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This paper proposes and demonstrates the effectiveness of an economic model predictive control (MPC)

technique in reducing energy and demand costs for building heating, ventilating, and air conditioning

(HVAC) systems. A simulated multi-zone commercial building equipped with of variable air volume

(VAV) cooling system is built in Energyplus. With the introduced Building Controls Virtual Test Bed

(BCVTB) as middleware, real-time data exchange between Energyplus and a Matlab controller is

realized by sending and receiving sockets. System identification is performed to obtain zone

temperature and power models, which are used in the MPC framework. The economic objective

function in MPC accounts for the daily electricity costs, which include time-of-use (TOU) energy charge

and demand charge. In each time step, a min–max optimization is formulated and converted into a

linear programming problem and solved. In a weekly simulation, a pre-cooling effect during off-peak

period and a cooling discharge from the building thermal mass during on-peak period can be observed.

Cost savings by MPC are estimated by comparing with the baseline and other open-loop control

strategies. The effect of several experimental factors in the MPC configuration is investigated and the

best scenario is selected for future practical tests.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the commercial and residential building
sectors consume nearly 40% of total U.S. primary energy and
electricity takes up approximately three quarters of this energy
(Kelso, 2009). Besides accumulated energy use, buildings, especially
commercial buildings, tend to have high demand in electricity
simultaneously, which causes significant peak demand exertion on
the grid. Both electricity suppliers and customers are concerned
with the peak demand due to financial and capacity challenges. For
one thing, numerous new power plants are built every year merely
to feed the rapidly increasing peak electrical demand, which reduces
efficiency at off-peak hours and leads to higher energy costs.
Moreover, uncontrolled high peak demand also makes it difficult
to integrate renewable and distributed energy resources. Therefore,
it is of great interest to develop advanced technologies to flatten the
peak demand relative to base load.

Recently, demand response (DR) has become a promising con-
cept in the electricity market. DR is an approach to stimulate end
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users to change electric usage from their regular consumption
patterns, in response to the time-varying price of electricity
(Albadi and El-Saadany, 2007; Rahimi and Ipakchi, 2010). Thermal
storage in building thermal mass has been recognized as an
important passive asset to shift demand for decades, and there has
been a number of simulation and experimental studies on reducing
the peak demand by adjusting temperature setpoints of HVAC
systems (Braun, 1990; Rabl and Norford, 1991; Henze, 2005).

Advanced control techniques for DR and building energy effi-
ciency constantly emerge, facilitating the level of DR from manual to
semi-automated and fully-automated (Kiliccote et al., 2006). Some
methods, for example artificial intelligence-based (Krarti, 2003) and
reinforcement learning (Liu and Henze, 2007) are model-free but
usually need large amounts of data from specific buildings, meaning
that even though they have been proven successful for a particular
building, their performance cannot be guaranteed for another.
Therefore, modeling still plays an important role in building energy
control. With more and more modeling approaches proposed and
the assistance of various modeling packages, accurate modeling for
large scale buildings is not a barrier any longer (Hong and Jiang,
1997; Crawley et al., 2001; Yu et al., 2010).

Development of model-based control is desirable because simu-
lation can be carried out during the building design phase and tested
even before a building is built. Significant peak demand reduction
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Fig. 1. Framework of the building energy simulation system.

Fig. 2. System diagram that enables EnergyPlus and Matlab exchange data in real-

time on BCVTB.
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has been shown by previous studies of model-based demand
response control that took into account an electricity market where
a time-varying rate is applied. Pre-cooling (or pre-heating) is the
basic action to shift peak demand away from on-peak periods (Xu
and Haves, 2006). In the demand limiting strategy, the zone
temperature trajectories are obtained by solving an optimization
problem under a pre-determined target demand during on-peak
hours (Lee and Braun, 2008a,b,c). However, these methods are not
able to deal with the impact of disturbances like building internal
loads and weather conditions. While many studies focused on
reducing the energy consumption and peak demand, there has been
less work on reducing the energy and demand costs of building
energy systems (Henze et al., 2008).

The objective of the work reported in this paper is to propose a
closed-loop control system based on an economic model predictive
control technique to reduce energy costs in commercial buildings
considering real-time uncertainties and constraints. MPC has been
proven as a successful approach by numerous industrial applications
(Qin and Badgwell, 2003). It is essentially an optimization-based
strategy in which an explicit model is employed to predict the
behavior of the controlled plants over a receding horizon (Rao and
Rawlings, 2000). In each time step, an open-loop optimal control
problem is formulated and solved, and only the control action of the
current time step will be implemented on the plant. This routine is
iterated at subsequent intervals with new measurements and
updated plant information. In this work, the objective function
directly represents the energy and demand costs, which is an
economic objective to be optimized. The building dynamics and the
time scale of pricing and disturbances intertwine which lends itself to
an economic objective with dynamic models as constraints. Comfort
specifications are also incorporated as constraints. After all, it is the
money saved on the utility that gives the owners of commercial
buildings the incentive to take actions on importing new technologies
and attaining building retrofits. Unlike previous studies in this area
that used simplified models of buildings and their HVAC systems (Xu
et al., 2004; Ma et al., 2009), this work relies on system identification
to establish a direct input-output relationship from temperature
setpoints to actual indoor zone temperature and power.

The reminder of the paper is organized as follows. The closed-
loop simulation environment is described in Section 2. Section 3
shows the model identification procedure in the Matlab system
identification toolbox. The economic model predictive control
algorithm is developed in Section 4. Section 5 describes the
virtual building modeling in EnergyPlus and simulation results,
shows energy and cost savings brought by MPC comparing with
the pre-programmed control strategies and analyzes the effect of
some control parameters to the MPC performance. The final
section concludes the paper.
2. System framework

The framework of the building energy simulation system is
illustrated in Fig. 1. The steps followed to set up the system are
described below:
(a)
 Create a virtual model of a commercial building with moder-
ate thermal mass using EnergyPlus version 4.0;
(b)
 Design an input sequence and excite the EnergyPlus model to
generate corresponding output signals;
(c)
 Identify mathematical models for temperature and power
consumption in the Matlab System Identification Toolbox
with the input and output data (Ljung, 2010);
(d)
 Employ the identified models and develop MPC algorithm
that gives control actions of temperature setpoints for the
building HVAC system;
(e)
 Apply the MPC controller to the original EnergyPlus model;

(f)
 Obtain and report the actual zone temperature, power and

demand profiles.
EnergyPlus is one of the most comprehensive simulation tools
developed for building energy analysis. However, one limitation
of EnergyPlus is the lack of a friendly graphical user interface. It
carries out simulation by reading input data files (idf-files), which
contain all of the pre-defined information regarding the building
to be simulated including the simulation period, building dimen-
sion, layout and material, HVAC schedules and so on. This means
that once a simulation is started, it cannot be paused to wait for
data updates. As a result, it can only run in batch mode given pre-
determined HVAC schedules and closed-loop controllers cannot
be implemented external to the simulation.

In order to solve this problem, the Building Controls Virtual
Test Bed (BCVTB) is employed as a middleware. BCVTB (Wetter
and Haves, 2008) is an open-source software developed in
Ptolemy II environment (Brooks et al., 2007). It allows users to
couple different programs and conduct synchronized simulation.
Matlab and EnergyPlus both play the role of clients connected to
BCVTB as shown in Fig. 2. As soon as the simulation starts, there is
a socket connection established from the middleware to each
client. In each time step, which is 15 min in simulation time, both
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clients save and load data to and from the socket. The socket
moves back and forth between the two programs directed by the
middleware and data exchange is realized inside the middleware.
This co-simulation process keeps running until a termination
signal is received.
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Fig. 3. Input–output data of an excited zone for model identification.
3. System identification

The building thermal and energy behavior can be simulated by
EnergyPlus very well, but control-relevant input–output dynamic
models are still required to implement model-based controllers.
System identification is therefore performed on the EnergyPlus
simulation to obtain dynamic models that can be used as predic-
tion models in MPC.

Autoregressive exogenous (ARX) models are used here where
their inputs are zone temperature setpoints of the cooling system
and outputs are actual zone temperature and power measure-
ments. The task of model identification is challenging due to
nonlinearity, intermittent HVAC operations and disturbances
(Salsbury, 2005). An experiment is designed to identify the
models while the cooling system is being operated over normal
conditions.

A pseudorandom binary sequence (PRBS) is generated as the
excitation input. The binary levels of the PRBS are the lower and
upper bounds of the thermal comfort region, which in this work
are set as 21 and 25 1C. The selection of thermal comfort region is
modified from Lee and Braun (2008a), by changing the upper and
lower bounds to integers after converting it from Fahrenheit to
Celsius. For the considered single-floor, five-zone building, each
zone is excited separately in order to reduce the interactive
effects among the HVAC control actions of different zones. In
other words, when one zone is excited with the PRBS, the cooling
of the other four zones is maintained in action as much as
possible. This is done by altering the zone setpoint of the excited
zone with lowered setpoint values during PRBS tests. The cooling
setpoints are set as Eq. (1). The EnergyPlus model is fully excited
over an 1 month period and the input–output data of occupied
hours is used for system identification, which is shown in Fig. 3.

Tsp,iðkÞ ¼

21, excited zone, PRBS¼ 0

25, excited zone, PRBS¼ 1

25, non-excited zones

8><
>: ð1Þ

The model order is determined by the Matlab System Identi-
fication Toolbox. The power prediction model is fourth-order
multi-input single-output (MISO), which is described by

APðqÞPðkÞ ¼ BPðqÞuðkÞþeðkÞ ð2Þ

where q is a shifting factor, P(k) is the power at the time k and e(k)
is a white noise sequence. u(k) is the model input that has the
form

uðkÞ ¼ ½TT
spðkÞ9TaðkÞ�

T ð3Þ

where Tsp(k) is the vector of zone temperature setpoints

TspðkÞ ¼

Tsp,1ðkÞ

Tsp,2ðkÞ

Tsp,3ðkÞ

Tsp,4ðkÞ

Tsp,5ðkÞ

2
6666664

3
7777775

ð4Þ

and Ta(k) is the ambient temperature obtained from the typical
meteorological weather data file (TMY2). It plays the role of a
measured disturbance input and the history weather data will be
replaced by a weather forecast or weather estimator module
when this work is expanded to a field test on real building plants.
The AP(q) and BP(q) are model parameter matrices defined as

APðqÞ ¼ 1�a1q�1�a2q�2�a3q�3�a4q�4 ð5Þ

BPðqÞ ¼

BP,1ðqÞ

BP,2ðqÞ

BP,3ðqÞ

BP,4ðqÞ

BP,5ðqÞ

BP,aðqÞ

2
6666666664

3
7777777775

T

ð6Þ

Similarly, the zone temperature prediction model is identified
as a second-order multi-input multi-output (MIMO) as shown in
Eq. (7). Tz(k) is comprised of five-zone temperatures:

AT ðqÞTzðkÞ ¼ BT ðqÞuðkÞþeðkÞ ð7Þ

TzðkÞ ¼

Tz,1ðkÞ

Tz,2ðkÞ

Tz,3ðkÞ

Tz,4ðkÞ

Tz,5ðkÞ

2
6666664

3
7777775

ð8Þ

The model parameters are listed in the Appendix A. Note that
it is difficult to use the above linear models to accurately model
the complex virtual building model in Energyplus. There is
therefore inevitable model mismatch and further investigation
needs to be carried out to understand its impact to the control
performance.
4. Economic model predictive control

Instead of using a quadratic criterion as in the classical MPC
(Rao and Rawlings, 2000), an economic objective function is
designed as follows:

min J¼ CeþCd ð9Þ
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where J denotes the total daily electricity expense which is a
combination of energy and demand costs defined by Eqs. (10) and
(11) respectively:

Ce ¼
XN

t ¼ 1

½EcðtÞ �Dt � PðtÞ� ð10Þ

Cd ¼Dc � max
td r trN

fPðtÞg ð11Þ

where td is the time when demand charges begin and Ec(t)
accounts for the time-of-use electricity rate and Dc is the demand
charge rate. A rate plan offered by Southern California Edison
(SCE) is used here (SCE, 2008), in which each day is divided into
on-peak, mid-peak and off-peak. It is particularly designed for
medium-sized commercial and industrial customers and its
detailed information can be seen in Appendix B. Dt¼ 0:25 h is
the time interval and N is the total number of time step per day:

N¼
24

Dt
ð12Þ

Eq. (9) is a min–max optimization problem. We can convert
the maximum term into a linear term so that it can be solved by
linear programming routine.

Suppose at the current time k, the energy costs Ce(k) can be
decomposed into two terms:

CeðkÞ ¼ Ce,hðkÞþCe,f ðkÞ ð13Þ

where Ce,hðkÞ is the energy cost before k, which has been
calculated and stored in the history data, and Ce,f ðkÞ denotes the
predicted energy cost in the future horizon:

Ce,hðkÞ ¼
Xk

t ¼ 1

½EcðtÞ �Dt � PðtÞ� ð14Þ

Ce,f ðkÞ ¼
XN

t ¼ kþ1

½EcðtÞ � Dt � PðtÞ� ð15Þ

Introduce a new variable z to represent the peak demand of
the day:

z¼ max
td r trN

fPðtÞg ð16Þ

and define y(k) as

yðkÞ ¼ ½Pðkþ1Þ � � � PðkþNpÞ�
T ð17Þ

where Np ¼N�k is the width of prediction horizon. Extended
from the current time to the end of the day, the prediction
horizon shrinks over time, which differs from the traditional
MPC where the prediction horizon is usually a receding window
with fixed width. The shrinking horizon is chosen to minimize the
energy cost on the daily basis. By simplifying the objective to the
form in Eq. (18), the costs can be optimized on a daily basis:

min ~JðkÞ ¼ Ce,f ðkÞþCd ¼ ½Dc EcT
f ðkÞ�

z

yðkÞ

" #
ð18Þ

The ability to handle constraints is one of the most important
advantages of MPC. The inequality constraints in Eqs. (19) and
(20) need to be handled first, to guarantee the feasibility of Eq.
(16). Eqs. (19) and (20) are necessary because the definition of z in
Eq. (16) is not automatically incorporated into the optimization
problem:

zZ max
td r trk

fPðtÞg ð19Þ
�1 1

�1 1

^ &

�1 1

2
6664

3
7775

z

yðkÞ

" #
r0 ð20Þ

By setting x(k) and U(k) to be augmented vectors of zone
temperature and temperature setpoints over the control horizon
Nc respectively as

xðkÞ ¼ ½TT
z ðkþ1Þ � � � TT

z ðkþNcÞ�
T ð21Þ

UðkÞ ¼ ½TT
spðkÞ � � � TT

spðkþNc�1Þ�T ð22Þ

where Nc is selected to be equal with Np for simplicity, additional
inequality constraints can also be directly imposed to regulate the
zone temperature and setpoints within a range with respect to
time:

Tsp,minðkÞrUðkÞrTsp,maxðkÞ ð23Þ

Tz,minðkÞrxðkÞrTz,maxðkÞ ð24Þ

There are also two more sets of equality constraints brought
by the identified models. From Eqs. (2) and (7), the equality
constraints can be written as

½Ay �By�
yðkÞ

UðkÞ

" #
¼ 0 ð25Þ

½Ax �Bx�
xðkÞ

UðkÞ

" #
¼ 0 ð26Þ

where Ay, By, Ax and Bx are matrices derived from the model
parameters AP, BP, AT and BT.

Rewrite Eq. (18) with the new terms x(k) and U(k) added, the
objective function finally becomes the following linear form:

min
C
~JðkÞ ¼ ½Dc EcT

f ðkÞ 0 0�

z

yðkÞ

xðkÞ

UðkÞ

2
66664

3
77775 ð27Þ

where C¼ ½z yðkÞ xðkÞ UðkÞ�T is the decision vector.
With the inequality constraints described by Eqs. (19), (20),

(23) and (24), and the equality constraints as Eqs. (25) and (26),
the optimization problem has been formulated as a linear
program, which can be solved by the Matlab built-in function
Linprog. We constantly monitored the status variable flag, which
indicates whether a feasible solution is obtained. We found that
Matlab can always get a feasible solution in each time step.
However, the feasibility is not theoretically guaranteed, which is
subject to one of our ongoing theoretical studies.

In each time step, only the current temperature setpoints
Tsp(k) (the first component of U(k)) in the optimal solution will
be sent to the EnergyPlus model. This optimization procedure will
be repeated and a new problem will be formulated in subsequent
time steps when new measurement data are available.

Note that the definition of z as Eq. (16) requires that at least
one of the inequalities in Eqs. (19) and (20) holds with equality,
which can be shown by the following Theorem 1.

Theorem 1. If C ¼ ½z y x U �T is an optimal solution of Eq. (27),
( iA ½1,N� s.t. z¼ PðiÞ.

Proof. Suppose the opposition, i.e. z4PðiÞ for 8 iA ½1,N�, then
( s40 s.t. z ¼ z�sZPðiÞ for 8 iA ½1,N�. By simply replacing z with
z in the C, another feasible solution C ¼ ½z y x U �T is obtained.
Then we have

~J
C
�~JC ¼�s � Dco0 ð28Þ
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which contradicts the proposition that C is an optimal solution.
The theorem is proved. &

5. Simulation studies

5.1. Virtual building modeling in EnergyPlus

A single story commercial building located in Chicago, Illinois,
with a simple layout is modeled in EnergyPlus. The building is
divided into five conditioned zones which include one interior
and four exterior as shown in Fig. 4. A set of VAV boxes with
controllable actuators and temperature sensors is installed in
each zone. Other major features of the modeled building are listed
in Table 1.

The impact of building cooling loads such as occupants, light-
ing and electrical equipment is included in the EnergyPlus model.
Fig. 5 shows the internal load schedules in normal weekdays
where the factors represent the ratios between actual and full
loads. About 60% of the occupants are assumed to go outside the
building during lunch breaks. The schedule of lighting is consis-
tent with the occupancy schedule. The higher load of equipment
in afternoon indicates that more equipment needs to be turned on
in this period, and this is one of the reasons why this period is
usually counted as on-peak. Note that different schedules of
internal loads are used for weekends.

Energyplus is also capable of simulating the external loads. A
weather file that contains historical measurements of ambient
temperature, relative humidity and various types of solar radia-
tion is incorporated.

5.2. Constraint scenario selection

In the MPC simulations, the zone temperature can be regulated
by real-time constraints ½Tz,min,Tz,max�. In this work 1 day is divided
into five periods as described in Fig. 6, which is similar to the
approach described in (Henze et al., 2008). However, the time
Fig. 4. Five-zone division floor plan.

Table 1
Major building features modeled in EnergyPlus.

Floor area 5000 ft2

Orientation 301 east of north

Window to wall ratio 0.29

Internal loads

Occupant 1 occupant/100 ft2

Lighting 16.18 W/ft2

Equipment 10.79 W/ft2

Occupied hours 7:00–18:00

Cooling system VAV direct expansion (DX)

Heating system N/A

Natural ventilation N/A
periods are determined so that zone temperature level in each
period can be maintained with in an appropriate range, rather
than at a constant temperature setpoint as in Henze’s work.
(1)
 Period 1 (t12t2): The building can be pre-cooled at as low as
18 1C from the early morning until the occupied period starts.
Cooling is expected to be stored in the building thermal mass
and released later when necessary.
(2)
 Period 2 (t22t3): During the off-peak and mid-peak occupied
hours, zone temperature is maintained in lower half of the
thermal comfort range 21 1C–23 1C with the hope that the
stored cooling can be saved for utilizing in on-peak period.
(3)
 Period 3 (t32t4): Zone temperature is free as long as within
the comfort range. The stored cooling in building envelope
can be either supplied or released.
(4)
 Period 4 (t42t5): Maintain zone temperature in 23 1C–25 1C
with the contribution of stored cooling.
(5)
 Period 5 (t52t1 of the next day): Shut down the cooling
system to avoid needless energy consumption.
Since t2 and t5 are fixed to the beginning and end of the
occupied hours, there are three parameters (t1, t3 and t4) that can
be adjusted to reach a good scenario in regard to the setting of
upper and lower bounds of temperature constraints. Step
response tests of the EnergyPlus model previously done in Ma
et al. (2011) suggested that it takes 4 h to fully pre-cool the
considered building. Manipulating t3 and t4 can be interpreted
from Fig. 6 as cutting off the areas of A and B from the thermal
comfort region. Note that changing t4 should not affect the control
results a lot because the MPC controller tends to adjust the zone
temperature trajectories to approach the upper bound of comfort
region during the on-peak period so that cooling stored in the
building thermal mass can be released to reduce the demand cost.

Weekly simulations were performed to investigate impact of t1

and t3 in the MPC configuration, which are shown as in Figs. 7
and 8. The weather temperature features of that week in July are
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Table 2
Ambient temperature of the simulation week (1C).

July Sun. Mon. Tue. Wed. Thu. Fri. Sat.

1 2 3 4 5 6 7

Ave. 24.0 26.8 28.9 22.4 19.8 21.7 25.6

Hi. 31.7 31.1 34.4 26.1 25.0 27.8 32.2

Lo. 14.7 19.4 23.3 17.2 13.3 11.7 16.7
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listed in Table 2. A trade-off can be observed from Fig. 7 that
starting pre-cooling earlier can lead to lower demand cost but
higher energy cost, and a balanced point of t1 is found around
2 a.m. Fig. 8 indicates that setting t3 as late as possible in the non-
peak period can reduce both energy and demand costs.

Consequently, the best scenario is selected to be t1 ¼ 2, t3 ¼ 12
and t4 ¼ 12, and this selection is not affected by the weather
conditions. The selection is made only based on the observation of
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Table 3
Weekly savings compared to the baseline.

Strategy Energy saving (%) Cost saving (%)

Linear-up 15.29 17.42

Step-up 21.49 24.35

MPC 25.31 28.52

J. Ma et al. / Chemical Engineering Science 67 (2012) 92–10098
the 7 day testing results so probably it may not be optimal for
other situations. The ambient temperature in that simulation
week varies a lot as indicated in Table 2, showing that the
selection is not sensitive to the weather condition. When dealing
with other buildings, however, we should certainly repeat the
routine to find different configurations.

Corresponding simulation results of zone temperature and
power profiles are shown as Fig. 9. It can be observed that the
peak loads have been shifted away from the on-peak period and
the on-peak power profile has been flattened. The impact of
ambient temperature to energy consumption can also be seen
clearly. For example, the power spike at about 3 a.m. on Tuesday
was caused by the relatively warm night that made the building
thermal mass more difficult to be pre-cooled. Less power was
consumed over weekend than weekdays due to the different
schedules of internal loads (occupants).

5.3. Cost savings brought by MPC

The performance of MPC in saving electrical costs is compared
with the baseline and other pre-programmed control strategies.
The baseline night-setup strategy (BL) is applied in many build-
ings, in which the temperature setpoints are simply set to the
lower bound of comfort region during entire occupied hours and
cooling is shut down for all unoccupied hours. Therefore, the
building thermal mass always plays the role of resistance rather
than assistance. Simple alternative methods include linear-up
(LU) and step-up (SU) (Lee and Braun, 2008b), in which setpoints
are set to the lower bound of comfort region until on-peak hour
begins, and then raised with a linear and step pattern
respectively.

Savings in energy and costs are shown in Table 3. It can be
seen that MPC brings more savings than the pre-programmed
control strategies.
6. Conclusions

In this paper, a building energy demand reduction has been
developed via model predictive control to demonstrate the effec-
tiveness in saving energy and demand costs. The Building Con-
trols Virtual Test Bed software was employed as middleware to
link Energyplus and Matlab and the real-time data exchange
between the two programs enabled implementation of closed-
loop controllers. In the proposed model predictive control algo-
rithm, the min–max optimization problem with an economic
objective, a shrinking prediction horizon and several constraints
was transformed into a linear program and solved at each time
step. The proposed method aims at minimizing the costs on the



Table B.1
TOU-GS-3 energy charge rate.

Energy charge ($ / kWh)

Summer season Jun. 1–Oct. 1 On-peak 12:00–18:00 weekdays except holidays 0.31176

Mid-peak 8:00–12:00, 18:00–23:00 weekdays except holidays 0.14200

Off-peak 23:00–08:00, weekdays and all day on weekends and holidays 0.06866

Winter season Oct. 1–Jun. 1 Mid-peak 8:00–21:00 weekdays except holidays 0.10468

Off-peak 21:00–8:00, weekdays and all day on weekends and holidays 0.07151
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daily basis (within each calendar day), which is why the shrinking
horizon is chosen. This shrinking horizon also allows us to
eventually implement this method to dynamic pricing cases, in
which the electricity rate is released by utility at the beginning of
the day based on a load forecast.

It was shown by simulation that under the time-of-use
electrical pricing structure, MPC brings substantial cost savings
by automatically triggering pre-cooling effect and shifting the
peak demand away from on-peak hours. Moveover, the simula-
tion conducted in this work also provided knowledge on the
configuration of MPC parameters for the particular building
modeled in EnergyPlus, which can make the potential practical
field tests more efficient.
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Appendix A. Identified model parameters

The parameters of the ARX models obtained by system
identification are listed as follows:
(a)
 Power prediction model {AP ,BP}

AP ¼ ½1 �0:6725 0:0289 �0:0243 0:0222� ðA:1Þ

BP ¼

�1458 1482 �267:9 13:24

�1045 974:6 �181:4 9:968

�1557 1612 �274:7 29:49

�890:8 740:5 �115:1 �54:21

�1773 2068 �628:0 158:1

1243 �1512 1280 �803:3

2
666666664

3
777777775

T

ðA:2Þ
(b)
 Temperature prediction model {AT ,BT }
The multivariate ARX model can be written as

AT0TzðkÞþAT1Tzðk�1ÞþAT2Tzðk�2Þ

¼ BT1uðk�1ÞþBT2uðk�2ÞþeðkÞ ðA:3Þ

where

AT0 ¼ I�5 ðA:4Þ

AT1 ¼

�0:8821 �0:0380 �0:1011

�0:0037 �0:8922 0:0171

�0:0353 �0:0425 �0:8032

�0:0531 0:0230 �0:1082

�0:0651 �0:0059 0:0094

2
6666664

�0:1070 �0:0428

�0:0035 0:0039

�0:0203 0:0082

�0:9793 �0:0525

�0:1103 �0:9116

3
7777775
ðA:5Þ
AT2 ¼

0:1536 0:0195 0:0339

0:0015 0:0825 �0:0029

0:0161 0:0148 0:1098

0:0134 0:0062 0:0257

0:0436 0:0113 0:0043

2
6666664

0:0652 0:0393

0:0040 �0:0018

0:0248 0:0041

0:1350 0:0143

0:0693 0:1505

3
7777775

ðA:6Þ

BT1 ¼

0:7684 �0:0322 �0:0129

�0:0020 0:8049 �0:0014

�0:0150 �0:0378 0:7815

0:0118 �0:0108 0:0011

0:0041 �0:0151 �0:0015

2
6666664

�0:0364 0:0232 0:0884

�0:0050 0:0001 0:0030

�0:0600 �0:0085 0:0147

0:7061 0:0224 0:0734

0:0027 0:7618 0:0782

3
7777775
ðA:7Þ

BT2 ¼

�0:4901 0:0098 �0:0562

�0:0003 �0:6061 0:0153

�0:0054 0:0045 �0:4681

�0:0492 0:0434 �0:0834

�0:0298 0:0158 0:0127

2
6666664

�0:0132 �0:0270 �0:0765

0:0049 0:0023 �0:0035

0:0508 0:0200 �0:0092

�0:5451 �0:0595 �0:0739

�0:0493 �0:5116 �0:0714

3
7777775

ðA:8Þ
Appendix B. Electricity price structure from SCE

The rate plan of TOU-GS-3 (Time of use-General service-3)
from SCE (SCE, 2008) is used in the simulation conducted in this
paper. Medium-sized commercial and industrial customers such
as 24-h service stations, restaurants, motels and so on may
benefit from choosing this plan. End users can save electric bill
if they are able to use a majority of energy during, or shift a
significant amount of energy use to, the mid- and/or off-peak
hours. The electricity price is comprised of energy charge, demand
charge and customer charge. The energy charge is depicted in
Table B.1. The demand charge is $9.83 per monthly maximum
kW. Since customer charge is fixed, it is not included in the
optimization scheme in this work.
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