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A B S T R A C T

Occupancy data is a critical input parameter for building energy simulation since it has a big impact on the
precision and accuracy of building energy model performance. However, current approaches to get such data
through the conventional occupancy detection technology require either implementation of a large-scale sensor
network and/or sophisticated and time-consuming computational algorithms, which to some degree limits the
application of the real-time occupancy data for building energy simulation. In the era of the mobile internet, the
massive people position data, which is generated by smartphone users and stored on cloud servers, offers a
potential to solve this important problem. Such mobile data source is precisely monitored, real-time updated,
and accessible with affordable time and labor cost upon customer's agreements in some regions, and therefore
could be one of the alternatives to traditional occupancy detection methods.

This paper presents an investigation of whether and how the mobile-internet positioning data can benefit
building energy simulation. This paper first summarizes the pros and cons of several mainstream occupancy
detection methods. Then, the principle of the proposed mobile-internet-based occupancy detection method is
introduced. The methodology of using such occupancy data for building energy simulation is developed. An
energy performance model of a complex building in Shanghai with a whole building simulation software
EnergyPlus is used as a pilot case study to demonstrate the effectiveness of the proposed methodology. A cali-
bration is performed using the building automation system data and the mobile-internet-based occupancy data.
The simulation results show that mobile-internet-based occupancy data can help improve the building model
prediction accuracy.

1. Introduction

The building sector is responsible for approximately 40% of total
energy consumption in the world [1,2]. Among that part, nearly more
than one half is used to support the operation of building heating,
ventilation, and air-conditioning (HVAC) systems [3]. Such a significant
level of consumption urges us to unravel the complexity of building's
thermal behavior to optimize building operation and reduce building
energy consumption [4]. Building energy performance simulation is
one of the most powerful analytic tools to fulfill this purpose. A typical
building energy model needs a number of inputs deriving from a wide
range of fields including weather file, heating and cooling source,
lighting, plug equipment, ventilation, etc. The accuracy of these inputs
directly determines the credibility and effectiveness of the simulation
results [5,6].

Recent studies show that building energy usage is highly correlated
to the occupancy [7]. People influence building performance by both
their presence and behaviors as illustrated in Fig. 1. Andersen et al. [8]
conducted a simulating study to investigate the relationship between
occupant behaviors and building energy consumptions. The results
suggested that occupants' opening window behavior had a large effect
on building energy usage. Yu et al. [9] examined the influences of the
occupant behaviors on building energy usage with a basic data mining
technique (i.e., cluster analysis). The authors organized similar build-
ings among all the investigated cases into various groups based on four
user-behavior-unrelated factors. Grey relational grades were used as
weighted coefficients of attributes in the cluster analysis. The results
revealed that occupant behavior led to a huge difference in Energy
Usage Intensity (EUI). A large variability of end-use loads that ranged
from close to zero to about four times of the mean value was introduced
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by occupant behaviors. Frauke et al. [10] applied a model predictive
control (MPC) algorithm to analyze the energy saving potentials by
using the dynamic occupant information for HVAC control. The results
showed that the energy savings could be as high as 50% compared with
the baseline cases which used occupancy for controls. In addition, an
energy saving of 20% was also observed when the occupancy based
demand response HVAC control strategy was performed [11]. Other
occupancy-based HVAC control studies can also be found in Refs.
[12–16].

Although the importance of occupancy information has become a
common understanding of the HVAC community, there still lacks a
time- and cost-efficient approach to obtain such data. Currently, the
occupancy-related inputs of energy model are mainly acquired from the
building codes or design manuals of different countries and organiza-
tions. This data source is derived based on the statistics and an as-
sumption that buildings with the same type share similar occupancy

schedules and densities. When such code-based method is applied,
buildings are organized into various groups based on their types and
other properties. Thus, through surveying the occupancy profiles in the
sample buildings, we can get an averaged description of the occupancy
in different building types. This method has been proved to be able to
significantly reduce the workload to create an energy performance
model since it offers a convenient and moderately accurate source of
building occupancy information without requiring practitioners to
conduct building surveys one by one.

However, using code-based occupancy inputs for building energy
model has a deadly intrinsic problem: they are homogenous and static.
So, although in general, it can be applied to buildings with the same
type, when it comes to a specific case within the group, the accuracy
may not be credible enough. And considering that the occupancy has
such a profound influence on building energy consumption, inaccurate
inputs associated with occupancy could have large contributions on the
discrepancy between the simulated and measured energy consump-
tions. This mismatch weakens the credibility of the modeling results.
Hence, more efforts are required to calibrate the model. Actually,
Chang and Hong [17] pointed out that among the wide range of vari-
ables which affect building simulation results, the occupancy data is
one of the most important ones to cause a model distortion.

Nowadays, to better refine and calibrate building energy perfor-
mance model for a specified building, how to quickly obtain accurate
input associated with occupancy information remains a challenging
problem. As usual, two occupancy-related inputs, i.e., occupancy den-
sity and occupancy schedule, are required to identify the occupancy
pattern of a building in traditional whole building energy simulation
program such as EnergyPlus [19], eQUEST [20], and TRNSYS [21]. An
occupancy schedule is a set of fractional multipliers which provides
values for a 24-h period, starting at midnight. While an occupancy
density is a constant parameter representing the maximum occupancy
capacity of an occupied zone. It could be expressed as the number of
people for a given zone or the number of people per the zone floor area.
The product of two parameters gives the occupant number of a specific
time for a given zone. For example, if an occupancy density is 200
people in a given zone, a schedule value of 0.5 means that 100 people
are assumed to be in that zone at that time.

Nomenclature

Variables, parameters, and indices

an Fourier coefficients
AVG Average value
bn Fourier coefficients
(CV)RMSE Coefficient of variation of root-mean-square error
i Parameter/input variable index
M Monitored value
MBE Mean bias error
MBEmonth Monthly data
MBEyear Yearly data
n Number of inputs
R Coefficient of determination (R-squared value)
RMSE Root-mean-square error
S Simulating value
SC Shading coefficient
STsummer Summer temperature setpoint
STwinter Winter temperature setpoint
U Rate of heat transfer, W/(m2.°C)
VT Visible transmission
x Hour of the day
y Target value of the regression
ŷ Predicted value of the regression

Greek letters

ω Angular frequency

Abbreviations

AEC Architecture, engineering, and constriction
AMY Actual meteorological year
ASHRAE American Society of Heating, Ventilation, and Air-con-

ditioning
BAS Building automation system
COP Coefficient of performance
EPD Equipment power density
EUI Energy usage intensity
FCU Fan coil unit system
GPS Global positioning system
HVAC Heating, ventilation, and air-conditioning
LPD Lighting power density
MPC Model predictive control
PIR Passive infrared sensor
TMY Typical meteorological year
URE Use range error
VAV Variable air volume system

Fig. 1. The influences of occupants on building energy consumption [18].
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In practice, the occupancy density can be easily acquired by an on-
site survey and a questionnaire since it tends to be a static constant with
a limited variance while the occupancy schedule is hard to be scruti-
nized due to the variety and the indeterminacy of building occupant
behaviors. Actually, the inherent unpredictability and substantial irre-
gularity from the realistic presence of occupant schedule are the pri-
mary reasons hindering the generation of real occupancy profiles. There
is an increased number of studies trying to solve the issue of occupancy
detection currently. However, these occupancy detection methods are
suffering from some intrinsic problems (e.g., insufficient accuracy, ex-
pensive initial investment, etc.) to some extent, which means they are
usually limited to the laboratory study and may not be appropriated for
practical projects on a large scale (This will be elaborated in Section
2.1). For the appreciation of the fine-grained occupancy data in
building energy simulation, it's important and urgent to explore a new
occupancy schedule detection method with high detection rates that is
relatively unexpansive.

With the value of big data gradually recognized and appreciated by
the society, the positioning information generated by smartphone users
could offer an alternative solution to this thorny problem. It's well
known that an extremely large volume of positioning data is generated
during this internet era when mobile internet services are frequently
used [22]. Due to the advances in high-resolution remote sensing
technology, the mobile-internet-based occupancy positioning data
source has huge potentials to benefit various areas such as urban
planning [23] and the traffic flow analysis [24].

This paper presents an investigation of whether and how the mo-
bile-internet positioning data can benefit building energy simulation
through providing more accurate occupancy data. First, a brief sum-
mary of the pros and cons of several mainstream occupancy detection
methods is provided. Then, the principles of the proposed mobile-in-
ternet-based occupant detection method are introduced, followed by a
description of using such occupancy data for building energy model
calibrations. Next, an energy performance model of a complex building
in Shanghai with a whole building simulation software EnergyPlus is
introduced. This model is used as a case study to demonstrate the ef-
fectiveness of the proposed method. A preliminary calibration is con-
ducted using the history data from the building automation system as
the first step. Then, the proposed mobile-internet-based occupancy data
is used to replace the initial code-based occupancy for calibration. Last,
simulation results are presented, which show that using BAS data and
the mobile-internet-based occupancy data can help improve the
building energy performance model prediction accuracy in this study.

2. Occupancy based on mobile positioning data

2.1. Current methods for occupancy detection

Knowing the presence, number, and the variation of people in a
given zone of a building is a key component of occupant-oriented re-
search such as occupancy based HVAC control. There is an increased
number of literature and reviews that focus on a viable detection
methodology to obtain occupancy data with high-quality to fuel
building performance simulation and demand based HVAC control
strategies in the last decade [25]. Some of the studies rely on the de-
ployment of various sensors, i.e., CO2 sensor, passive infrared sensor
(PIR) sensor, etc., to detect occupants (e.g. [17,26–28]). In addition,
some practitioners apply data-driven methods such as the clustering
analysis and the decision tree to understand and predict occupant
presence in buildings [29–31]. Also, there are studies trying to detect
occupancy information with existing equipment of buildings such as
sub-metering system [32] and the existing IT infrastructure [33,34].
However, most of these methods for occupancy detection are either
lacking in accuracy (only the presence information of occupants is
provided) [17,26,27,35] or too expensive (commercially and/or com-
putationally) to implement [29–31,36,37], thus can hardly be put into

practical use at this time.
One of the most-widely-used methods to obtain occupancy in-

formation is manual counting and questionnaires. The occupancy data
obtained from this method is often used as the ground-truth values for
the verification of other methods since such data is an accurate re-
flection of the actual occupied condition [25,38,39]. However, this
method has two obvious shortcomings. First, it tends to require a lot of
labor force to conduct the survey. Second, the result could be influ-
enced by the questionnaire setting and the survey duration, which
sometimes leads to issues related to the accuracy and the credibility of
the occupancy data [39]. Especially when the occupancy data of a
whole year is necessary to be recorded, the working load can be ex-
tremely heavy.

The continuing advances in sensor technology allow researchers to
replace manual labor with various sensors to detect occupancy in
buildings. Among them, one of the most widely and prominently ap-
plied sensors is PIR sensor with an output value of zero or one, which
represents “occupied” and “unoccupied” status respectively, to describe
the occupancy condition of the occupied area based on infrared (IR)
light radiating from occupants [26]. It tends to require a direct line of
sight between the sensor and occupants in the space and requires
continuous motion of the occupants to function effectively for its pas-
sive characteristic. The ultrasonic sensor is also demonstrated being
able to detect the occupant presence and location information through
changes in the echo intensity and transmitted signal [35]. It can over-
come the inherent passiveness problem of the PIR sensor, but it could be
susceptible to some false ONs like the air turbulence caused by HVAC
system. The measurement of sound waves provides an opportunity to
implement sound sensors to detect the building occupant presence in-
formation [40]. The sound sensor functions by measuring the audible
sound waves produced by building occupants to detect their presence
and locations in buildings. But such sound sensor is easily triggered by
sound waves from non-human sources, and it requires occupants to
continually make the sound to avoid registering false OFF. These sen-
sors (i.e., PIR sensor, ultrasonic sensor and sound sensor) are known as
binary sensors because they can only provide a binary value to describe
the occupied information of buildings. Besides, similar sensors such as
light-switch sensor [17] and telephone off-hook sensor [27] can gen-
erate a binary output as well. The occupancy data detected by such
binary sensors are discrete presence information (occupied/not occu-
pied), which means the exact number of the building occupants is not
available. This functional limitation makes such binary sensors mainly
used in lighting control and some limited HVAC control (ON/OFF only)
in practice. Regarding some more complicated cases like demand con-
trol ventilation, the occupancy information with presence data only is
no longer applicable.

Some researchers proposed to deploy carbon dioxide sensors to
acquire occupancy data of the number of people [41]. Carbon dioxide is
a metabolic production of the respiration. The number of people in a
given zone can be estimated by measuring the indoor carbon dioxide
concentration and its variations as well as the outdoor air carbon di-
oxide concentration. Wang and Jin [41], and Wang et al. [42] applied
carbon dioxide sensors for ventilation rate controls. Since it takes some
time for the carbon dioxide exhaled by occupants to diffuse into the air,
the consequent time lag is a common issue for this method. This de-
layed effect causes the problem that the estimated number of people
from directly using the currently monitored value always has a time lag
compared with the real occupancy data, which weakens the credibility.

Most buildings are implemented with an image recording system for
security purposes. By taking the advantage of the security camera
network, Erickson proposed a Smart Camera Occupancy Position
Estimation System (SCOPES) [43] which is a sixteen-node sensor net-
work of cameras to capture the occupancy. This system is based on the
image sensor to catch the human movement. The system result can
achieve approximately 80% accuracy in near real-time. In addition, this
system is capable of predicting the probability of room usage. But such
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a system requires an advanced algorithm to process and interpret the
raw data obtained from the sensors. Besides, a mass load of computa-
tion and programming is required for this method and restricts its
practical application.

In Refs. [37] and [36], a comprehensive sensing testbed was de-
ployed in Pittsburg to integrate the state-of-the-art IT science and
sensing technology. This large-scale wired and wireless sensing network
comprises a broad series of environmental sensors which can measure a
variety of parameters including carbon monoxide, carbon dioxide, total
volatile organic compounds, small particulates, acoustics, illuminance,
etc. Such hybrid sensing network has promising potentials in human-
centered HVAC control and building simulation. But the significant cost
of implementations and the intensive labor required for continuous
recalibrations of a variety of sensors makes it nearly impossible to be
used for any current practical application in a cost-effective way.

Machine learning and data mining technologies have been at-
tracting more and more attention in the last decade. Some researchers
applied data-driven algorithms to acquire occupancy information. For
example, Page et al. [18] generated a time series of the state of presence
(absent or present) of each occupant of a zone by considering occupant
presence as an inhomogeneous Markov chain interrupted by occasional
periods of a long absence. The proposed model proved its capacity to
reproduce the presence data through a validation using occupancy data
from a private office. Hong et al. proposed a series of studies to apply
data mining based approaches for occupancy schedule learning and
predictions. They used the cluster analysis and the decision tree to
predict the occupancy of office buildings [29,30]. Luo et al. applied an
agent-based method to study the occupancy schedule simulation [31].
To effectively apply any machine learning algorithm, a complete
training dataset with all scenarios should be available. In practice, it is
often challenging to get such datasets.

Data generated by the utility sub-metering system is also an evident
source of occupancy data. Kim [32] derived the occupants' profiles and
schedules from the plug-load consumption and total electricity con-
sumption in a building. This method is conveniently accessible without
an additional cost and is exempted from a high level of computation.
But the data accuracy is dependent on various factors such as the oc-
cupancy type and area usage type. Besides, the assumption that each
occupant consumes the same amount of electricity could potentially
cause some discrepancies.

Some scientists also proposed to use existing building IT infra-
structures (Wi-Fi network, Ethernet resolution protocol) [33,34] to
capture the occupancy information. This method is also known as
electromagnetic signal (EM) detection. This method doesn't require the
additional deployment of equipment but also has some disadvantages.
For example, occupants often have more than one device which is en-
abled EM signal detection. Also, an advanced algorithm is required to
process and interpret the raw data to generate occupancy profiles.

In summary, current detection approaches to get occupancy data are
all suffering from some limitations. They either require intensive labor
(manual counting and questionnaires [25,38,39]), cannot provide exact
occupant numbers (binary sensor network [17,26,27,35]), requires the
existing building infrastructure (security cameras [11,43], sub-me-
tering system [32], and Wi-Fi network [33]), demands expensive initial
investment (binary sensor network, carbon dioxide sensor network
[41,42], comprehensive sensing network [36,37]), or requires a com-
plete training dataset and/or massive computational resource (sensor
networks, machine learning methods [29–31]). These problems restrict
the practical application of occupancy data for building energy simu-
lation.

2.2. Introduction to mobile positioning data

The limitations of conventional occupancy detection methods which
focus on locating occupants in some specified zone spur scientists to
solve this problem from another perspective. This new approach

explores how to obtain occupancy information by tracking individuals.
Yang et al. concluded [22] that with the popularity of mobile devices,
massive location data can be generated by cell identifications with low
accuracy or WLAN and Global Positioning System GPS usages with high
accuracy. Deep processing of this data can generate the tracks of service
users.

By cooperating with local telecom operator (Estonian Mobile
Telephone), Rein et al. found that the accuracy of position data gen-
erated by passive mobile positioning data is of moderate quality. The
location accuracy can reach as high as 100m in urban area and 450m
in suburban areas. If combined with the population register data, the
accuracy level is enough to specify the distribution of population on an
urban scale [44]. With this method, an urban planning study was suc-
cessfully conducted [45]. However, one limitation of this method is that
the database only includes 60% of the mobile phone users in Estonia.
Besides, the positioning data is not suitable for the studies of a smaller
scale.

In the era of the mobile internet, the value of mobile positioning
data seems to be steadily growing. The prosperity of the smartphone
penetration makes it possible to apply big data technology to detect the
occupancy of a specified area. A wide variety of internet services does
not only facilitate the daily life of ordinary people but also generates a
tremendous amount of positioning data through this process. Whenever
smartphone users share their positions on social media, call Uber cars
from a mobile client or use the navigation service on mobile devices,
their real-time position will be generated and recorded in the cloud
server of the service provider. Due to the maturity of the remote sensing
science, the positioning data generated in this process is accurate and
credible. Actually, the Global Positioning System (GPS) has achieved an
average user range error (URE) of fewer than 0.8m since 2016 [46].

A comprehensive and fine-grained building occupancy profile
should provide six properties, i.e., presence, location, count, activity,
identity, and track [33]. In building energy modeling, a good occu-
pancy input should include the accurate number of occupants and its
variation with time. This mobile-internet-based data source is different
compared to traditional sensor-based sources in three ways. First, the
positioning service is primarily delivered by trustworthy providers like
GPS, Beidou, and Galileo. The level of positioning accuracy is highly
ensured, and there is likely no need for the further calibration, as
mentioned previously. Second, this whole occupancy capturing system
does not require any additional implementation cost associated with
sensors, yet does not need a frequent sensor system calibration. In ad-
dition, the workload of the deployment and the maintenance is rela-
tively small.

2.3. Mobile positioning data acquisition and processing

Nowadays, petabytes of mobile positioning data are being gener-
ated, recorded, and stored every day. Gaining the authorized access to
this database is the premise of the recognition of the values of position
data. In this study, we established communication with an internet
company in China and were successfully authorized limited access to
their database under supervision. This company is a leading competitor
in Chinese internet-service market, which holds a number of internet
services including social network, online shopping, navigation, etc. As
long as customers are consent to the user agreement and activate the
location service on their devices, they will be able to use these online
services. Customers can not only share their positions with friends and
followers via a private message and/or a public check-in announcement
but also enjoy other position-based services such as online shopping,
online taxi-hailing, online tickets ordering, etc. The location services
are provided by GPS, which has achieved a URE of fewer than 0.8 m
since 2016, as has been mentioned. Such an accuracy level (less than
1m) is credible enough for its application in building energy simula-
tion.

The first step to acquire the occupancy data based on mobile
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positioning is to specify the geographical location of the intended re-
search object or area. A graphical specification on the map should be
provided to activate the monitoring process. All mobile positioning data
in the specified area will be collected and trended by the system and
saved on a cloud server. This includes who enters or leaves the area and
the exact time of the movement. The records of single persons are then
summed and processed to generate the number of occupants in the
specified area in an interval. The number of the occupants is the mean
value of the maximum and minimum occupant numbers recorded
during the interval. Predefined by the user, the length of the interval
can be flexibly varied from 5min to one hour, which means that the
frequency of the data updating can be as high as 12 times in one hour.
There are two ways to use such data: Firstly, the data can be sent to the
user in real time through the user interface. Secondly, this raw data can
be downloaded in one batch after sufficient data has been collected.

Although the raw data obtained from the tracking system is directly
the number of the occupants in the specified area, some post-processing
is necessary to further improve the accuracy of the occupancy data. This
post-processing procedure to get occupancy schedule is illustrated in
Fig. 2, followed by the description of two additional observations for
such procedure.

First, we should note that the mobile-internet-based data only takes
into account some occupants who are the customers of the internet
company we cooperated with. The location of an occupant will only be
recorded when he or she shared his or her location via the mobile ap-
plications from this company. In other words, occupants who don't
install and use the mobile applications from this company on his or her
mobile device or don't often share locations via the internet will not be
counted by the proposed system. This could make the collected occu-
pancy data less persuasive and complete. Nonetheless, considering that
our industry collaborator already had more than 900 million monthly
active mobile-service users at the end of 2016 [47], and the locations
service was used more than 50 billion times in a single day, we assume
that this data source can well represent the relative variance of the

occupancy. As mentioned above, in building performance simulation
software, the occupancy condition of a building is mainly determined
by two indicators, occupancy density and occupancy schedule. There-
fore, we can directly use occupancy schedule collected from the mobile-
internet-based data and just calibrate the occupancy density. We are
assuming the occupancy density in a building is a relatively constant
value, which could be obtained through an on-site survey. A correction
coefficient could probably be introduced in the future to improve the
data completeness. A largescale survey (such as whether use smart
phone, whether use mobile-internet-service, etc.) will be necessary to
help get such correction coefficient. It is expected that there will be
variations of this coefficient in different regions and countries.

Secondly, to reduce the workload of the modeling, occupancy
schedules with different day types (e.g., weekdays vs. weekend) instead
of a 365-day time series schedule will be used. This simplification can
make parameter inputs more efficient. For example, the selected
building in this study is a shopping center and office complex, the daily
variance of the occupancy doesn't experience a large variation in the
same day type group. Therefore, this simplification is expected to yield
a good accuracy. We use a frequency-domain linear regression method
to generate occupancy schedules with different day types. This as-
sumption and method will be elaborated in the case study in details.

Thirdly, it should be noted that the current method to specify the
monitoring area is not accurate enough, especially for those buildings
with irregular shapes. A smaller measuring scale should be provided in
the future to reduce the related errors. However, it should also be noted
that depending on the local laws and regulations, this data source may
not be available in some countries and regions. This could be a potential
limitation on the application of the mobile-internet positioning data.
Authors fully understand and respect the privacy right of every internet
user. The occupancy information obtained in this pilot case study was
tracked under a supervision and only used for the presented building
energy simulation research. There is a need to integrate cyber-security
and privacy research with the mobile-internet-based occupancy data

Fig. 2. Generation of occupancy based on mobile internet.
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Fig. 3. Occupancy samples of three office buildings.
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acquisition in the future work.

2.4. Evaluation of the mobile positioning data

The occupant profiles of three large offices in Shanghai are pre-
sented in Fig. 3. The data is acquired by the proposed mobile-internet-
based occupancy detection method. This figure further verifies the in-
applicability of code-based occupancy data for practical use. It's ob-
vious from Fig. 3 that although these three sample buildings are of the
same building type (i.e., large offices), their occupancy schedules are
radically different from each other. The weekly schedules of Building A
and C vary considerably with days while building B maintains on an
almost stable level. There are noticeable fewer occupant activities for
three building around Jan 28th, 2017, which is Chinese New Year day.
Most of the companies in these buildings were closed for holidays.
There is continuously a baseline amount of occupants in the office
buildings because there is security personnel working at night. Even if
there is a vast difference for these three large office buildings in terms
of occupancy schedule, the same occupancy schedule input will be
applied in the simulation if only occupancy data from the building
codes and design manuals were used since these buildings are the same
type.

Even for the same building, the daily and weekly schedules can still
be much different with the time. For example, the occupancy of
Building A shows a large unpredictability with the time. Its occupancy
seems to vary randomly with the time, and there isn't an observable
pattern to follow. In general, such characteristic of daily variation will
most likely be ignored by building codes. Deru et al. had same com-
ments on using occupancy information directly from building codes
[48]. In their study, occupancy density of commercial building can vary
in a huge range (i.e., from 334 ft2/person to 300,000 ft2/person) with a
mean of over 25,000 ft2/person.

In summary, the mobile positioning data can help us understand
and identify key characteristics of building occupancy information, i.e.,
building occupancy schedule. Traditional methods which tend to or-
ganize building occupancy information into different groups always fail
to capture the uniqueness of each building. Instead, this mobile-in-
ternet-based method takes advantages of the already-built mobile in-
ternet system and can potentially real-time monitor and update the
occupancy information of every single building. Compared with other
approaches, this method doesn't require the deployment of large-scale
sensor network or massive computational power. The occupancy in-
formation such as occupancy schedule can be easily accessible with this
method.

3. Methodology

3.1. Background

Building simulation is widely used at present, because it could help
us achieve a sustainable built environment, and at the same time, im-
prove indoor quality and occupant productivity. In addition, building
simulation has been used to model future innovation and technological
progress in the architecture, engineering, and construction (AEC) in-
dustry [49]. For the simulations used in the operation stage, the model
is required to represent a building as accurately as it can; that is, the
model should describe the building systems as-installed, as-operated,
and as-used [50]. Standard building simulation programs, for example,
EnergyPlus [19] and eQUEST [20], typically have energy usage (e. g.,
electricity, gas) and demand as the modeling outputs [51,52]. In gen-
eral, the modeler calibrates the input parameters of a simulation pro-
gram to minimize the discrepancy between the model outputs and the
actual measurement counterparts.

However, in most modeling cases of existing building, the mismatch
between the design phase and the operation phase could be significant
due to the fact that most existing buildings do not operate as well or as
efficiently as they could and should [49]. This results in a considerable
discrepancy between the simulated and the measured energy con-
sumptions [5,6]. Therefore, the model calibration serves as an essential
and necessary step to ensure the accuracy and applicability of building
models, in particularly, used in the operation stage [49,53](e.g., model-
based controls, model-based diagnostics, etc.) (see Table 1).

Model calibration, which is also known as calibrated simulation
(CS), refers to the process of tuning model's input parameters to narrow
the disagreement between the simulated result and the real-monitored
data. The calibration technique typically consists of four steps: (1)
collect the data, (2) input the data and run the simulation, (3) compare
simulation model outputs to measured data, and (4) decide on whether
the desired accuracy has been achieved [54]. MBEmonth (Mean Bias
Error) and (CV) RMSEmonth (Coefficient of Variation of Root-mean-
square Error), recommended by ASHRAE (American Society of Heating,
Ventilation and Air-conditioning), are two commonly used indexes to
evaluate the performance of CS. Only when the MBEmonth and (CV)
RMSEmonth fall within a specified range can the calibration be con-
sidered acceptable. Recommended values for these two indices from
three frequently referred guidelines (ASHRAE [54], International Per-
formance Measurement & Verification Protocol (IPMVP) [55], and
Federal Energy Management Program (FEMP) [56]) are presented in
Table 2.

Table 1
Summary of widely used occupancy detection methods.

Occupancy detection method Presence/Number of
occupants

Evaluation notes Reference

Manual counting and questionnaire Number Requires a lot of labor force; not accurate enough [25,38,39]
PIR Presence Can only output a binary value. Requires a direct line of sight to function effectively. [26]
Ultrasonic sensor Presence Can only output a binary value. Susceptible to false signals such as air turbulence. [35]
Sound sensor Presence Can only output a binary value. False OFFs when occupants make no sound. [35]
Light-switch sensor Presence Can only output a binary value [17]
Telephone off-hook Presence Can only output a binary value [27]
Carbon dioxide sensor Number The estimated number of people always has a time lag compared with the real occupancy data

if CO2 data is directly used.
[28,41,42]

Image sensor Number Requires an advanced signal processing algorithm and mass computational power. [11,43]
Large-scale sensor network Number The result is relatively accurate; but it requires implementations of an expensive sensor

network, massive computational power, and complicated programming
[36,37]

Machine Learning Number or presence It can be used for prediction of occupancy. But it requires the availability and completeness of
the training data.

[29–31]

Utility sub-metering Number Doesn't require any additional occupancy sensors. But the result is not accurate since each
occupant is assumed to consume the same amount of electricity.

[32]

Wi-Fi network; Ethernet address
resolution protocol

Number Doesn't require any additional occupancy sensors. Occupants often have more than one
device. Requires advanced algorithm.

[33,34]
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One of the major problems in current CS is that the modeler is required
to have expertise in the HVAC domain since how well a simulation
model is calibrated is highly relied on his or her subjective judgment
and experience. In many cases, the process of calibrating a simulation
can be extremely tedious and intensely laborious, especially with si-
mulation programs that require a large number of input parameters. It
is difficult for modelers to predict the consequent change in outputs
after each parameter tuning, especially for inexperienced ones [49].

Additionally, the high non-linearity, multi-parameters character-
istics, and the inherent complexity of the building system make the
calibration incredibly time-consuming in practice. The modelers will
typically “adjust” input parameters on a trial-and-error basis until some
selected outputs match the actual measurements. Troncoso [57] con-
sidered this process as “fudging” because it often results in the ma-
nipulation of a large number of variables that may significantly de-
crease the credibility of the entire simulation.

There is an increased number of studies trying to propose a more

efficient method to calibrate building models. Coakley et al. had a
comprehensive review of the modern calibration methods [58]. In their
review, calibration approaches were classified into two main cate-
gories, manual and automated. A manual approach consists of char-
acterization techniques, advanced graphical approaches, and proce-
dural extensions. An automated calibration needs some optimization
techniques. Approaches like sensitivity analysis (SA), optimization
techniques, and Meta-modeling need complicated mathematical algo-
rithms either to find the key parameters or determine the cost or pen-
alty function, etc. Clarke et al. [59] came up with a calibration method
which emphasized the empirical data and applied this procedure using
the ESP-r program. Heo et al. [50] quantified uncertainties associated
with building models based on a Bayesian calibration approach. They
demonstrated such method could correctly evaluate energy retrofit
options. Liu et al. [60] presented a calibration signature method for the
rapid calibration of heating and cooling energy consumption simulation
of commercial buildings. O'Neill and Eisenhower [61] presented a
systematic way for building energy model calibration using a para-
metric uncertainty analysis. Chaudhary et al. [62] conducted two case
studies through using an “Autotune” approach to tune input parameters
in EnergyPlus models. However, the most common approach to cali-
brate a model is still the trial-and-error method in practice, which is
time-consuming and inefficient. The credibility of the parameters (e.g.,
occupancy schedule) autotuned by the algorithms is limited by the
ranges pre-defined by the modelers.

This paper aims to investigate whether the application of the mo-
bile-internet-based occupancy information can benefit building per-
formance simulation. Although the occupancy information obtained
with this method is a building-level data and lacks details on the lo-
cation of each occupant, such precision level is probably sufficient for
building calibrated simulation. This is evidenced by this pilot case study
and will need to be further verified through other case studies in the
future. On the one hand, a more accurate occupancy input can help
better describe the building energy model, which helps to reduce the
model distortion and make the simulation results more credible. On the
other hand, the occupancy input, which is closer to the real occupied
condition, can potentially help resolve the mismatch between the si-
mulation result and the measured energy consumption and reduce the
workload of the model calibration. In general, improved understanding
occupancy in buildings can help improve building energy modeling,

Table 2
Regulations of MBE and CV(RMSE) in three guidelines.

Index ASHRAE 14 (%) IPMVP(%) FEMP(%)

MBEmonth ± 5 ±20 ±5
MBEyear – – ±10
CV(RMSE)month ± 15 – ±15

Fig. 4. Flow chart of the application of using mobile position data for building simulation.
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which has been claimed in many recent studies by IEA Annex 66 [63].

3.2. Methodology

This study aims to prove that compared with the occupancy in-
formation derived from the building code and design manual, the mo-
bile-internet-based occupancy data can benefit building performance
simulation in terms of improvements of the model accuracy and re-
ductions of the associated workload. Specifically, we conduct model
calibrations for a chosen building with the building operation data from
the BAS and the presented mobile-internet based occupancy data.
Nowadays, it is not difficult even for practitioners to get building op-
eration data from BAS particularly for modern new buildings [64]. The
objective is to see whether the adding of mobile-internet-based occu-
pancy can help improve simulation results. The detailed flow chart for
the proposed calibration methodology using BAS data and mobile-in-
ternet-based occupancy data is shown in Fig. 4.

3.2.1. Data collection
A building appropriate for the proposed calibration method should

be chosen. Ideally, the building candidate has the following features.

• This building should be equipped with a perfect building automa-
tion system (BAS) including a complete sub-metering system. All
BAS and metering data are available and can be downloaded to a
local drive. These data are usually available from building man-
agement companies.

• All building basic facts are available including building layouts,
HVAC equipment schedules, practical usage, mechanical system,
etc.

• An accurate geographical location of the building should be avail-
able. Building location can be graphically specified in the occupant
tracking system. The mobile-internet service system will auto-
matically track the occupied condition of the building and store the
information on its cloud server using a predefined sampling fre-
quency and tracking period.

Since the architectural drawings and the operation data of the office
building A and C are not available to this research, this case study only
modeled the office building B using EnergyPlus and the model cali-
bration only covered this building as well.

3.2.2. Create building energy performance model
A building energy performance model can be created after all the

building property information is collected. In terms of unavailable
model input parameters, these values will be derived from building
codes and design manuals, which is the current practice for the building
simulation [65,66]. In other words, this initial model is built with a

traditional method, i.e., no actually-measured data (indoor temperature
setpoints (ST), lighting power density (LPD), etc.) is utilized or con-
sidered.

Then a simulation will be performed using this model to get some
preliminary simulation results. By comparing such results with the BAS
measured data and calculating MBEmonth and CV(RMSE)month, we can
evaluate how good this model is and understand the accuracy of code-
based inputs.

3.2.3. Initial calibration using BAS data
For most modelers, the first step to conduct a model calibration is to

calibrate the ST, LPD, lighting schedule, equipment power density
(EPD), equipment schedule and other parameters which can be easily
calibrated using BAS measured data [65,66]. After this calibration, the
MBEmonth and CV(RMSE)month calculated using simulating and mea-
sured energy consumption can usually be reduced. The case study in
this paper also includes this regular and initial calibration using BAS
measured data, where the heating and cooling indoor air temperature
setpoints, lighting density and schedule, equipment density and sche-
dule are calibrated using BAS data.

3.2.4. Further calibration using the mobile-internet-based occupancy data
One of the biggest factors that contribute to this still mismatch is

related to inaccurate inputs associated with building occupancy [18].
Thus, a further calibration which aims to minimize the mismatch by
replacing the code-based occupancy inputs with mobile-internet-based
occupancy information is conducted. This further calibration will
follow the initial one which is mainly based on the BAS measured data.
The mobile-internet-based occupancy data of the building is down-
loaded from the cloud server and then post-processed for generating
occupancy schedules based on different day types, as described in
section 2.3. These occupancy schedules are then input into the model to
replace the original code-based values. The MBEmonth and CV
(RMSE)month will be calculated again to evaluate the effectiveness of
this further calibration.

4. Case study

A calibration case study of a real building is conducted following the
calibration methodology presented in section 3. In this section, a step-
by-step calibration is performed. The initial calibration is conducted
using the building operation data from the BAS data, and the further
calibration is performed using the mobile-internet-based occupancy
data.

4.1. Building description

As has been mentioned, only the architectural drawing and the

Fig. 5. Photo and model of the selected building in the case study.
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operation data of the office building B were available for us, therefore,
the office building A and C were not included in the case study. The
selected building is a shopping center and office complex located in
Changning District, Shanghai, China. The building is 132m tall with a
total building area of about 200,000m2. There are 30 storeys above the
ground in total. A seven-storey podium is adjacent to the main tower.
The podium together with the floors 1–7 of the main tower is used as
the shopping and retailing areas. The top floor is designed to be a salon.
Other floors of the main tower are designed to be offices. There are also
four underground levels which contain civil air-defense facility, parking
lots, miscellaneous equipment rooms, etc. The building model is shown
in Fig. 5.

4.2. Model development

4.2.1. Modeling software
The building envelope model was developed by SketchUp Pro 2016

[67] and OpenStudio Legacy plug-in Ref. [68]. The simulating tool in
this case study is EnergyPlus 8.6 [19].

4.2.2. Data input
The information of building envelope, building scheme, internal

loads, mechanical systems, etc. are input into the building model using
references from either architectural drawings and/or building codes.
The selected input parameters associated with building envelope
thermal characteristics are summarized in Table 3.

The typical meteorological year (TMY3) data of Shanghai developed
by U.S. DOE [69] is used for the initial model running.

The initial values of input parameters associated with the internal
loads are presented in Table 4. The initial schedules of lighting and
equipment are presented in Fig. 6. These schedules are based on
building codes [70].

4.2.3. Initial simulation
A preliminary check-up on the simulation results using a non-cali-

brated model shows that the simulated energy consumption of HVAC
system highly deviates from the measurements. The simulated energy
consumption in winter is much higher than the measurement while the
trend is opposite (i.e., HVAC energy consumption in summer is much
lower than measurement). The CV(RMSE)month of these two groups of
data is 42.1%. And the MBEmonth is even as high as over 40%. This
makes it necessary for model calibration.

4.3. Initial calibration using BAS data

As described in the methodology section, an initial calibration using
the BAS data is performed in this case study. The BAS monitors and
records the changes of indoor parameters and sub-metering data of the
building system. By referring to BAS data, we can adjust the indoor air
temperatures and internal loads (i.e., LPD and EPD) to a reasonable
level [65]. Ideally, an actual meteorological year (AMY) data should be
used instead of the TMY data for the calibration [66]. Unfortunately,
AMY data was not available for this case study at this moment.
Therefore, a TMY3 weather data is still used during the calibration.

4.3.1. Parameters adjustment
Input parameter adjustments conducted during the initial calibra-

tion are listed in Table 4. The zone air temperature setpoints are ad-
justed based on the sensor reading values recorded in BAS. The internal
heat gains, including LPD and EPD, are adjusted based on the sub-
metering electricity consumption data of lighting and equipment. As
shown in Fig. 7 and Fig. 8. After this initial calibration, the MBEmonth

and CV(RMSE) month of lighting electricity end-use decreases from
28.6% to 28.5%–2.5% and 5.8% respectively. The MBEmonth and CV
(RMSE) month of equipment electricity end-use decreases from 9.8% to
9.4%–0.8% and 1.5% respectively.

4.3.2. Initial calibration results
The result of the calibration with the BAS data is presented in Fig. 9.
The MBEmonth and CV(RMSE) month of these two groups of data are

13.6% and 18.9% respectively. The improvement in the simulation
result is possibly because the LPD and EPD of the shopping and office
areas were increased after the initial calibration. This change not only
caused an increase in the energy consumptions of the lighting and
equipment systems, but also resulted in a growth in the building cooling
load and a reduction in the building heating load. This explained why
the building energy consumption increased in the summer and de-
creased in the winter. Besides, it is interesting to note that the simulated
energy consumption of March and November were close to the mea-
sured values after the calibration of the lighting and plug equipment
system. This is probably because Shanghai is located in a climate zone
with hot summer and cold winter. During the shoulder season such as
March and November, the HVAC related energy usage is small.
Therefore, only calibrations of the lighting and plug equipment system
could lead to acceptable energy prediction errors at the building level.

It is clear that although the simulated energy consumption is closer
to the real-monitored values from the BAS, there is a need for a further
calibration to have the calibrated model meeting the criterion from the
guidelines (e.g., ASHRAE guideline [54]).

4.4. Further calibration using the mobile-internet-based occupancy data

In this section, occupancy information acquired from mobile posi-
tioning data is tuned to calibrate the building.

4.4.1. Occupancy information acquisition and processing
The area monitored by the mobile-internet system is shown in

Fig. 10. The occupancy information from September 2016 to September
2017 is monitored and saved. A sample of occupancy inside the mon-
itored area is presented in Fig. 11. There are noticeable fewer occupant
activities around September 15th, October 1st, January 1st, and Jan
28th which are Mid-Autumn Festival, National Day, New Year's Day,
and Spring Festival in China respectively. The data source is then
grouped based on the seasons and day types. Five groups of occupancy
schedules which share the similar variance trends are generated. They
are summer workday, winter workday, summer weekend, winter
weekend, and holiday respectively. The summer covers the period from
April to October and the winter covers the rest six months. Considering
that the occupancy variance within each group is similar to each other,
we assume that the hourly occupancy schedule of each day group is a
periodic discrete time series every 24 h.

As mentioned in Section 2.3, these five groups of data are then
processed with the frequency-domain linear regression method. The
definition of the frequency-domain linear regression is presented in Eq.
(6), where x denotes the hour of the day and ω denotes the angular
frequency. This frequency-domain linear regression, which is also
known as the Fourier Series Regression, is a way to represent a function
as the sum of simple sine waves. Specifically, it decomposes any peri-
odic function or periodic signal into the sum of a set of simple

Table 3
Building envelope characteristic.

Envelope Values

External wall U= 0.396W/(m2.°C)
Internal wall U= 1.926W/(m2.°C)
Roof U=0.365W/(m2.°C)
Door U=0.143W/(m2.°C)
Floor U=1.043W/(m2.°C)
Ceiling U=3.125W/(m2.°C)
Window U=2.275W/(m2.°C)

SC=0.22
VT=0.13
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oscillating functions, namely sines and cosines. The discrete-time
Fourier transform is a periodic function, often defined in terms of a
Fourier series. It has been adopted in other studies to generate periodic
time-series profiles. For example, Ji et al. [71]applied Fourier Series
Model (FSM) to disaggregate HVAC terminal hourly end-use in com-
mercial buildings. Niu and O'Neill [72,73] also applied an improved
Fourier Series Decomposing to estimate HVAC electricity consumption

in a dormitory building.

f(x)= a0 + a1*cos(x* ω) + b1*sin(x* ω) + a2*cos(2*x* ω) + b2*sin
(2*x* ω) + a3*cos(3*x* ω) + b3*sin(3*x* ω) + a4*cos(4*x*
ω) + b4*sin(4*x* ω) + a5*cos(5*x* ω) + b5*sin(5*x* ω) + a6*cos
(6*x* ω) + b6*sin(6*x* ω) Eq. (6)

The regressions of winter workday with the regression residuals are
illustrated in Fig. 12 as an example. It should be noted that there is an
abnormal residual value around 1250. This is because this building
holds several companies which have different holiday policies. Al-
though the national standard for spring festival holiday is seven days,
some of these companies may extend it to ten days or longer, so that the
occupancy was noticeably less in this period.

The coefficient of determination (R-squared value) is often used as
the indicator to evaluate the performance of the regression. It is defined
in Eq. (7). R-squared is a statistical measure of how close the data are to
the fitted regression line. The R-squared values of the five groups are all
higher than 0.95 in this case study, which indicates that the regression
process yields good accuracy, and five occupancy schedules are suffi-
cient to represent the variation of the building occupancy in a whole
year. In the future, we will investigate whether disaggregated schedules
(e.g., daily by daily) will further improve the simulation accuracy. Five

Table 4
Indoor air temperature setpoint and internal heat gains.

District Parameter Before Calibration After Calibration

Office area STsummer 24 ± 2 °C 25 ± 2 °C
STwinter 24 ± 2 °C 25 ± 2 °C
LPD 9W/m2 30W/m2
EPD 15W/m2 18W/m2

Commercial area STsummer 20 ± 2 °C 22 ± 2 °C
STwinter 20 ± 2 °C 22 ± 2 °C
LPD 10W/m2 30W/m2
EPD 13W/m2 18W/m2

Garage LPD 9W/m2 30W/m2
EPD 5W/m2 1W/m2

Plant room LPD 9W/m2 30W/m2
EPD 5W/m2 1W/m2

Fig. 6. Lighting and equipment schedules for office and commercial areas [70].

Fig. 7. The lighting electricity end-use of the measured values, initial simula-
tion, and the calibration with the BAS data.

Fig. 8. The equipment electricity end-use of the measured values, initial si-
mulation, and the calibration with the BAS data.

Fig. 9. Measured HVAC energy consumption, initial simulation, and the cali-
bration with the BAS data.
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occupancy schedules are presented in Fig. 13. It can be seen that
compared with the summer condition, the occupant number in the
winter condition is obviously smaller although the variation patterns
are similar. Besides, compared with the code-based values, an apparent
time lag is observed in the occupancy schedules obtained from the
mobile-internet-based positioning data. The occupancy schedule of the
winter workday obtained from the regression with raw data from 40
actual days was presented in Fig. 14. The CV(RMSE) is calculated to
recognize the best and worst cases for the regression. The result sug-
gests that the (CV)RMSEs of the best and worst cases are smaller than
4% and 10%, respectively, which demonstrates that the proposed re-
gression yields a reasonable accuracy.

=
∑ − ∑ ∑

∑ − ∑ ∑ − ∑
n y y y y

n y y n y y
R

· ˆ · ˆ

( ( ) )( ˆ ( ˆ) )2 2 2 2 Eq. (7)

The occupancy density is generated from an on-site survey with the
building manager. The occupancy densities of the shopping and office
area were adjusted from 8 and 6m2 per person to 6 and 4.8m2 per
person respectively. In this EnergyPlus based simulation case study, the
occupants mainly influenced the building energy consumption by the
related internal heat gains. The changes in the occupancy schedule
(both amplitude and “timing”) and density had the impacts on the
building energy consumption since the building internal load was
changed. However, in this study, we didn't study which occupancy re-
lated parameters (e.g., the people density or the timing of the time
series occupancy) have the bigger impact on the simulation results. This
will involve a systematic and complicated sensitivity study on the
current EnergyPlus model such as the study from Refs. [74] [75], and

[76].
It should be noted that the occupancy patterns of both areas (office

and shopping) are assumed to be similar in this case study for the
simplification. These two areas will be separately monitored in the
future to improve the occupancy estimation accuracy.

4.4.2. Simulation result of the further calibration with an occupancy-
schedule-based method

The simulation result of this calibration is presented in Fig. 15. It
can be seen that the simulating energy consumption is in a good
agreement with the measured value. The MBEyear and CV(RMSE) month

are 2.5% and 4.9% respectively. MBEmonth values are all less than 5%.
All three indexes fall within the range of the recommended values of
relevant guidelines [54]. This indicates that no further calibration is
necessary. The possible reasons are as follows: Firstly, the occupant
number in the summer increased after the new occupancy schedules
and densities were used, thus, the internal loads related to the occu-
pants were increased. This change caused a consequent growth of the
energy consumption. Secondly, the occupant number in the winter
decreased after new occupancy information was used. The higher
building heating loads consumed more energy in the winter.

Besides, it's worth noting that the simulated energy consumption of
February is slightly higher than the measured one. This is partly due to
what has been mentioned above that the different holiday policies
made the actual occupancy smaller than the regressed one. The possible
reasons why the simulation result was good even if the AMY was not
used are described as follows: Firstly, the building envelope perfor-
mance for this new office-shopping center building was good that the

Fig. 10. The geographical information of the simulated building.

Fig. 11. Samples of data information (Sept. 2016 to Mar. 2017).
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impact of the weather was relatively small compared with internal heat
gains. Secondly, this calibration was conducted using the lumped
monthly energy usage instead of the daily/hourly energy consumption.
If we conducted the calibration on a smaller time scale, the impact of
the weather could be more predominant.

The good results of this case study prove that using the real occu-
pancy schedule which is generated from the mobile-internet-based oc-
cupancy data can facilitate the building energy simulation. However, it
should be noted that in this case study, the candidate building was
newly built, and the HVAC system and other mechanical equipment are
all in good conditions. Therefore, using the BAS data and a simple re-
placement of the code-based occupancy information is able to offer an
acceptable energy prediction from the whole building energy

performance simulation. Furthermore, this good result does not mean
that the usage of the mobile-internet-based occupancy data can replace
other calibration approaches including auto-tuning as described in
Section 3.1.

5. Conclusions and future work

5.1. Conclusions

This study investigates the applicability of mobile-internet-based
occupancy data in building energy simulation and whether it can sim-
plify the calibration process and reduce the model distortion. An energy
performance model of an office and commercial complex building in
Shanghai is introduced as a case study. A preliminary calibration is
conducted only using the history data (the electricity consumption of
lighting and equipment) from the BAS in the first step. The lighting
power density (LPD) and equipment power density (EPD) are adjusted
in this calibration. The further calibration is then performed by repla-
cing the code-based occupancy information with the mobile-internet-
based occupancy information. The results suggest that the presented
method can help overcome some intrinsic issues for building energy
simulation. Both two indexes (i.e., MBE and CV(RMSE)) fall within the
recommended range of the standard (e.g., ASHRAE Guideline [54]).
Other key conclusions from this pilot case study are listed as follows:

• The proposed approach of using BAS data and the mobile-internet-
based occupancy data for building energy simulation offers a po-
tential alternative to building modelers and the practitioners who
don't have a solid background in the HVAC domain.

• This proposed approach could lead to a less possible model distor-
tion during the simulation and calibration process because it is re-
lying on the actual BAS data and mobile-internet-based occupancy
information. In other traditional calibration methods, although the

Fig. 12. Frequency domain linear regression of occupancy schedule (winter workday).

Fig. 13. Occupancy schedules derived from mobile-internet-based data.
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final result might meet the criterion of the standards, the model may
be seriously distorted and cannot well represent the actual building.

• The mobile-positioning based occupancy detection method is ad-
vantageous to others for its low cost and convenience. There is no
need to deploy any additional sensors, and thus a large amount of
implementation and maintenance fees can be saved. Besides, it
doesn't require an advanced algorithm to process the raw data. Such
a supervised tracking system can be applied to any commercial
building as long as the permission is granted.

5.2. Future work

Although the mobile-internet-based data has been proved to be ef-
fective in this pilot case study, there still remain some issues to be
addressed in the further work.

• The weather condition could have some impacts on the building
energy consumption. Actual Meteorological Year (AMY) data should
be collected and used for the simulation and the calibration in the
future.

• More case studies should be conducted to prove the scalability of
this proposed approach.

• Some other machine learning methods, e.g., clustering analysis, will
be introduced to process occupancy information from mobile posi-
tioning data.

• The current method to specify the monitoring area is not accurate
enough, especially for those buildings with irregular shapes. A
smaller measuring scale should be provided in the future to reduce
the related errors.

• The different areas of a multi-purpose building should be separately
monitored to improve the accuracy level of the mobile positioning
data.

• Since mobile-internet-based occupancy data only takes into account
those who are active smart phone users. A correction coefficient
could probably be introduced to improve the data completeness. A
large-scale survey (such as whether use smart phone, whether use
mobile-internet-service, etc.) will be necessary to help get such
correction coefficient. It is expected that there will be variations of
this coefficient in different regions and countries.

Additionally, it should be noted that authors fully understand and
respect the privacy right of every internet user. The occupancy in-
formation obtained in this pilot case study was tracked under a su-
pervision and only used for the presented building energy simulation
research. There is a need to integrate cyber-security and privacy re-
search with the mobile-internet-based occupancy data acquisition.
Depending on the local laws and regulations, this data source may not
be available in some countries and regions.
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