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H I G H L I G H T S  

• Review of feature engineering research for HVAC energy forecasting models. 
• A novel feature engineering method for exploring informative features. 
• An easy-to-use, high-accuracy toolkit for demand response baseline calculation. 
• Comparative tests verify the stability and accuracy of this energy prediction toolkit. 
• The average CV-RMSE of the target models for hourly energy prediction is <8%.  
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A B S T R A C T   

The peak load caused by heating, ventilation, and air-conditioning (HVAC) systems is one of the main control 
targets of a demand response (DR) program. One key issue related to DR is the baseline energy consumption 
forecasting based on which the DR strategies and performance can be evaluated. Data-driven models, as a 
promising method for HVAC energy prediction, have been widely studied. But most existing researches have 
focused on developing complicated algorithms rather than exploring informative features. In this study, a 
comprehensive review of feature engineering for HVAC energy prediction model development is presented. A 
novel feature engineering method is roposed. Besides, an easy-to-use, high-accuracy HVAC energy forecasting 
toolkit that is applicable to datasets of various granularities is developed. This toolkit uses easily available 
meteorological parameters and raw historical energy data as inputs, on which it performs data preprocessing, 
feature extension, and integrated optimization, thereby producing the predicted data. By employing a novel 
feature extension strategy and integrated optimization of feature selection and hyperparameter tuning, this 
toolkit performs capably in terms of prediction accuracy and stability. The results of a comparative experiment 
conducted on large-scale data verify that the average forecasting error (measured in terms of the coefficient of 
variation of the root mean square error) is <8%.   

1. Introduction 

Demand response (DR) refers to incentives or programs designed to 
motivate end-users to adapt their normal electricity use behavior when 
grid stability is jeopardized. By shifting energy packages from on-peak 
periods to other periods, DR effectively ensures grid reliability and re
duces grid capacity. DR is currently garnering increasing attention in 
China with the escalating electricity demand. Several active and passive 
DR strategies have been proven to be feasible in curtailing peak loads. 
However, a key challenge to be addressed for DR implementation is 

baseline estimation, which enables DR performance to be measured. DR 
performance is calculated as the reduction in electricity consumption 
compared with the baseline load, which is an estimate of electricity that 
would be consumed by end-users in the absence of demand curtailment 
strategies. Accurate calculation of the baseline load not only supports 
fair compensation of DR participants but also provides useful informa
tion to system operators. In commercial buildings, where the peak load 
is mainly caused by the heating, ventilation, and air-conditioning 
(HVAC) electricity demand, it is important to predict the future HVAC 
load accurately. 
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Two main types of HVAC energy forecasting methods exist depend
ing on whether physical or data-driven models are used. Data-driven 
models are superior to physical models in terms of convenience and 
prediction accuracy. Developed with large amounts of historical oper
ational data to capture the complex and nonlinear relationship between 
input and output variables, data-driven models are devoid of detailed 
geometrical information regarding buildings and often provide more 
accurate results. Feature engineering, the most important step for data- 
driven model development, refers to the process of creating features that 
enable algorithms to function through the use of domain knowledge. 
Feature engineering determines the upper limit of model performance. 
Well-engineered features can help achieve highly accurate predictions 
with simple algorithms [1]. However, most existing studies have focused 
on developing complicated algorithms rather than on feature engi
neering. The features employed in the most studies are limited to 
directly observable meteorological parameters and time indices. 

In this study, we present a comprehensive review of existing energy 
prediction research for DR program and feature engineering research on 
data-driven models for HVAC energy forecasting. We then propose an 
HVAC energy forecasting toolkit. This toolkit requires easily available 
data as inputs but offers a higher prediction accuracy owing to its novel 
feature engineering strategy. It is easy to use for both DR participants 
and system operators, and it can also be used for other practices 
involving HVAC load forecasting, such as district energy planning [2], 
building retrofitting [3], fault detection and diagnosis for energy sys
tems [4], and energy policy making [5]. As this toolkit is free of using 
building characteristics, it is applicable for residential sector as well as 
commercial sector. With the rapid development of Internet of Things 
(IoT), more smart devices will be embedded into buildings. It is 
encouraged to integrate this toolkit with IoT system for DR program 
implementation in both smart homes and commercial buildings. The 
data collected from sensors and meters deployed in IoT systems can be 
sent to this energy forecasting toolkit for knowing energy demand in 
advance [6]. 

This paper is organized as following structure: Section 2 presents a 
detailed review on energy prediction models and feature engineering 
strategies employed by previous studies. A detailed description of the 
toolkit development is provided in Section 3. A comparative experiment 
was conducted using data collected from 20 commercial buildings to 

validate the usefulness of the toolkit. The data and comparative baseline 
models are described in Section 4. The calculation results are discussed 
in Section 5. In Section 6, we present our conclusions. The contributions 
and novelty of this study can be summarized as follows: 

The majority of existing research on energy prediction models fo
cuses on new and complicated machine learning algorithms. This study 
emphasizes and proves that feature engineering rather than algorithm 
plays a decisive role in performance of data-driven energy prediction 
models. A comprehensive review of features used in existing energy 
prediction models are analyzed and summarized. 

A novel feature engineering method along with integrated feature 
selection and model hyperparameter optimization mechanism are pro
posed based on which a compact toolkit for DR baseline calculation is 
developed. This toolkit is easy to use and is suitable for a variety of 
application scenarios. 

The accuracy and stability of the proposed DR baseline calculation 
toolkit are validated to be fairly acceptable based on large-scale com
mercial building dataset. 

2. Literature review 

2.1. Existing energy forecasting research for DR program 

DR can be taken as a set of methods that help balancing supply and 
demand. Energy prediction for supply side and demand side are equally 
important especially as unstable renewable energy sources are increas
ingly applied by DR programs to reduce peak demand. On the one hand, 
knowing demand load in advance can help to develop suitable strategies 
for end-users. On the other hand, predicting the amount of energy to be 
supplied during the upcoming period can help to contribute a better 
management of disparity between supply and demand [6]. Researchers 
have tried various novel methods and algorithms to improve predicting 
accuracy for both scenarios. Kebir et al. employed backpropagation 
combined to chi-squared method for weighting historical data to predict 
short-term demand peak load [7]. Alduailij et al. compared the predic
tion accuracy of different data-driven models including linear regres
sion, dynamic regression, ARIMA, artificial neural network, and deep 
neural network, and found that ARIMA with exogenous variables out
performed all other models [8]. In the project of demand response in 

Energy predictive data-
driven models

Univariate models Multivariate models

AR

ARMA

ARIMA

ARIMAX

Machine 
Learning

Deep Learning

Support vector 
regression 

Artificial neural 
network

Tree models

Single 
model

Ensemble 
model

Bagging

Boosting

Stacking

Fig. 1. Classification of data-driven models for building energy prediction.  
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blocks of buildings, Dawood developed a new software named Local 
Energy Manager to predict energy demand a day ahead. The Local En
ergy Manger used the algorithm of Exponentially Weighted Extended 
Recursive Least Square (EWE-RLS) algorithm which was developed 
based upon a standard Kalman filter [9]. The load of single residential is 
always more volatile than the aggregated load at building levels. In 
order to solve this problem, Estebsari et al. developed a hybrid model 
based on time series encoding and convolutional neural network (CNN). 
Their proposed method reached a mean absolute percentage of error of 
around 12% [10]. Coincidently, Aprillia et al. proposed an open-ended 
prediction method which incorporated whale optimization algorithm, 
discrete wavelet transform, and multiple linear regression model to 
handle unsteady variation of end-user load as well we steady system 
load [11]. Deep learning algorithms, especially long short memory 
(LSTM) and its adapted version were used for time series prediction and 
obtained satisfactory results. Khan et al. proposed a system which 
employed one dimensional CNN and LSTM for load forecasting and 
scheduling operational times of appliances. The scheme was proved to 
be able to save 2.223kWh of energy per day after scheduling for one day 
and 78.79kWh of energy per day after scheduling for one month [12]. 
Khalid et al. used multiple variables as input for LSTM to predict 

electricity demand and price, and proved that the proposed model 
structure has higher accuracy than conventional univariate LSTM [13]. 
Fan et al. integrated LSTM with human behavior patterns, and further 
improved the model with a multi-layer neural network [14]. However, 
one of defects of deep neural network is that it requires larger size of 
dataset than traditional algorithms which hinders its wide application. 
As for supply side energy prediction, Ju et al. established a short-term 
prediction model for photovoltaic generation. The model is developed 
based on self-attention mechanism and multi-task learning algorithm. 
The self-attention mechanism is a kind of Encoder-Decoder network for 
feature extraction. Their experimental contrast showed that the per
formance of proposed method were increased by 14.82% and 8.09% 
compared with CNN and LSTM [15]. 

2.2. Existing feature engineering research on data-driven models for 
HVAC energy forecasting 

The data-driven models used for HVAC load forecasting can gener
ally be categorized into two classes: univariate forecasting models and 
multivariate forecasting models, as shown in Fig. 1. Univariate fore
casting models rely only on historical values of a time series to predict 

Table 1 
Summary of input features for HVAC energy forecasting models.  

Ref Input features Output Task type 

Meteorological 
parameters 

Time 
index 

Occupancy Building or system 
characteristics 

Lagged 
Meteorological 
parameters 

Lagged 
load/ 
energy 

Others 

[51] Y Y N Y N N / Yearly energy use Parallel 
[52] Y Y N Y N Y / The 24-h ahead power 

consumption 
Parallel 

[53] Y Y N N N N / Hourly energy 
consumption 

Sequential 

[54] Y Y N N N Y / The 24-h ahead power 
consumption 

Sequential 

[37] Y Y N N Y Y / Hourly energy 
consumption 

Sequential 

[40] Y N N Y N N / Energy prediction after 
two hours 

Sequential 

[55] Y Y N N N Y / Hourly energy 
consumption 

Sequential 

[27] Y Y N N Y Y / Half-hourly energy 
consumption 

Sequential 

[56] N N N Y N N / Heating/cooling load Parallel 
[57] Y Y Y N N N System operation 

parameters 
Hourly energy power Sequential 

[58] Y Y N N N N System operation 
parameters 

Hourly energy 
consumption 

Sequential 

[44] Y N N Y N N / Weekly heating energy 
consumption 

Sequential 

[59] Y Y N N N N / Hourly energy 
consumption 

Sequential 

[41] Y Y N N N N Indoor 
environment 
parameters 

10-min energy 
consumption 

Sequential 

[60] N Y N N N Y / Hourly energy 
consumption 

Sequential 

[32] Y N N N N Y / Hourly energy 
consumption 

Sequential 

[61] N N N N N Y / One step energy 
prediction 

Sequential 

[62] N N N N N Y / Hourly energy 
consumption 

Sequential 

[28] Y Y N N N N On/off state of 
system plants 

1 min, 60 min and infinite 
time ahead energy 
prediction 

Sequential 

[48] Y Y N N N Y / 1 step ahead energy 
prediction 

Sequential 

[63] Y Y N N N N / building energy 
consumption and peak 
power demand of next 
day 

Sequential  
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future values. They do not involve feature engineering. The represen
tative algorithms include auto regressive, moving average, and auto 
regressive integrated moving average models. Several studies have 
shown that univariate forecasting models are less accurate than other 
data-driven models [16,17] because they cannot capture the relation
ship between the target variable and exogenous variables. Multivariate 
forecasting models, as the name suggests, predict future values by 
establishing the mapping relationship between the prediction target and 
multiple variables. Machine learning models belong to this category. 
Conventional machine learning models (such as artificial neural 
network, support vector machine, and random forest models) require 
structured data for training. Appropriate and well-engineered features 
can considerably improve model performance [18]. Deep learning 
models, as part of a broader family of artificial neural networks, can 
extract features from raw data and conduct dimensionality reduction 
automatically [19]. Feature engineering mainly includes the following 
two steps:  

1. Finding raw features that may influence the prediction target. This 
step requires extensive industry experience. Apart from using 
directly measurable features, researchers also use new features 
created from raw ones. Previous studies have confirmed that using 
assembled features can lead to better performance than using raw 
features [20].  

2. Reducing feature dimensionality by selecting the most prominent 
features or computing principal components from existing features. 
This step is called feature extraction. Because a large feature 
dimension may cause the “curse of dimensionality” [21] and because 
redundant features may degrade model performance [22] dimen
sionality reduction is a necessary procedure. 

2.2.1. Raw feature identification 
A machine learning model maps the relationship between the input 

parameters and the prediction target. It is vital to capture appropriate 
input parameters that are the driving factors for variations in the pre
diction target. Energy consumption in an HVAC system is determined by 
various factors, which can be classified into the following four 
categories:  

1. outdoor weather conditions,  
2. building and system characteristics,  
3. the indoor environment, and  
4. occupant number and activity. 

Outdoor meteorological parameters, including dry-bulb tempera
ture, relative humidity, dew point temperature, solar radiation, and 
wind speed, are the main factors influencing building HVAC energy 
consumption. Almost all studies use weather parameters as input fea
tures for predicting building HVAC energy consumption. Some studies 
use directly observable weather parameters, whereas others use pro
cessed parameters such as cooling degree day (CDD) and heating degree 
day. Using degree days is a simple method of measuring cooling or 
heating demand. It integrates the information of balance temperature, 
which indicates when the energy system should be switched on [23], 
thereby enabling model performance to be improved to some extent. 

From the perspective of training data, there are two types of methods 
for developing building energy prediction models. The first involves the 
use of the historical energy data of the target building itself as training 
data, while the second involves the use of the historical data of other 
buildings. These two types of modeling tasks are referred to as sequential 
prediction and parallel prediction, respectively, in this study. The main 
difference between these two cases is the choice of features. For the 
sequential prediction task, factors in categories 2 and 3 mentioned 
earlier can be excluded because these factors remain unchanged over 
time. Variables with no or small variations are not effective as model 

training features [24]. Moreover, after retrofitting, a building cannot be 
considered the same as before. For new buildings or buildings without 
historical data, only the parallel prediction method can be used to es
timate energy consumption. This type of prediction task is more 
complicated. It requires historical energy data as well as the design and 
operation information of various training buildings. Energy data can be 
easily obtained from a building management system, but information 
regarding building characteristics (such as system operation strategy) is 
difficult to collect and quantify. As can be seen in Table 1, most previous 
studies have focused on sequential prediction. 

Building energy consumption is influenced by occupants through 
two factors: number of occupants and energy use behavior. The human 
body is a natural heat source. In addition, the energy of office equipment 
is highly correlated with the number of occupants. A study conducted by 
Wei et al. [25] suggested that the influence of occupants on the energy 
use in an office building is more significant than that of weather. 
However, the number of occupants and their activities are difficult to 
record. Therefore, for most cases, the time index (i.e., hour of the day, 
day of the week, weekday or weekends, holiday, etc.) is used instead to 
reflect the effect of occupants on building energy consumption. 

In addition to the aforementioned features, historical energy data are 
often used as training features. The reason for this is twofold. The first is 
that a building exhibits similar energy use characteristics for identical 
days. The energy consumption curve of office buildings fluctuates on a 
weekly basis. In this regard, Fan et al. [26] used 7- and 14-day-ahead 
energy consumption as inputs for next-day energy demand prediction. 
The second reason is the thermal mass of the building. The weather 
conditions and energy demand of previous time steps which may in
fluence the current energy uses are often used for short-term and small- 
granularity (i.e., hourly) energy prediction. Fan et al. [27] used the 
building cooling load, outdoor temperature, and relative humidity 
during the past 24 h as input features. A summary of the features used 
for building energy prediction is provided in Table 1. 

According to our literature review, new feature creation for predic
tion model development has seldom been studied. Mena et al. [28] 
transformed numbers 1–24, which represent the hours of the day, by 
applying a cosine or sine function. This is a useful technique to process 
periodic parameters. Sha et al. used CDD instead of directly measured 
temperature as a model input feature [23]. It should be noted that data 
leakage is an important issue when selecting input features. Data 
leakage refers to the use of information that would not be available at 
the time of prediction, causing the predictive score overestimate the 
prediction accuracy [29]. Specifically, using future meteorological pa
rameters as input features is a type of data leakage, but its impact can be 
neglected because of accurate weather forecasting. However, Ding et al. 
[30] used chilled water volume of next day, which cannot be obtained in 
advance, as input features to predict the cooling load. As a result, the 
predictive score may have been overestimated. 

2.2.2. Feature selection 
Generally, two types of feature extraction methods are used. Type I 

refers to the selection of certain important features from the initial 
feature space. Type II involves transforming the initial feature space into 
a new one and then selecting a subset of features from the new space. 
However, the physical meaning of the selected new features is difficult 
to interpret. The principles and characteristics of each method are listed 
below.  

(1) Filter method 

The filter method ranks the importance of each feature using infor
mation theoretic or correlation criteria and then selects a subset of high- 
score features [31]. The Spearman [32] and Pearson [33] coefficients 
are two commonly used criteria for estimating the correlation between 
each input feature and prediction target. However, only a linear rela
tionship can be recognized based on these two criteria. 
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(2) Wrapper method 

The wrapper method uses predictive scores obtained via machine 
learning as evaluation metrics to measure all possible feature subsets 
and find the optimal subset [34]. The goal of the wrapper method is to 
find optimal feature subsets from the initial feature space. The greedy- 
stepwise-based [35] wrapper method employs a greedy search on the 
feature space and stops when adding or deleting any remaining feature 
does not increase the evaluation score. However, this method is highly 
inefficient when the feature dimension is large. Some efficient search 
strategies have been developed to reduce the computational complexity. 
Evolutionary algorithms, which are based on the concept of evolution, 
are commonly used as alternatives. These algorithms have been proven 
to be effective in finding optimal or near-optimal solutions of complex 
functions [36]. Aurora et al. employed two multi-objective evolutionary 
search algorithms, ENORA and NSGA-II, to perform feature selection 
[37]. Salcedo-Sanz et al. used a modified harmony search optimization 
algorithm to select a feature subset [38]. The Boruta algorithm is 
another efficient wrapper method. It performs a top-down search for 
relevant features by comparing the importance of original attributes 
with the importance achievable at random, as estimated using permuted 
copies of the attributes [39]. Huang et al. used the Boruta algorithm to 
calculate the importance of each feature and a random forest to select an 
appropriate subset [40]. Candanedo et al. used the Boruta package to 
find all relevant features from among several initial variables [41].  

(3) Embedded method 

The embedded method differs from the wrapper method in that it 
integrates a feature selection process with a model training process. 
Regularization and tree-based approaches belong to this category. 
Regularization adds a penalty to each model parameter to reduce model 
freedom and avoid overfitting. Jain et al. employed L1 regularization 
(Lasso) to the loss function and found that their method outperformed a 
support vector regression model without regularization [42]. Guo et al. 
also performed feature selection using Lasso [33]. Tree-based models 
(such as random forest, LightGBM, XGBoost, and CatBoost) can not only 
achieve outstanding predictive performance but also use feature 
importance for feature selection. The importance of a feature is 
computed as the (normalized) total reduction of the criterion resulting 
from that feature [43]. Yuan et al. [44] applied a random forest to select 

the top 10 features for heating energy prediction.  

(4) Principal component analysis 

In contrast to the aforementioned feature extraction methods, prin
cipal component analysis (PCA) reduces feature dimensionality by 
mapping original features into a lower-dimensional space whose vari
ables are linearly uncorrelated. Ding et al. [45] employed PCA inte
grated with wavelet decomposition and reconstruction and with 
correlation analysis to obtain reasonable model inputs. Li et al. [46] 
analyzed the effect of PCA on building load prediction. The result 
showed that kernel PCA results in better performance than conventional 
PCA without feature selection does. Yuldiz et al. [47] discussed how to 
determine the dimensionality of a reduced feature space.  

(5) Autoencoder 

The purpose of an autoencoder is similar to that of PCA. An 
autoencoder is a supervised algorithm that can compress the dimen
sionality of input data. It is often used in deep learning networks to 
reduce the dimensions of large-scale data. However, autoencoders are 
rarely used in the field of building energy prediction because the feature 
space is usually small [34]. Fan et al. [48] extracted an equal number of 
features using different methods (including fully connected autoen
coders, one-dimensional convolutional autoencoders, and generative 
adversarial networks) and compared the suitability of those methods for 
building energy prediction with that of conventional methods. 

3. Framework of multi-granularity HVAC energy forecasting 
toolkit 

As shown in Fig. 2, the HVAC energy forecasting toolkit performs 
three functions: data preprocessing, feature extension, and integrated 
optimization of feature selection and model hyperparameters. First, the 
raw data are preprocessed to produce clean data by removing outliers 
and filling in missing data in accordance with the three-sigma standard, 
which states that data exceeding three times of the standard deviation 
are outliers. In the preprocessing stage, 80% of the clean data are used as 
the training dataset, while the remaining are used as the validation 
dataset. Then, six types of high-dimensional features are extended from 
the raw ones. The feature extension procedure is designed to extract 

Fig. 2. Framework of multi-granularity HVAC energy forecasting toolkit.  
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hidden information within raw features so that it can be recognized by 
the model more easily. Given that different machine learning models are 
sensitive to different features, the developed toolkit adopts an integrated 
optimization algorithm that is based on the elitist genetic algorithm 
(EGA), to select appropriate features and model hyperparameters. 

3.1. Feature extension 

3.1.1. New features from date 
Building energy consumption is highly correlated with occupant 

number and activity. However, traffic data are difficult to obtain for 
most cases. Therefore, features representing the occupant number are 
usually denoted by categorical features such as the hour of the day 
(denoted by 1–24), day of the week (denoted by 1–7), and day of the 
month (denoted by 1–31). In addition, occupant activity characteristics 
are different for different types of days (e.g., weekdays, weekends, and 
holidays) for most building types. Information regarding variations in 
energy consumption for different types of day can also be represented by 
categorical features denotes as 0–1. Apart from national holidays, 
weekends, and weekdays, there is another type of day, which is often 
ignored: the last working day before a holiday. Many people opt to take 
this day off to extend their vacation. In the feature creation framework, 
features of the time index (denoted by 1–7) and special type of day 
(denoted by 0–1) are created from the raw feature of the date to 
represent the impact of occupancy variation on building energy 
consumption. 

3.1.2. New features from meteorological parameters 
Outdoor meteorological parameters, especially temperature, are the 

driving factors for variations in building energy consumption. There
fore, directly observable temperatures, such as dry-bulb temperature 
and dew point temperature, are indispensable input features for energy 
prediction models. However, changes in the indoor environment are 
always delayed and are more gradual than changes in the outdoor 
environment because of the thermal inertia of the building. Therefore, 
some studies have employed meteorological parameters of previous 
time steps as input features. The partial autocorrelation coefficient 
should be calculated to determine the lagged time steps. However, for 
cases with large time lags (6 h for example), too many meteorological 
parameters of previous time steps (4 × 6 = 24 if four meteorological 
parameters are used as input features) will be included in the model, 
which may cause the curse of dimensionality. In this study, we introduce 
smoothed meteorological parameters as model input features to mitigate 
the collision between lagging and feature dimensions. The smoothing 

method involves the use of Savitzky–Golay smoothing filters [49]. These 
filters are commonly used to smooth digital data. They retain data 
tendency and variation by removing high-frequency fluctuations. The 
smoothing process is known as convolution by fitting successive subsets 
of adjacent data points with a low-degree polynomial using the method 
of linear least squares [50]. In addition, the first and second differenti
ations of smoothed temperature data are calculated as input features to 
represent the temperature variation. 

3.1.3. New features from historical energy data 
Historical energy data have been primarily used as prediction targets 

instead of input features for data-driven models. This results in wastage 
of valuable information regarding the intrinsic variation law inside data 
series. In this section, historical energy data are explored to obtain more 
information through periodical analysis and statistical analysis.  

(1) Periodical factor 

Human activities tend to follow a weekly pattern. Consequently, 
building energy consumption exhibits a similar periodicity. In addition, 
the energy consumption characteristics of a building are similar for the 
same type of day. For example, the energy consumption of the previous 
Monday can be used to predict that of the next Monday. In this study, we 
use a unique periodical factor to characterize the energy consumption 
on each weekday and hour. 

The periodical factor for each weekday is calculated using the 
following equation: 

dri,j =
ei,j

ej
(1)  

where dri,j is the periodical factor for each weekday in a month, with i =
1,⋯,7 (for Monday, …, Sunday, respectively), j = 1,…,12 (for January, 
…, December, respectively); ei,j is the mean energy consumption of the 
ith weekday of the jth month; and ej and is the average value of daily 
energy consumption of the jth month. 

The periodical factor for each hour is calculated using similar 
method: 

hri,j =
ei,j,k

ej,k
(2)  

where hri,j is the periodical factor for each hour of a particular weekday 
in a month, with i = 1,…, 24, j = 1,…,7, k = 1,…, 12; ei,j,k is the mean 
energy consumption for the ith hour of the jth weekday in kth month; 

Generate initial 
population

Evaluate objective 
function

Are optimization 
criteria met? Best individuals

ResultGenerate new 
population

Selection 

recombination

Mutation 

 Start 

YES

NO

Fig. 3. Structure of a standard genetic algorithm.  
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and ej,k and is the average value of hourly energy consumption of the jth 
weekday in kth month.  

(2) Statistical factor 

The statistical factors uses a time-series data vector to extract basic 
information using the mean, median, maximum, minimum, skew, and 
standard deviation of historical energy data. Features thus extracted 
contain statistical information of a data series. For each data point in the 
training dataset, the value of each temporal statistic is calculated as 
follows: 

ti,j = Ti
(
Yj
)

(3)  

where Ti represents the statistical formula including the mean, median, 
maximum, minimum, skew, and standard deviation; j denotes the 

weekday (from Monday to Sunday) or the hour (from 1 to 24); and Yj is 
the data series of the jth weekday. It should be noted that the order of 
energy consumption time series data cannot be disrupted. When calcu
lating the periodical factors and statistical factors of the Nth data point, 
only the N-1 data points before the target one can be used to avoid data 
leakage. 

3.2. EGA-based integrated optimization of feature selection and 
hyperparameters 

A genetic algorithm is an effective optimization method that is 
inspired by natural selection. As illustrated in Fig. 3, a set of individuals 
called chromosomes is randomly initialized at the start of the algorithm. 
The chromosomes can be mutated and altered using crossover and 
mutation operators to generate a new population. The fitness of each 
chromosome is measured using the objective function. Compared with 
the standard genetic algorithm, EGA retains the few best chromosomes 
in the new population, which significantly improves the algorithm’s 
performance. One percent of the best chromosomes are chosen as elite in 
this study. The convergence curve of an EGA is always nonincreasing. In 
this study, a chromosome shown in Fig. 4 is composed of two parts: a 
binary part and a real part. The binary part is a string of 0/1 genes with 
the same length as that of the total features; 1 indicates that the feature 
of the corresponding location is selected, and 0 indicates that it is not. 
The real part is a string of real genes representing model hyper
parameters. The developed toolkit employs six popular machine 
learning models having simple and complex structures. The models and 
corresponding hyperparameters to be tuned are listed in Table 2. To 
reduce computation time, the hyperparameters that affect the model 
performance most significantly are selected. In order to control calcu
lation time, the maximum iteration number of EGA is set to be 800, and 
the population size is 100. The probability of mutation and crossover are 
set to be 0.1 and 0.5 respectively. 

The objective function of the EGA is the validation accuracy 
measured using the coefficient of variation of the root mean square error 
(CV-RMSE), which can be calculated using the following equation: 

Fig. 4. Chromosome structure.  

Table 2 
Summary of models and hyper-parameters to be optimized.  

Model name Abbreviation Hyperparameters 

Linear regression LR – 
Support vector 

regression 
SVR C, epsilon, gamma 

Artificial neural 
network 

ANN hidden_layer_sizes, learning_rate_init 

Random forest RF n_estimators, max_depth, min_samples_leaf, 
min_samples_split, max_leaf_nodes 

CatBoost CAT – 
LightGBM LGBM max_depth, num_leaves, n_estimators 

min_data_in_leaf, learning_rate 

Catboost is able to great quality without parameter tuning [64]. 

Fig. 5. Interface of TTBEMS.  
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CV − RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1(yk − ŷk )
2

n

√ /∑n
k=1yk

n
(5)  

where yk is the test data value, ̂yk is the predicted data value, and n is the 
number of test data sizes. 

4. Comparative study 

4.1. Data description 

The performance of a data-driven model should be evaluated in 
terms of two parameters: accuracy and stability. A model with high 
stability performs well on various datasets. However, most existing 
studies only evaluate model accuracy based on one or a few datasets and 
are unable to guarantee model performance on other datasets. In this 
study, we use cooling energy data of summer, collected from 20 large- 
scale commercial buildings in central urban area of Shanghai, China 
for the period of May 1, 2017, to October 31, 2019, to validate the 

toolkit comprehensively. The energy data comes from a building energy 
sub-metering platform named TTBEMS. TTBEMS was sponsored by 
Shanghai government to collect building energy consumption data and 
implement energy efficiency monitoring for large commercial buildings 
in Shanghai central urban area. Its interface is shown in Fig. 5. This 
platform provides data including building meta data, energy equipment 
list, outdoor conditions, degree days and sub-item power consumptions. 
In this study, building meta data, weather conditions and power con
sumptions of HVAC equipment are used. The building meta data pro
vides building basic information including building type, HVAC system 
type, building area and number of layers. As illustrated in Fig. 6, the test 
building portfolio contains 13 office buildings and 7 commercial com
plex buildings. The HVAC system of most test buildings comprises a fan 
coil with a dedicated outdoor air system. Fig. 7 illustrates the HVAC 
energy consumption per unit area of each building in cooling season. 
Evident variation in energy usage intensity can be observed for each 
building. The commercial complex buildings have higher energy con
sumption than that of office buildings. As is shown in Fig. 8, the oper
ating patterns of office and commercial complex buildings are obviously 

Fig. 6. Basic information of test building portfolio (FCU + OA is short for fan coil with dedicated outdoor air system. CAV is short for constant air volume system. 
VRV is short for variable refrigerant volume system.) 

Fig. 7. HVAC energy consumption per unit area of each test building.  
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different. The daily energy profiles of office buildings typically rise at 
around 5 a.m. and fall at 6 p.m., while the latter timestamp is around 10 
p.m. for commercial complex buildings. So the commercial complex 
buildings have much longer operating time for both workdays and 
weekends which resulting in higher energy intensity. The energy data 
for each building were recorded at an hourly rate. Therefore, each case 
contains 13,248 data points. Apart from directly using hourly energy 
data to train the models, we also aggregate the data to obtain the daily 
frequency (which contains only 552 data points for each case) for 
evaluating the model performance when the available training data size 
is small. Meteorological parameters recorded hourly, including dry-bulb 
temperature, dew point temperature, relative humidity, and wind ve
locity, were obtained from a local weather station installed at Hongqiao 
Airport. 

4.2. Comparative baseline model 

Table 3 lists all the comparative baseline models examined in this 
study. Four baseline models are developed to fully validate the toolkit 
proposed here. The first three baseline models are all developed based 
on algorithms listed in Table 2 but have different input features and 
hyperparameters. Model A uses selected features but default model 
hyperparameters. The model hyperparameters are optimized using the 
EGA. Model B employs all the extended features as is listed in Table 4 
without selection or optimized hyperparameters, whereas model C 
employs the most conventional features, including raw meteorological 
parameters and the time index features included in Table 4. Baseline 
model D employs long-short term memory network which has been 
proved to be a superior algorithm for time series prediction. The ar
chitecture of model D is different from the first three models. LSTM, as a 

Fig. 8. Average energy patterns of each test building on workday and weekend.  

Table 3 
Summary of comparative baseline models.  

Baseline model Features Model hyper-parameters 

A Extended with selection Default 
B Extended without selection Optimized 
C Conventional Optimized 
D (LSTM) Conventional Default  

Table 4 
Summary of fully extended features.  

Category Feature name Abbreviation 

Raw meteorological 
features 

Dry bulb temperature DryT 
Dew point temperature DewT 
Relative humidity RH 
Wind velocity Vel 

Smoothed 
meteorological 
features 

Smoothed temperature filter_T 
Smoothed relative 
humidity 

filter_RH 

Differenced 
meteorological 
features 

1st-order differenced 
temperature 

dif_T 

1st-order differenced 
relative humidity 

dif_RH 

Time index features ith day of the week  weekday 
ith day of the month  day 
ith month of the year  month 
ith week of the year  week 
ith hour of the day  hour 

Day type features If this day is weekend is_weekend 
If this day is holiday is_holiday 
If this day is first day of 
holiday 

is_first_of_holiday 

If this day is last day of 
holiday 

is_last_of_holiday 

If this day is last day of 
workday 

is_last_of_workday 

Periodicity factor 
features 

Periodicity factor of each 
weekday/hour 

periodicity_rate_daily/ 
hourly 

Statistics factors features Mean of each weekday/ 
hour 

mean_daily/hourly 

Median of each weekday/ 
hour 

median_daily/hourly 

Min of each weekday/ 
hour 

min_daily/hourly 

Max of each weekday/ 
hour 

max_daily/hourly 

Skew of each weekday/ 
hour 

skew_daily/hourly 

Standard deviation of each 
weekday/hour 

std_daily/hourly  
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sequence to sequence model, generates a sequence of output from a 
sequence input vectors whereas others are one to one mapping models. 
In this study, the LSTM is trained to use the energy data and features in 
the previous time step and 24-h ahead features to predict 24-h ahead 
energy consumption. EGA is used to optimize the following parameters: 
(1) number of hidden layers; (2) dropout ratio of each layer; (3) batch 
size. The activation function and optimizer are set to be ReLU and Adam 
respectively. The toolkit and first three baseline models are all tested 
using the hourly and daily datasets mentioned in the previous section. 
Model D is tested only using hourly datasets because the size of daily 
dataset is too small to train a LSTM model. 

5. Results and discussion 

5.1. Extended features 

The fully extended features obtained using the aforementioned 
feature extension method are summarized in Table 4. A total of 32 and 
25 features were created for developing hourly and daily energy pre
diction models, respectively. The time index features and day type fea
tures are categorical features, which should be specially encoded for 
most machine learning algorithms except for tree-based models. The 
other numerical features can be directly fed into the models. Boxplots 
were prepared as visual supplements for energy data distribution (see 
Fig. 9). The box length is an indicator of the data range, while the black 
line inside the box is the median of the dataset. If the data distribution 
extracted based on one category differs significantly from that extracted 
based on another, this categorical feature is important for model 

development. As dry-bulb temperature and relative humidity are the 
most influential meteorological parameters affecting HVAC energy 
consumption [23], smoothing and differencing operations are con
ducted only on these two parameters to reduce the computational 
burden of the optimization calculation. In addition, the day-type fea
tures can be further extended to include features apart from the five 
listed in Table 4. For example, a feature indicating whether there are 
conferences or social events can be created for hotel buildings whose 
lodging ratio would be extremely high during a conference or social 
event. 

5.2. Evaluation of hourly and daily energy predictions 

As mentioned in the previous section, model performance should be 
evaluated in terms of both accuracy and stability. The distribution and 
statistical indicators (i.e. mean, median and standard deviation) of 
hourly energy prediction results calculated from the target model and 
comparative baseline models are displayed in Fig. 10 and Fig. 11, 
respectively. Lower CV-RMSE mean values indicate higher prediction 
accuracy. The more compact the distribution, the better the stability. 
From a mathematical view, the prediction stability can also be repre
sented by standard deviation values of the prediction results. The lower 
the standard deviation, the better the stability. It is evident from Fig. 10 
that the models that use extended features have considerably higher 
accuracy than those that use conventional features, regardless of which 
machine learning algorithm is employed. Fig. 11 shows violin plots that 
display the hourly prediction distribution, where the width of each 
violin reflects the data frequency. As shown in Fig. 11, LSTM, as a kind of 

Fig. 9. Distribution of energy data extracted on each categorical feature.  
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deep learning model, outperforms shallow learning models in terms of 
both accuracy and stability when using conventional features. However, 
the extended features are not employed to LSTM as its required training 
data size will be multiplied with feature size increasing. The available 

amounts of data in this study are not able to build high quality LSTM 
models using extended features. For shallow learning models, complex 
algorithms perform better than simple algorithms when conventional 
features are used to train the model; however, the deviation of such 

Fig. 10. Median, mean and standard deviation of hourly CV-RMSE of target model and comparative baseline models.  

Fig. 11. Hourly energy prediction results of target model and comparative baseline models.  
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cases is large, which indicates low stability. On the other hand, the 
distribution of prediction results obtained using models developed based 
on extended features is much more compact than that of models 
developed based on conventional features; this verifies that extended 
features improve model stability. This phenomenon indicates that well- 
engineered features can help reduce the dependence of a model on 
complex algorithms. Of all the models using extended features, the 
target model that employs the integrated optimization of feature selec
tion and hyperparameter tuning exhibits the best stability among all 
seven regression algorithms, although it cannot always achieve the 
lowest CV-RMSE. Fig. 12 shows the prediction results of the target 
models trained using daily energy datasets. The accuracy is slightly 
lower than that of the models trained using hourly energy datasets but is 
nevertheless acceptable for engineering purposes. The model perfor
mance is degraded mainly because of the small dataset, which shrinks 
considerably after the hourly frequencies are aggregated to daily 
frequencies. 

6. Conclusion 

The energy forecasting toolkit proposed by this paper provides a 
convenient way to predict energy demand in advance which is the key to 
the success of demand response (DR) programs. It relies more on novel 
features rather than complicated algorithms to get high accuracy 
Feature engineering, an essential procedure for developing data-driven 
energy forecasting models, has rarely been investigated. In this study, 
we first presented a comprehensive overview of existing energy pre
diction and feature engineering research. The variables that are 
commonly employed as input features of heating, ventilation, and air- 
conditioning (HVAC) energy prediction models were analyzed and 
summarized. The advantages and disadvantages of different feature 
selection methods were discussed. Then, an HVAC energy forecasting 
toolkit that focuses on feature engineering was developed. Six types of 
features were extended from three types of raw features. Compared with 
features extracted using previous data-driven models, those extracted in 
this study are much more informative. Comparative experiments 
involving three baseline models developed using field-test data collected 
from 20 commercial buildings were conducted to evaluate the useful
ness of the proposed toolkit. The results validate the toolkit from the 
perspectives of both accuracy and stability. Compared with energy 
prediction models developed using conventional feature sets, models 
developed using extended features have higher accuracy and greater 
stability. The target model that employs integrated optimization of 
feature selection and hyperparameter tuning outperformed all the 
comparative models. The mean coefficient of variation of the root mean 
square error (CV-RMSE) of the target models for hourly energy 

prediction was found to be <8%, which means that the toolkit is 
acceptable for engineering applications. 
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