, as DR participants are more concerned with
the gap between the baseline and actual load during a DR event.
The absolute error (AE), mean error (ME) and mean absolute error
(MAE) during a response time are taken as evaluation standards of

expressed as Eqs. (16)—(18):

AE(t;) =D(t;) — P(t;) (i=1,2,...n) (16)
ME:WXWO% (i=1.2,...n) (17)
i=1 i
> Zizl[g([g(;:(tiﬂ « 100%
MAE = — (i=1.2,..mj=1,2,...m)
(18)

where D(t;) is the actual load at time t;, P(t;) is the prediction load at
time t;, n is the number of hours for the forecasting period, t;
denotes the time i, m is the number of sampled buildings, and j
represents one sampled building.

4. Comparison between the new baseline method and existing
methods

We applied the eight load baseline forecasting models (Table 2)
to the four office buildings, and we compared prediction load
results with the actual load to determine the forecasting accuracy
of these models. The predictive results of the four office buildings
during a virtual DR event from 9am to 5pm are shown in
Figs. 7-10, the detailed information of this four office buildings
as depicted in Table 3. The prediction mean error is listed in
Table 9.

It can be seen from Fig. 7 that the accuracy of all eight models is
acceptable. The mean error of BL-#8 is —0.62%, which is the best.
The worst one is BL-#3 with —1.28% of the mean error, which is



Y. Chen et al./Applied Energy 195 (2017) 659-670

T T T

Load/kW

700 T T T T

T T T T T

—a— Actual —e— BL_#1
—A—BL_#2 —v—BL_#3
—o—BL_#4 —<«—BL_#5
—>—BL_#6 —e—BL_#7

T T T T
9:00 10:00 11:00 12:00

T T T
13:00 14:00 15:00 16:00 17:00

Time/h

Fig. 7. Load prediction profile of Office_1.

1600 —

1400 —

1200 —

1000 —

Load/kW

800

600

400

200 T T T T

I I | I I I I I |
9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Time/h

Fig. 8. Load prediction profile of Office_2.

also acceptable. The prediction results are all close to the actual
loads. Fig. 8 shows that the curve of the BL-#8 model is smoother,
and predicted load of the BL-# 8 model tends to fluctuate around
the actual value, the same results can be found in other three
figures. For the BL-#5 and BL-#6 with morning adjustment, the
prediction result is very close to the actual load with the mean
error is 0.60% and 0.36% respectively. However, Figs. 9 and 10
present morning adjustment model (BL-#5, BL-#6) is the least
accuracy, especial for the BL-#6 model in office_3 with the mean
error up to —20.08%. For the historical data average models
(BL-#1 ~ BL-#4) without morning adjustment, the prediction
accuracy is acceptable.

Positive values in Table 9 indicate that a prediction value is less
than the actual value, and negative values indicate that a predic-
tion value is larger than the actual value. Table 9 indicates the pre-
diction trend is nearly consistent in different models, as shown in

office_1, office_2 and office_4. The prediction results are either
higher or lower than the actual loads. Also, this table shows that
the BL-#8 prediction model does not always offer the highest level
of prediction accuracy for all buildings sampled. For example, the
ME of the BL-#8 model for Office_1 building is —0.62% which is
lowest value, the ME of the BL-#7 model for Office_3 is the lowest
at 1.55%, the BL-#4 model presents the lowest ME value of —2.02%
for Office_4, and the BL-#6 prediction model offers better perfor-
mance for Office_2. For the BL-#5 and BL-#6 models with morning
adjustments, the prediction accuracy of Office_1 and Office_2 is
satisfactory while the results for Office_3 and Office_4 are the
worst. The BL-#7 model offers satisfactory prediction accuracy
levels for Office_3, Office_1 and Office_4, but it presents the lowest
degree of accuracy for Office_2. We can thus conclude that the
BL-#8 model generated the best results among the buildings
examined.
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Table 9
Predicted mean error (ME) of the four commercial buildings.
Building BL-#1 BL-#2 BL-#3 BL-#4 BL-#5 BL-#6 BL-#7 BL-#8
Office_1 —-1.20% 1.00% —1.28% —0.78% -0.83% —1.02% —1.04% —0.62%
Office_2 2.30% 2.91% 0.57% 2.30% 0.60% 0.36% 5.30% 1.52%
Office_3 2.61% 6.19% —1.58% 4.66% -7.67% —20.08% 1.55% 2.05%
Office_4 —2.26% —2.48% —5.10% —2.02% —8.95% —4.76% —3.53% —2.08%
MAE 2.09% 3.15% 2.13% 2.44% 4.51% 6.56% 2.86% 1.57%

In addition, while analyzing MAE, we found that the BL-#8
model is the most accurate, but the BL-#1, BL-#3, BL-#4 and
BL-#7 models offer satisfactory results as well. We also found from
Figs. 7-10 that not all prediction data points of the BL-# 8 model
present the highest levels of prediction accuracy, and occasionally,
its deviation from the actual load is larger than that of other

models as shown in Fig. 8. According to Figs. 9 and 10, the BL-#5
and BL-#6 models present higher values than the actual value,
indicating that the two models are not suitable for Office_3 and
Office_4 and that these models must categorize buildings to attain
higher levels of forecasting accuracy. The above analysis shows
that the BL-#8 model offers the highest degree of forecasting
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accuracy and that this model offers the most stable performance
for all four buildings examined.

5. Conclusions and future work

This paper proposes a new SVR method based on forecasting
models for calculating DR baselines of office buildings. A new
ambient temperature forward selected method are proposed in
this model. We compared the SVR forecasting model with the other
seven traditional forecasting models are used to calculate the DR
baselines. These seven models mainly include the simple average
model with historical data, the average model combined with
morning adjustments, and the outdoor dry bulb temperature poly-
nomial regression model.

We draw the following conclusions from this study. In this
novel SVR model we take the dry bulb temperature several hours
before the DR event as the temperature independent variable. For
office buildings, the MAE of real-time, pre-one, pre-two, pre-there,
pre-four and pre-six hours is 4.28%, 2.14%, 1.57%, 1.58%, 2.12% and
2.74% respectively, take dry bulb temperature pre-two hours can
improve the forecasting accuracy best. The accuracy of the SVR
model in forecasting the DR baseline of office building is much bet-
ter than traditional calculated methods, the MAE of SVR model is
1.57% in our four office building examples is the best. Compared
to other seven models the model is very generic and can be applied
to a wide variety of office buildings, the ME of our four office build-
ing examples is —0.62%, 1.52%, 2.05% and —2.08% respectively,
these predicted accuracy are more stable, and the predicted profile
of SVR model tends to be smooth, causing its prediction value to
fluctuate around the actual value. With morning adjustment mod-
els like BL-#5 and BL-#6 its prediction results are unstable, for BL-
#6 model, the ME of Office_2 is 0.36%, however the ME of Office_3
is up to —20.08%. Although these models are hottest in DR baseline
forecasting and offer a higher degree of prediction accuracy under
the building conditions classified in previous studies, we do not
think they serve as good generic method for improving DR
baselines.

The SVR model proposed in this paper is suitable for real-time
calculation, to expend the application and improve its efficiency,
this methodology will be made into a prototype toolkit in future
studies. And this toolkit can also be integrated in energy manage-
ment system or DR control platform to calculate the DR baseline
online.

We believe that SVR models can be used by utilities profes-
sional for baseline calculation in DR programs. However, this paper
only predicted the DR baseline for eight hours on working days,
some DR events may be shorter, and model prediction accuracy
levels may vary. In addition, only office building electricity loads
are forecasted in this paper while other buildings such as residen-
tial and industrial buildings are not studied. As the structures and
thermal masses of such buildings vary, the temperature advance
time may vary as well. Finally, other independent variables such
as occupancy rates, electricity price and building types in the
model should be cover, not all situations are analyzed here, and
so more detailed conclusions will require comprehensive analysis
in the future. Additional studies are needed to build a reliable fore-
cast baseline for different types of buildings commonly used in DR
events.
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