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Data-quality detection and recovery for building energy
management and control systems: Case study on submetering

YANGYANG FU, ZHENGWEI LI, FAN FENG, and PENG XU∗

School of Mechanical Engineering, Tongji University, No. 4800, Caoan Road, Jiading District, Shanghai, China

Most modern buildings are equipped with building energy management and control systems. These systems can store tremendous
amounts of data on buildings’ performance and energy usage. A significant amount of data on buildings’ mechanical devices,
particularly electricity-consumption data, is now available for analysis. However, the quality of the collected data is questionable.
Some data are mislabeled, and others contain gaps and errors. In this article, a methodology based on a correlation coefficient and a
wavelet-based support vector machine predictor is proposed to detect and recover the proportional deviation data faults and faults
caused by network communication. After testing this methodology with electricity data collected from a large commercial building, it
is found that a high accuracy of faulty data alerts and automated data recovery can be achieved. Considering the wide use of building
energy management and control system data for performance monitoring, fault detection and diagnostics, and demand responsive
control, this method is useful and practical in many engineering situations.

Introduction

The building sector consumes more than 30% of the total
energy worldwide (IEA 2010). An efficient way to alleviate
global warming and improve environmental sustainability is
to enhance building energy efficiency. To better track building
energy performance and power consumption, modern build-
ing energy management and control systems (EMCS) have
increasingly paid attention to storing control data and record-
ing energy usage. For example, all commercial buildings in
California are required to have electrical meters that record
data on 15-minute intervals. Building-control vendors are
building new functions in their control system, such as de-
mand response control, fault detection, and diagnostics. All
of these functions need clear and reliable data to support them
(Effinger et al. 2012).

Although modern EMCS have the ability and storage ca-
pacity to trend large amounts of data and perform preliminary
analyses, engineers claim that these data are rarely or never
used. One reason is that the quality of the trended data is poor.
EMCS were originally designed for control, not record saving
and performance monitoring. Some data are mislabeled, and
others contain gaps and errors (Smothers 2002).

To better track buildings’ electricity use, sometimes, more
than a whole-building electric meter is needed. For example,
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the California Public Utilities Commission (CPUC) issued
a decision on the sub-metering of electricity in multi-story
commercial buildings. By identifying where power is used or
wasted, submetering can help building owners and tenants not
only solve the split incentive issue but also know which build-
ing equipment and system needs upgrades or better manage-
ment and scheduling. Furthermore, to promote submetering,
the U.S. Department of Energy’s Buildings Technologies Pro-
gram announced one of its latest challenges: an initiative to
develop a $100 wireless submeter (DOE 2013).

Building EMCS data can be used in various ways, such as
detecting abnormal electricity usage behavior in whole build-
ings (Dodier and Kreider 1999; Fontugne et al. 2013a, 2013b;
Liu et al. 2010) and in components (Lee et al. 1996) and
conducting building performance analyses using comparative
methods (Guo et al. 2014). However, improper installation,
faulty sensors (for example, those that have completely failed,
are aging, or have calibration errors), environmental elec-
tromagnetic disturbance (O’Driscoll and O’Donnell 2013),
and interrupted signal transmission processes account for the
unreliability and inaccuracy of building EMCS data. These
problematic data could be detrimental to various schemes
that make decisions based on measurements. Therefore, the
timely detection and diagnosis of the occurrence and reli-
able recovery of faulty data are of primary importance to
performing the efficient operation and management of an
EMCS.

A conventional engineering method to find and correct the
faults is to follow the procedures that check and recalibrate
the sensors periodically (Pike and Pennycook 1992). This ap-
proach does not satisfy the requirements of EMCS, which
require reliable measurements for continuous online auto-
mated schemes. Some other simple recovery methods used in
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pre-processing problematic data, such as replacing them with
new ones that are randomly regenerated according to the mean
and the variance of the adjacent data, are efficient when han-
dling discretely obvious faulty data, such as a small scale of
zero and negative numbers, but are not applicable to continu-
ous and more subtle faulty data. Therefore, effective methods
for detecting, locating, and reconstructing poor sensor data is
highly desirable.

Although many studies have focused on the detection and
diagnosis of sensor faults, few have focused on data recovery,
let alone the combination of both. Maquin et al. (2000) pro-
posed an approach to finding an optimal solution of uncertain
models to recover data. However, the fact that the mathemat-
ical model of the reconciliation process requires all available
knowledge to prevent erroneous decisions makes it compli-
cated and difficult. Lee et al. (1997) presented a regression
model to recover estimates of supply air temperature after a
successful diagnosis of a temperature sensor fault. Those re-
covered data were then used in a feedback control loop to
bring the supply air temperature back to the setpoint value.
However, this recovery method is highly limited by the accu-
racy of regression models. Many other data-driven methods
have also been applied to address this problem. The princi-
pal component analysis (PCA) method has been presented for
fault detection and identification and the data recovery of flow
meters and temperature sensors in typical buildings’ central
air-conditioning systems (Chen and Lan 2010; Hao et al. 2005;
Wang and Chen 2004). Artificial neural network models have
also been proposed to detect, diagnose, and recover the faults
of outdoor airflow rate sensors and supply airflow rate sen-
sors, which accomplished the fault-tolerant control of outdoor
airflow (Wang and Chen 2002). Yang et al. (2014) proposed
the fractal correlation dimension (FCD) algorithm to detect
sensor faults and the support vector regression (SVR) process
model to provide references of sensor measurements.

To solve all EMCS data problems with one effort seems
impossible. Flow sensors and temperature sensors are prone
to mistake and errors. This study takes the first initial step in
addressing the more important and less sophisticated data-
quality problem for electric power meters. Although some
data-quality methods in this study are designed specifically
for power metering, the methodology and framework should
also work with other types of EMCS data. To understand the
common problems related to electricity meters currently being
used, electricity sub-metering data collected from more than
100 buildings has been investigated in this study. It was found
that installation faults and environmental disturbance are the
two major causes of the significant deviation of the records
of meters from the true value. Although explicit data-quality
faults, such as zero values or extremely high or low values, are
easily detected, some implicit data-quality faults with a small
but erroneous deviation from true values are difficult to detect
and recover.

To detect and recover faulty data, in either a continuous or
discontinuous mode and in both an explicit and implicit mode,
a methodology based on correlations and a wavelet-analysis-
based support vector machine (WASVM) predictor is devel-
oped in this article. The content of this article is organized
as follows: First, the common data-quality faults are inves-

tigated and categorized, followed by a complete data-quality
detection and recovery methodology in section 3. Then, a case
study on building sub-metering data is used to illustrate the
use of this methodology, and the discussion of this method is
provided in section 5. Finally, conclusions are given at the end
of the article.

Sub-metering platform and its common faults

A typical electric sub-metering system
Assuming there is a building where N(N1 + N2) electric ap-
pliances or aggregated electric appliances need to be metered,
the diagram of a typical electric sub-metering system is shown
in Figure 1. As shown, it is a system with multiple sensors:
In total, there are N electric sub-meters in the level 2 sub-
system and two others (it can be more than two) in the level 1
system. Each meter measures the current I that goes through
the appliance and sends it to the data-collection devices, from
which the data are relayed to the central data-management
platform. At the central data-management platform, current
I is further processed to derive power P for each appliance
using the following formula:

P = U I (1)

where U is a parameter previously stored in the data-
management platform, the value of which depends on the
type of electric meter (three phase three wire, three phase four
wire, or single phase).

Note that the utility meter provided by the utility company
can also provide electric energy consumption, although in a
much lower frequency. Denoting the total electricity energy
consumption recorded by the utility meter as Ru, the electricity
energy consumption by the ith level 2 electric sub-meter as Ri,
and the total electricity energy recorded by the level 1 electric
sub-meter as Rs, then Ri, Rs, and Ru follow this relationship:

Ru = Rs =
N∑
i

Ri (2)

Common data-quality problems related with electricity
sub-metering system
To understand data-quality problems in sub-metering sys-
tems, more than 100 buildings with electricity sub-metering
systems in Shanghai have been investigated. From their data-
management platforms and maintenance history records of
electricity meters, the authors have listed common data-
quality problems in Table 1, grouping them into four types
according to their consequences.

The first type is not a number (NAN), or zero fault, which
includes transmission system failure (fault a), meter failure
(fault b), and data-collection system failure (fault c). Faults
in this category are primarily hardware failures, which gener-
ally lead to the problems of “data missing” or “zero value.”
The second type is the negative fault, where negative data are
recorded, caused by an inverse current flow due to improper
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Fig. 1. A typical electric sub-metering system.

wiring. The third one is the proportional deviation fault, re-
sulting in power-consumption readings that are proportion-
ally smaller than the true value. This fault is commonly caused
by the losing phase in the current or voltage and wrong post-
processing parameters (faults e, f , and g). The fourth type is
the disturbance fault (fault h), which is primarily caused by
environmental disturbance around working meters. This fault
has nothing to do with the sub-metering system itself, and the
consequence is not as serious as the consequences of the other
faults. It should be noted that the noise and calibration bias
of the electric meter do not cause as much trouble as the faults
mentioned above, so they are not included in the fault list.

A completer data-quality detection and recovery methodology

Data fault-detection and data-recovery procedure
Because other faults are easy to detect, such as missing data
and zero or negative electricity consumption, only two types
of faults are discussed here: Type 1 faults are proportional
deviation faults, which cause collected data to deviate from
their true values proportionally for a long time unless main-
tainers correct them (faults e, f , g in Table 1); type 2 faults

are disturbance faults. Data with these types of faults change
drastically within a very short time and then return to normal
(fault h in Table 1).

A top-down fault-detection and data-recovery procedure is
proposed for these two faults (Figure 2). The data required in
this method include electric energy consumption recorded by
electric meters of utility company Wu, level 1 electric meter
Ws, and level 2 electric meters for all electric appliances Wi.
Because the meter from the utility company is more accurate
than the electric sub-meters, Wu is used as calibration bench-
mark at the very beginning. In the first step, three monthly
electric energy-consumption data (Ru, Rs, and sum of Ri) are
compared in a top-down approach; that is, the utility meter
data was compared (as calibration) and level 1 sub-meter data
(as calibrated) first, and then, level 1 sub-meter data (as cali-
bration) and level 2 sub-meter data (as calibrated) were com-
pared. If any deviations between the calibration meter and
the calibrated meter are larger than a predefined threshold
(Section 3.2), the authors continue to detect and recover the
faulty calibrated meters (Section 3.3).

Otherwise, the second step is used. Because environmen-
tal disturbances and deviations last for a short time, high-
resolution electricity-consumption data are required to detect

Table 1. Common data-quality problems with the electric sub-metering system.

Index Fault type Causes of the fault Consequences of the fault

a NAN or zero fault Transmission system failure No data transmitted to the central platform
b Electric meter failure No data recorded or zero
c Data collection system failure No data recorded or zero
d Negative fault Inverse current flow Negative electricity consumption
e Proportional deviation fault Missing one phase in the current Deviate from true value proportionally
f Missing one phase in the voltage Deviate from true value proportionally
g Wrong post-processing parameter Deviate from true value proportionally
h Disturbance fault Environmental disturbance Deviate significantly from true value in a short time
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Fig. 2. A two-step top-down fault-detection and recovery procedure.

such faults. In this method, hourly data are used. Similarly,
three hourly data (Ru, Rs, and sum of Ri) are compared in
a top-down approach. If any deviations larger than a prede-
fined threshold are found, then the authors go to type 2 faults
for further detection and recovery (Section 3.4); otherwise, the
detection processes were ended because no mismatch exists.

Determine the mismatch threshold
Denoting the calibration meter reading as Ra and the cali-
brated meter as Rc, the following index is used to evaluate the
mismatch extent:

δ = |Ra − Rc|
Ra

(3)

Because the electric energy consumption over a long period is
relatively reliable, a value of 5% is tentatively set as the initial
mismatch threshold. In other words, if δ > 5%, the calibrated
meter reading Rc will be regarded as abnormal and needs to
be calibrated.

Method to identify and recover type 1 fault
Once a monthly data mismatch is found among readings from
the utility meter, level 1 meters and level 2 meters, we start
the following process (Figure 3) to detect and recover type 1
faults, proportional deviation fault.

Denoting the difference between the electricity consump-
tion recorded by calibration sub-meter Ra and the sum of the
branch-calibrated electricity sub-meters

∑N
i=1 Rc,i as Rd, the

value of Pearson correlation coefficient Fi is used as a fault
indicator of the ith sub-meter due to the linear relationship
between the reading of the calibrated sub-meter and the value
of Rd (ideally, if only this fault exists, Rd will be equal to k•Rc,i,
where k is the proportion, i is the index of faulty sub-meters).
Thus, this fault indicator Fi of the ith branch electricity sub-

meter is calculated as follows:

F = Cov (Rd , Rc,i )
σ (Rd ) σ (Rc,i )

(4)

where σ denotes the standard deviation of the variable.
Based on the value of Fi, the fault counter for the ith sub-

meter, COi is calculated following the procedure shown in
Figure 3. First, for each month, a fault indictor for the ith
sub-meter (Fi) is calculated. If Fi is larger than a threshold
Fi,th (e.g., 0.85), which has been trained and identified using
a large amount of reliable testing data of the same building,
the proportional deviation fault is identified, and the corre-
sponding fault counter (COi) is added by 1. Otherwise, the
authors think some electric appliances have not been metered
in the lower branch, which accounts for the difference detected

Fig. 3. Identification of proportional deviation fault.
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in the very beginning. In this case, the authors propose the
value of COi stay unchanged. When the iteration process fin-
ishes, if the value of COi exceeds fault counter threshold COth
(e.g., 6 in the case of 1-year data), the ith sub-meter is declared
as faulty.

Denoting the number of faulty branch electricity sub-
meters as Nf, the reading of the kth faulty branch electricity
sub-meter as Rk, and the difference between the sum of the
calibrated sub-meters and the calibration meter as Rd, to find
the true value of the kth faulty sub-meter Rt,k, the following
algorithm is used:

r = Rk∑Nf

k=1 Rk

(5)

Rt,k = Rf,k + rk Rd (6)

Method to identify and recover the type 2 fault

Wavelet analysis
Wavelet analysis with the ability to reduce noise and analyze
the local characteristics of the nonlinear and nonstationary
signals is the localization analysis of the time (space) and fre-
quency. Through the telescopic shifting operation, the signals
will be refined multiple times to achieve time subdivision at a
high frequency and frequency subdivision at a low frequency.
In this article, the electricity-consumption series are treated as
signals R(t).

Discrete wavelet transform (DWT) is used as the pre-signal
processor, which will obtain the approximation signal ai(t)
and the detail signal di(t) corresponding to resolution j (1 ≤
i ≤ j). Assuming that i gradually increased from 1 to j, the
decomposition structure is shown in Figure 4. Therefore, the
wavelet decomposition of signals R(t) can be obtained with
Equation 7.

R (t) =
j∑

i=1

di (t) + a j (t) (7)

Wavelet reconstruction can be achieved simply by summing
up all detail signals and the last-level approximation signal
based on Equation 7.

SVM
The SV algorithm is within the framework of statistical learn-
ing theory, which has been developed over the last four decades
by Vapnik (Vapnik and Chervonenkis 1974). It is a nonlinear

Fig. 4. Approximation signals and detail signals of signal x(t) at
resolution j.

generalization of the generalized portrait algorithm, based on
the structural risk minimization (SRM) inductive principle.
Due to the SV kernels, training SVM is equivalent to solving
a linearly constrained quadratic programming problem; thus,
a globally optimal solution can be found.

In this article, ε-SV regression is considered. Suppose train-
ing data was given {(x1,y1). . .(xi,yi)⊂X×R}, where X denotes
the space of the input patterns (e.g., X = R

d), and l is the
number of training samples. The goal is to find a function
f (x) that has at most ε deviations from the actually obtained
targets yi for all training data and is simultaneously as flat as
possible. In other words, the authors do not care about errors
as long as they are less than ε, but will not accept any deviation
larger than this. SVM approximates the functions f , taking the
following form:

f (x) = 〈w,φ (x)〉 + b (8)

where 〈, 〉represents the dot product in X , and ϕ(x) repre-
sents the high-dimensional feature spaces that are nonlinearly
mapped from input space x. Flatness in the case of Equation
8 means that one seeks a small w; one way to find a small w is
to minimize the norm. Coefficients w and b are estimated by
minimizing the following regularized risk function:

1
2

∥∥w2
∥∥ + C

l∑
i=1

ζε (yi , f (xi )) (9)

where the first term 1
2‖w2‖ is called regularized term, and the

second term is related to empirical risk function. The standard
setting in the SV case is the ε-insensitive loss function, taking
the following form:

ζε (yi , f (xi )) =
{ |yi − f (xi )| − ε, |yi − f (xi )| ≥ ε

0, otherwi se (10)

Figure 5 depicts the situation graphically. If the predicted value
is within the ε tube (the shaded region), the loss is zero, whereas
if the predicted point is outside the tube, the loss is penalized in
a linear fashion. As the regularization constant, C determines
the trade-off between the flatness of f and the amount up to
which deviations larger than ε are tolerated.

So in standard SVM, Equation 9 can be formulated as
Equation 11:

min
w,b

1
2

∥∥w2
∥∥

s.t.
{

yi − 〈w,φ (xi )〉 − b ≤ ε

〈w,φ (xi )〉 + b − yi ≤ ε

(11)

The tacit assumption in Equation 11 is that such a function
f actually exists and approximates all pairs (xi, yi) with ε

precision, or in other words, the convex optimization problem
is feasible. However, this may not be the case, or there might be
an allowance for some errors. Hence, slack variables ξ i, ξ i

∗ are
introduced to cope with the otherwise infeasible constraints
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Fig. 5. The soft margin loss setting for a linear SVM (Smola and Schölkopf 2004).

of the optimization problem (Equation 9) and then a new
optimization problem is formulated in Equation 12:

min
w,b,ξi ,ξ

∗
i

1
2

∥∥w2
∥∥ + C

l∑
i=1

(
ξi + ξ ∗

i

)

s.t.

⎧⎨
⎩

yi − 〈w,φ (xi )〉 − b ≤ ε + ξi
〈w,φ (xi )〉 + b − yi ≤ ε + ξ ∗

i
ξi , ξ

∗
i ≥ 0

(12)

In most cases, the optimization problem (Equation 12) can be
solved more easily in its dual formulation:

L = 1
2

∥∥w2
∥∥ + C

l∑
i=1

(
ξi + ξ ∗

i

) −
l∑

i=1

(
ηiξi + η∗

i ξ
∗
i

)

−
l∑

i=1

ai (ε + ξi − yi + 〈w,φ (xi )〉 + b)

−
l∑

i=1

a∗
i

(
ε + ξ ∗

i + yi − 〈w,φ (xi )〉 − b
)

(13)

Here, L is the Lagrangian, and ηi, ηi
∗, αi, αi

∗ are Lagrange
multipliers. Hence, the dual variables in Equation 13 have to
satisfy positivity constraints, such as:

ηi , η
∗
i , ai , a∗

i ≥ 0 (14)

It follows from the saddle point condition that the partial
derivatives of L with respect to the primal variables (w, b, ξ i,
ξ i

∗ ) have to vanish for optimality.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂b L =
l∑

i=1
(a∗

i − ai ) = 0

∂w L = w −
l∑

i=1
(ai − a∗

i )φ (xi ) = 0

∂ξi L = C − ai − ηi = 0
∂ξ∗

i
L = C − a∗

i − η∗
i = 0

(15)

Substituting Equation 15 into Equation 13 and eliminating ηi,
ηi

∗, one can yield the dual optimization problem:

max
ai ,a∗

i

⎧⎪⎪⎨
⎪⎪⎩

− 1
2

l∑
i, j=1

(
ai − a∗

i

) (
a j − a∗

j

) (
φ (xi ) , φ

(
xj

))

−ε
l∑

i=1

(
ai + a∗

i

) +
l∑

i=1
yi

(
ai − a∗

i

)

s.t.
l∑

i=1

(
ai − a∗

i

) = 0, ai , a∗
i ∈ [0, C] (16)

By solving Equation 16, we can get Lagrange multipliers αi,
αi

∗. Replacing w with the results from equations in Equation
15 can obtain the regression function:

f (x) =
∑l

i=1

(
ai − a∗

i

)
φ (xi ) · φ (x) + b (17)

By introducing kernel function K(x,y), Equation 17 can be
rewritten as follows:

. f (x) =
∑l

i=1

(
ai − a∗

i

)
K (xi , x) + b (18)

Kernel function K(xi, x) is also called an SV kernel if it satis-
fies Mercer’s condition (Campbell et al. 2006). Typical kernel
functions include, for example, a linear function, a polyno-
mial function, and the Gaussian function. Among these func-
tions, the Gaussian function is well-suited for representing the
complex nonlinear relationship between the input and out-
put. Furthermore, using the Gaussian kernel functions, the
computations can be directly performed in the input space,
rather than in the feature space; thus, computational cost can
be reduced. The Gaussian function is shown as follows:

K
(
xi , xj

) = e−γ ·‖xi −xj‖2

(19)

where the γ is the kernel parameter.
When training SVM models, two free parameters need to

be identified: kernel parameter γ and regularization constant
C. Many articles have discussed the influence of SVM parame-
ters on the SVM training models (Chang and Lin 2011; Dong
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Fig. 6. WASVM predictor-based data problem detection and recovery for environmental disturbance.

et al. 2005). Theoretically, Parameter C determines the trade-
off between the flatness of f and the amount up to which
deviations larger than ε are tolerated. For example, a small
value of C will under-fit the training data because the weight
placed on the training data is too small thus resulting large
training error. And when C is too large, SVM will over-fit the
training data, which means 1

2

∥∥w2
∥∥ will lose its meaning and

the objective goes back to minimize the empirical risk only.
Here, to avoid mistakes resulting from user-supplied param-
eters, the authors use the genetic algorithm to minimize the
training error by tuning these two parameters.

Detection and recovery for type 2 fault
A WASVM predictor is introduced to detect the data-quality
problem caused by environmental disturbance, which is illus-
trated in Figure 6.

Before the start of scheme, the WASVM predictors for each
branch are trained offline. The training process is described in
Figure 6. First, because it was known exactly in which hours
fault 2 happens via the “two-step top-down procedure” in Fig-
ure 2, the historical electricity consumption data before that
hour are chosen as training and testing data. Then, the train-
ing data are decomposed into approximation signals and detail
signals by DWT according to resolution j. These decomposed
signals as separate target values, along with input variables
X , are then used to train SVM models. The prediction results
are summed up to reconstruct the final electricity consump-
tion prediction value. Testing data are used to evaluate the
performance after the WASVM models are trained.

To evaluate the prediction model’s performance, two in-
dexes are introduced: normalized root mean square error
(CVRMSE) and normalized mean bias error (NMBE). De-
noting the number of prediction points as l, the predicted
electricity usage as Rp,i (0 ≤ i ≤ l), and the true electricity
usage as Rt,i (0 ≤ i ≤ l), the values of CVRMSE and NMBE
are calculated as follows:

CV RMSE =
√

l
∑l

i=1

(
Rp,i − Rt,i

)2

∑l
i=1 Rt,i

(20)

NMBE =
∑l

i=1

∣∣Rp,i − Rt,i
∣∣∑l

i=1 Rt,i
(21)

Finally, the authors use the reconstruction value to detect the
environmental disturbance fault, which lasts a short time. If
the difference between the reconstruction value and the read-
ing of the detected meter is larger than the WASVM predictor
error NMBEmodel, then this type of fault is detected and con-
sequently recovered corresponding to that predicted value.
Otherwise, the next meter data was checked with the same
procedure.

Case study

In this case study, electricity submetering data collected from
a large office building archive in Shanghai during 2013 are
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Fig. 7. A sub-metering system in the case-study building.

used. The electricity sub-metering system in this building is
illustrated in Figure 7. This system includes 48 sub-meters in
total: 4 level 1 meters and 44 level 2 meters. Major electricity
consumers in this building are listed in Table 2; they include
chillers (No. 1-No. 3), boilers (No. 1-No. 3), and a lighting
system for, e.g., office buildings and storage space.

In the original data, electric utility bills, the readings of level
1 electricity meters and the sum of level 2 sub-meters match
very well (both within 2%). To illustrate the methodology pro-
posed in this paper, faults A, B, and C are introduced into the
data, as shown in Table 3.

Fault A: Proportional deviation (multiple faulty meters
calibrating similar equipment)

In this testing case, the readings of two branch sub-meters
(W1 and W2) deviate proportionally (one-third smaller) from
the true data. As a result, the mismatch extent δetween
level 1 submeter and the sum of the branch submeters
is 7.2%.

Table 2. Major electricity consumers in Shanghai archive.

Index Type of system
Component

name

Sub-
meter
name

Energy con-
sumption

percentage

1 Air-
conditioning

No. 1 chiller W1 11.2%

2 Air-
conditioning

No. 2 chiller W2 10.5%

3 Air-
conditioning

No. 3 chiller W3 9.4%

4 Air-
conditioning

No. 1 boiler W4 15.5%

5 Air-
conditioning

No. 2 boiler W5 10.8%

6 Air-
conditioning

No. 3 boiler W6 16.4%

7 Lighting Office
building
lighting

W7 9.4%

Based on the detection procedure in Figure 3, the fault
counters for W1 (COW1) and W2 (COW2) are, respectively, 11
and 10, whereas the fault counters for other sub-meters are
all below 6. Thus, the proposed algorithm successfully detects
the faulty sub-meters (Table 4). The faulty sub-meters are then
recovered according to Equations 5 and 6. To quantify the
performance of the recovery algorithm, the Euclidean norm
of the sub-meter reading error (EN) before and after the data
recovery is used. The results are shown in Table 5. It can be
seen that the proposed algorithm is able to fully recover the
faulty meter, with EN reduced to 0 for both W1 and W2.

Table 3. Data faults in the sub-metering system.

Index Fault Consequence

Faulty
sub-meter

name

A Missing one
phase in the
current

Proportional
deviation
(deviate 33%
from true data)

W1 and W2

B Missing one
phase in the
current

Proportional
deviation
(deviate 33%
from true data)

W1 and W4

C Environmental
disturbance

Short-term
dramatic change
(deviate
40∼60% from
true data)

W1

Table 4. Faulty meter detection results.

Testing case Results

Fault A Faulty meters (W1 and W2) are successfully
detected, no false detection

Fault B Faulty meters (W1 and W4) are successfully
detected, normal meters W5 and W6 are
wrongly detected

Fault C Faulty meter (W1) is successfully detected,
no false detection
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Table 5. Faulty meter recovery results.

Testing
case

ENW1
(before
recover)

ENW1
(after

recover)

ENW2
(before
recover)

ENW2
(after

recover)

ENW4
(before
recover)

ENW4
(after

recover)

Fault
A

482.2 0 413.9 0 / /

Fault B 482.2 0 / / 2521.0 545.9
Fault

C
219.4 20.3 / / / /

Fault B: Proportional deviation (multiple faulty meters
calibrating different equipment)

In this testing case, the readings of two branch sub-meters
(W1 and W4) deviate proportionally (one third smaller) from
the true data. As a result, the mismatch extent δ between level
1 sub-meter and the sum of the branch submeters is 8.9%.

Applying the fault-detection procedure shown in Figure 3,
the fault counters for W1 (COW1) and W4 (COW4) are 6 and
7, respectively. In addition to W4, the fault counters for W5
and W6 exceed 6. Based on the threshold setting (COth = 6),
faulty meters W1 and W4 are successfully detected, but false
alarms are issued for normal meters W5 and W6. The faulty
sub-meters are then recovered according to Equations 5 and 6.
It can be seen that although W1 is fully recovered, W4 is only
partially recovered. The successful recovery of W1 should be
attributed to different operation periods of chillers and boil-
ers, which are used in summer and winter separately. Because
W4, W5, and W6 have similar operation schedules, recovering
W4 is interfered with by W5 and W6. As a result, a reading
mismatch (Rd) between level 1 meters and branch meters is
distributed among these three meters. However, this kind of
false alarm influences little in a real building, because main-
tainers will check the faulty meters once they have received the
detection signal. If they find that W5 and W6 have nothing
wrong with their current or voltage phase, then the reading
mismatch will not be distributed to the incorrectly detected
meters.

Fault C: Environmental disturbance

In this testing case, the external environment causes a sudden
change (60, 40, and 50%) in the reading of W1 from 12:00 pm
to 2:00 pm on September 21, 2013. The consequence of this
change for the level 1 meter reading is shown in Figure 8. Due
to the large difference between the level 1 meter and the sum of
the branch sub-meters from 12:00 pm to 2:00 pm (14.2, 12.1,
and 12.6%), the fault is detected in the hourly data mismatch.

Then, the authors need to train the proposed WASVM
model to predict each branch to locate and recover the faulty
one. The training data are selected from sub-metering data
from June 1 to September 17. The sub-metering data from
September 18 to September 20 are selected as testing data.
Training inputs in t moment include dry bulb temperature of
current and previous s time period (Tdb[t],Tdb[t – 1],. . .,Tdb[t
– s]), radiation of current and previous time period (GSR[t],
GSR(t – 1],. . ., GSR[t – s]), dew point temperature(Tdp[t]) and
nonworkday/workday information encoding with 0 and 1.
In this case, s equals 5, so there are, in total, 14 inputs in t
moment.

To detect fault C, WASVM models are trained in the level
2 branch. Before the training, the authors need to decide the
value of resolution j in wavelet decomposition. The larger the
resolution j is, the more SVM models are trained. In branch
W1, the WASVM predictors performance NMBE varies little
as the resolution j increases from 4 to 5 (Figure 8). So along
with considerations about time cost in training SVM models,
the decision was made to choose j = 4 in this case study. The
wavelet decomposition of branch W1 with resolution j = 4
is plotted as an example in Figure 9. The original signal S is
decomposed into high-frequency detail signals (d1 – d4) and
low-frequency approximation signals (a1), which are then used
to train the SVM models as output variables. Figure 10 shows
the reconstructed testing value and true testing value of W1.
The performances of some other WASVM models are listed
in the Table 6.

After the predictor is established, the authors have the pre-
diction error interval with the ±NMBEmodel. From Figure 11,
it can be seen that the faulty readings located beyond the error
interval can be easily detected and sequentially recovered with
the predicted value.

Fig. 8. WASVM predictors performance NMBE in branch W1 with different resolution j.M
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Fig. 9. Wavelet decomposition of branch W1.

Discussions and limitations

In previous testing, the number of faulty sub-meters is lim-
ited to two in the case of the proportional deviation fault
and limited to one in the case of the environmental distur-
bance fault. To understand the limitation of the new method,
testing is further conducted when the number of faulty sub-
meters increases. The following two observations have been
made:

For proportional deviation faults, when the number of
faulty meters increases, the correlation between the mismatch
quantity and the faulty sub-meter readings decreases. For ex-
ample, when the proportional deviation fault occurs to three
sub-meters (W1, W2, and W4) simultaneously, the fault coun-
ters for W1 (COW1), W2 (COW2), and W4 (COW4) drop to 5,
4, and 6, respectively. Considering the existence of other sub-
meters with similar operation schedules, lowering the fault
diagnostics threshold COth (six times a year) will increase the

Fig. 10. Comparison of reconstructed signals and original signals.
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Fig. 11. Detected faulty data in fault C.

Table 6. WASVM predictor performance of some branches.

Branch NMBE CVRMSE

W1 0.11 0.20
W2 0.13 0.25
W3 0.13 0.27
W4 0.09 0.21
W5 0.13 0.30
W6 0.12 0.23
W7 0.05 0.09

false alarm rate. Thus, in this particular case, the performance
of the proposed method is acceptable only when the number
of faulty sub-meters is less than three.

For environmental disturbance faults, the following should
be noted: This method depends heavily on the prediction ac-
curacy of WASVM models, which primarily rely on the qual-
ity of training and testing data. Therefore, before the first
WASVM models are trained, the data quality manually should
be checked to get rid of obvious faults. Once those data are
checked one time, there is no need to do so again in future
because the dependable WASVM model can check the com-
ing data. Furthermore, it is time-consuming to train these
WASVM models when the size of the training data is large, so
the appropriate size of the training data should be considered.

The accuracy of the method strongly depends on the thresh-
olds. In the method, when judging the mismatch between the
level 1 meter and the branch sub-meter, a difference of 5% is
used as the threshold, and the results seem to be reasonable.
When identifying the level 2 sub-meter with fault 1, a correla-
tion coefficient of 0.85 is used as the threshold. However, this
choice is dependent on the particular case. For example, if the
building type is no longer the office building used in our case
and has a different operation schedule (e.g., electric appliances
in hotel buildings), 0.85 might be too high to exclude normal
meters. Thus, user needs to retrain and readjust the thresholds
when the situation changes.

Conclusions

The EMCS data-quality problem has been a long-standing is-
sue in the building industry. This article proposes a systematic
methodology to detect and diagnose data faults in the EMCS
system and use electricity sub-metering as the first step of the
trial. Data faults that are hard to detect by simple rules are
grouped into type 1 and type 2 faults. They are proportional
deviation faults and environmental disturbance faults. A cor-
relation coefficient method is presented to detect and recover
proportional deviation faults, and a WASVM predictor is in-
troduced for environmental disturbance faults. Testing this
methodology using data collected from an office building was
successful. It was found that a high accuracy can be achieved
given a small number of faulty sub-meters (less than three for
type 1 faults) during the period. Considering the low possibil-
ity of simultaneous multiple faults, this method is practical in
real situations.

Nomenclature

Roman symbols

a = approximation signals in the wavelet decomposition
b = coefficient of the hyperplane f
C = regularized constant in regularized risk function
CO = fault counter in proportional deviation fault
Cov = covariance
d = detailed signals in the wavelet decomposition
EN = euclidean norm of the sub-meter reading error
f = the hyperplane SVM model approximates
F = Pearson correlation coefficient between the reading

of the calibrated sub-meter and the mismatch differ-
ence, used as fault indicator in Proportional Deviation
Fault.

I = current in a submeter
K = kernel function
l = number of training samples
N = total number of specific submeters
P = power measured by a submeter
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R = reading of an electric meter
U = voltage in a submeter
w = coefficient of the hyperplane f
W = the branch submeter
x = input space formed by SVM model independent vari-

ables
y = SVM model dependent variables

Greek symbols

ζ = risk function
ε = tolerance in ε-insensitive loss function
δ = mismatch extent between the calibration me-

ter and the calibrated meter
ξ , ξ ∗ = slack variables
φ = the high-dimensional feature spaces that are

nonlinearly mapped from input space X
ηi, ηi

∗, αi, αi
∗ = Lagrange multipliers, also dual variables in

the dual optimization problem
γ = kernel parameter in the Gaussian kernel

function
σ = standard deviation

Subscripts

a = calibration meter
c = calibrated meter
i,k = number index
j = resolution in the wavelet decomposition
s = the summed electricity consumption recorded by level

1 or level 2 electric sub-meters
th = threshold
t = true value
u = utility meter
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