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A B S T R A C T

Building energy systems, i.e. heating, ventilation, and air-conditioning (HVAC) systems, are essential for modern
buildings. They provide a comfortable and healthy indoor environment. Design quality has significant impact on
HVAC system efficiency. The typical building energy system design process involving several procedures is
repetitive and time-consuming. It is often limited by the engineer's experience, capabilities, and time constraints;
thus, the design in most cases barely satisfies building codes. In recent decades, computational intelligence (CI)
has achieved substantial improvements in various fields. This paper presents a comprehensive review of using CI
for HVAC system optimization design. Firstly, this paper analyzes seven procedures which constitute a typical
HAVC system design process and finds that optimization problems encountered during design process can be
divided into three categories: model estimation, decision making and uncertainty analysis. Then a brief in-
troduction of CI techniques used to solve HVAC design optimization problems and detailed literature review of
application examples are given. Though the design problem varies with each other, this paper outlines a typical
workflow which is able to solve most HVAC optimization design problems. At last, a framework of an integrated
HVAC automation and optimization design tool is proposed. The framework is developed based on building
information modeling (BIM) and extracted typical design optimization workflow. It is able to connect various
design stages by implementing structured information transfer between them and ultimately improve design
efficiency and quality.

1. Introduction

Building energy systems have been indispensable to providing a
comfortable indoor environment in buildings. The energy consumed by
heating, ventilation, and air-conditioning (HVAC) systems accounts for
more than 40% of the total building energy consumption [1]. Whether a
system is energy efficient or not is highly dependent on the system
design quality. A typical HVAC design process contains seven proce-
dures shown in Fig. 1. However, conventional HVAC system design
practice is inefficient because a large amount of tedious and repetitive
work (such as ductwork and piping) involved in the design process has
to be solved manually [2]. On the other hand, complicated optimization
analysis to improve system performance is merely done due to cap-
ability limitation of engineers. Scientists have put great efforts in

finding methods to facilitate or even automate the HVAC design process
for decades. In recent years, computational intelligence (CI) has gained
great achievement in promoting the development of building industry
such as automatic building space layout generation [3], efficient con-
struction management [4] and building energy systems fault diagnosis
[5]. CI is computational paradigms which are able to learning specific
tasks from data or experimental observation [6]. Compared with the
human's empirical practice and mindset, CI is more creative and pro-
ductive in engineering design. Intelligent methods such as generative
design and genetic algorithm are showing great potential in improving
design efficiency and quality [7]. So more and more researches are
trying to apply CI to facilitate and optimize HVAC design.

This paper is to provide a comprehensive overview of using CI
techniques in the HVAC design process, provide practical advice on
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how to conduct optimization design to improve building HVAC system
performance. Also, this paper proposes an integrated design framework
which may provide inspiration to researches working in this field. This
paper is organized as follows. Section 2 briefly describes the metho-
dology applied by this review paper. Section 3 analyzes seven HVAC
design procedures, categorizes them into three types of optimization
problems. Section 4 introduces the most commonly used CI techniques
of solving HVAC optimization problems. In Section 5, explanation of
each design problem and literature review of corresponding application
examples of intelligent techniques are presented. Section 6 summarizes
the approaches used to solve design optimization problems and then
extracts typical workflow of HVAC design optimization. Also, Weakness
of current methods is pointed out in this Section. Based on the above
review and analysis, the framework of an integrated HVAC optimiza-
tion design tool is proposed. This framework is developed based on
building information modeling (BIM) and the extracted typical design
optimization workflow. It is able to automatically connect design stages
by implementing structured information transfer between them. In the
last section, main findings and contributions of this paper is summar-
ized.

2. Methodology

This review is conducted based on: (a) searching databases of
journal, conference articles and books, (b) information from specific
professional websites and (c) experience in the implementation of

HVAC optimization design. The literature search is carried out using
keywords including two categories: (a) computational intelligence
techniques (i.e. genetic algorithm, neural networks etc.), (b) application
(i.e. HVAC system design, optimization etc.). The keywords are com-
bined using “OR” and “AND” to conduct comprehensive searching in
several popular search engines including IEEE Xplore (http://
ieeexplore.ieee.org/Xplore/home.jsp), ScienceDirect (http://www.
sciencedirect.com), EI Compendex (https://www.engineeringvillage.
com) and Google Scholar (http://scholar.google.co.uk). Cited articles
are all included in this paper.

3. HVAC optimization design problems

A typical HVAC design process containing three stages is defined by
the American Institute of Architects (AIA) [8]:

1. Schematic or conceptual design. In this phase, designers need to
figure out the appropriate system type and configuration according
to building features and local resources.

2. Design development. In this phase, HVAC engineers produce de-
tailed design documents including layouts, equipment schedules,
and construction details.

3. Construction design. In this phase, detailed construction drawings
and specifications are produced.

For real engineering practice, the HVAC design process is further

Nomenclature

k Stage
xk State at stage k
u x( )k k Action taken at State xk
Tk State transition rule
p n0 Policy from stage 0 to n
v x u( , )k k k Objective function at State xk taking the action uk

…+V x x x( , , , )kn k k n1 Objective function from stage k to n
f x( )k k Optimal objective when taking optimal action u*k at stage

k

loads( )sens_Pd zone Zone level sensible peak load (W)
loads( )sens_Pd system System level sensible peak load (W)

hoursoper_syst_Pd Number of system operating hours
loads( )sens_ syst_at_hour_iPd System level sensible peak load at the ith
hour (W)
loads( )sens_ build_at_hour_iPd Building level sensible peak load at the ith
hour (W)
F x( ) Objective function
f x( )i The ith sub-objective function

Fig. 1. HVAC design problem classification and algorithms.
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refined into seven procedures listed in Fig. 1 (left column). In this
paper, how to complete each design procedure is defined as a ‘design
problem’. However, solving HVAC design problems in line with em-
pirical practice or mandatory building codes does not guarantee an
efficient system. So more researchers are now applying CI to conduct
HVAC system design optimization for better system performance. Ac-
cording to Dickinson and Bradshaw [9], the HVAC design optimization
problems can be classified into two classes. The first one is the opti-
mization of static design parameters. The static parameters are the ones
that determine the physical appearance of the system, such as zoning,
system components and plants, and duct layout. These parameters will
not change after the HVAC system has been constructed. The second
one is the optimization of dynamic input variables, for example, op-
eration schedule and control setpoints. These input variables can be
adjusted throughout the system life cycle. The first six design proce-
dures fall into the first class, whereas the system setting belongs to the
second one.

According to the characteristic of optimization design problems,
they are classified into three categories in this study: model estimation,
decision making, and uncertainty analysis. The model estimation pro-
vides a mathematical representation of the target problem, which can
be used to evaluate the physical features of a solution. Load calculation
belongs to the category of model estimation because it can be taken as a
problem to find the physical feature of a building and present it using a
series of values called “load.” For the problem of decision making, the
objective is to find the optimal design parameters or solutions subject to
constraints and boundary conditions. During the iterative process of
decision making, a model has to be established to evaluate the fitness of
a solution. Thus, model estimation and decision making are closely
related. Three decision-making algorithms are discussed in this paper.
The first two (i.e., genetic algorithm (GA) and dynamic programming)
are based on mathematical derivations whereas the expert system is
largely dependent on expert experience. Uncertainty analysis aims to
investigate the influence on system performance by variables that have
inherent uncertainties, such as weather condition and occupancy
schedule. Another aim is to improve the reliability of a decision through
the quantification of uncertainties. The right column of Fig. 1 lists the
algorithms that are most widely adopted to solve HVAC optimization
design problems. In the following sections, brief introduction of each
algorithm and literature review of optimization design examples are
provided.

4. CI algorithms for HVAC optimization design

4.1. White box method

In the white box method, a series of mathematical models are built
based on physical prior knowledge of energy–mass balance, heat
transfer, momentum, and flow balance. Thus, it is also called physical-
based modeling. The models are usually built up stepwise, starting from
very simple physical relationships. Each equation of a white model is
physically meaningful. The white box method is commonly used in the
HVAC industry. Examples of physical-based models include chillers
[10–12], cooling towers, zones [13,14], mixing boxes [15], heating/
cooling coils [16–18], fans or pumps [14], sensors [13], and dam-
pers [14]. The commonly used energy simulation tool is also a white
box model. In contrast to previous simple models of a specific compo-
nent or unit, the whole building simulation tool is an integrated model,
which is capable of calculating the energy required for heating, cooling,
ventilation, and lighting equipment in a building.

4.2. Black box method

The black box model is often called a data-driven model. It is de-
veloped based on large amounts of data collected from experiment or
real world. It uses statistical techniques to capture the mechanism be-
hind the data, without being explicitly programmed. A data-driven
model is especially suitable for tasks where the design and program-
ming explicit algorithms are difficult or impossible. It is also gaining
increasing attention in the building industry such as building de-
sign [20], energy prediction [23,24], and fault detection of HVAC
systems [25,26]. The most commonly used data-driven model included
in this research is artificial neural network (ANN). ANN is inspired by
biological neural networks that constitute animal brains. An ANN is
composed of a collection of connected units or nodes called artificial
neurons. Each connection can transmit a signal from one artificial
neuron to another. The connections between artificial neurons are
called “edges.” Neurons and edges typically have a weight that adjusts
as the learning proceeds. A typical neural network structure is shown in
Fig. 2. Each circular node stands for an artificial neuron. Nodes in input
and output layer represents input and output variables respectively.
While neurons in hidden layers perform activation and transformation
to input signals. Once the structure is determined, the weights and
parameters can be trained through a back propagation (BP) algorithm.
Therefore, it is sometimes called a BP network.

In addition, multiple linear regression (MLR) and extreme learning
machine (ELM) are also adopted to estimate building loads. ELM is a
modification of the single-layer feedforward network for classification,
regression, and clustering [27]. It can be obtained by removing BP from
a multilayer perceptron. The parameters of hidden nodes can be ran-
domly assigned and never updated or inherited from ancestors without
being changed. Thus, ELM can produce a good generalization perfor-
mance and learn much faster than models such as ANN.

4.3. Gy box method

The gray box model is a hybrid model that takes advantage of both
the white box model and black box model. The whole framework of the
gray box model is based on physical rules while some model parameters
are determined using data-driven methods. The resistor–capacitor (RC)
network is a commonly used gray model for estimating air-conditioning
loads. It uses an analogy to the electrical circuit to model heat transfer
through structures.

4.4. Genetic algorithm

GA is a metaheuristic inspired by the process of natural selection. It
is a popular method to generate high quality solutions to optimization

Fig. 2. Typical structure of ANN.
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and search problems in the building industry [19,20]. The design of
HVAC systems generally involves the selection from among a number of
alternatives with specific constraints to ensure that the system can
provide the desired performance [21]. An engineer rarely has time to
search for the global optimum and usually adopts a solution complying
with the rule of thumb. GA is easily illustrated by the metaphor of
natural evolution. A set of individuals (usually represented by points
within the search space) is randomly initialized and then the in-
dividuals evolve; the ones with the highest fitness have the highest
probability of surviving. The individual is an alternative solution with
several properties represented by chromosomes (often in the format of
binary strings). The chromosomes can be muted and altered with cer-
tain operators. GA has two evolution operators: crossover and muta-
tion. Crossover, which is inspired by nature, involves changing two
randomly chosen chromosomes to create a new individual called off-
spring. The mutation operator involves generating modifications on an
allele to maintain genetic diversity. It is analogous to biological muta-
tion. Then, the selection of an individual is conducted by a cost/fitness
function that measures its performance. The solution with the highest
fitness will most possibly be selected for the next generation. The
structure of a single population GA is illustrated in Fig. 3. A simple GA
can easily fall into a local optimum; thus, several adaptive GAs are
developed for better performance such as multi-island GA (MIGA) [69],
nondominated sorting GA (NSGA-II), multiobjective GA [22], and GA
with refined process [86].

4.5. Dynamic programming

Dynamic programming (DP) is a mathematical decision-making
method developed by Richard Bellman in the 1950s [28]. It has found
application in numerous fields, from engineering to economics. DP is a
very general solution method for problems that have two properties: (i)
optimal substructure and (ii) overlapping subproblems. It breaks a
complex problem into several stages based on time or spatially de-
pendent features. The final solution is composed of the optimal solution
of each subproblem. It possesses the following characteristic: “Re-
gardless of the initial conditions and initial decisions, the future con-
dition and decision resulting from these initial conditions and decisions
must be able to produce the best solution for the problem.”

There are several key concepts of DP [29]:

(1) Stage, denoted as k . A complex problem is divided into several
stages. Each stage is related to each other temporally or spatially.
The number of stages could be finite or infinite depending on the

target problem.
(2) State, denoted as xk. A state represents the situation of the current

stage. It captures all relevant information from the history. In other
words, the state should be defined to be a sufficient statistic of the
future. The state variable could be a single value or a vector.

(3) Action, denoted as u x( )k k . It is a decision made in state k .
(4) State transition rule, denoted asTk. When an action is taken in stage

k , the state transition rule determines the state of stage +k 1. That is,

=+x T x u( , )k k k k1 (1)

(5) Policy, denoted as p n0 . It is formulated by a series of actions from
stage 0 to n .

= … − −p x u x u x u x( ) { ( ), ( ), , ( )}.n n n0 0 0 0 1 1 1 1 (2)

(6) Objective function, denoted as v x u( , )k k k . It is the reward resulting
from taking action uk at stage k . The objective function from stage k
to n is denoted as …+V x x x( , , , )kn k k n1 . It is the combination of reward
from stage k to n .

∑… =+
=

−

V x x x v x u( , , ) ( , )kn k k n
i k

n

i i i1

1

(3)

The process of DP could be described by the following equations:

⎧

⎨

⎪⎪

⎩
⎪
⎪

= +
= +

= − − …

=

+

+

f x opt v x u f T x u
v x u f T x u

k n n

f x

( ) { ( , ) [ ( , )]}
( , *) [ ( , *)]

1, 2, ,3, 2, 1, 0

( ) 0

k k k k k k k k k

k k k k k k k

n n

1

1

(4)

where f x( )k k is the optimal objective when taking optimal action u*k at
stage k.

4.6. Expert system

An expert system is an interactive computer program that captures
and encodes the specific knowledge of a particular domain. It emulates
the decision-making process of a human expert using if-then rules ra-
ther than conventional procedural codes. The system has been suc-
cessfully used in areas such as prediction [30], diagnosis [31], planning
[32], and control [33]. It is deemed as one of the first truly successful
forms of artificial intelligence (AI) software [34]. Such system highly
depends on domain knowledge. It consists of two subsystems: inference

Fig. 3. Structure of a single population genetic algorithm.
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engine and knowledge base. The inference engine acts as the logic
decision maker to deduce results according to outside conditions. The
knowledge base contains the facts and rules as the reference for rea-
soning. Ease of maintenance is the most obvious benefit of expert sys-
tems. In conventional computer programming, the logic reasoning
process is synthesized into a code and is difficult to understand. With an
expert system, the knowledge base is intuitive and easily understood,
reviewed, and even edited by a domain expert rather than an IT expert.
The main disadvantage of expert systems is the difficulty in knowledge
acquisition, representation, and processing. Early expert systems were
built using executed interpreted (rather than compiled) codes. Inter-
preting is easily understood and evolved but it is impossible to match
the efficiency of the fastest compiled languages, such as C [38].

4.7. Monte Carlo simulation

Monte Carlo simulation is a computational algorithm that relies on
repeated sampling to obtain numerical results. The essential idea is to
solve problems that are deterministic in principle through randomness.
It is a technique used to understand the impact of risks and un-
certainties in prediction and forecasting models. It has now found wide
applications in various fields, such as finance, project management,
energy, manufacturing, and engineering. The Monte Carlo simulation
performs risk analyzes by building models of possible results through
substituting a probability distribution for any factor that has an in-
herent uncertainty. It produces distributions of possible outcome values
through thousands of recalculations. For risk analysis, probability dis-
tributions are a much more realistic way of describing uncertainties
than a single value.

The Monte Carlo simulation is usually conducted with three steps:
sampling, simulation, and statistical analysis. There are three widely
used sampling methods: random sampling, stratified sampling, and
Latin hypercube sampling [35–37]. In the random sampling method, a
sample is randomly selected from the entire sample space at each time.
The process needs to repeat N times if N samples are required. One
problem of random sampling is that it cannot represent the entire po-
pulation unless the sample size is large enough. In the stratified sam-
pling method, the sampling space is first separated into I disjoint sec-
tions. J samples are selected randomly from each section. However, it is
time-consuming in the separation process. In the Latin hypercube
sampling method, a near-random sample of parameter values is gen-
erated from a multidimensional distribution. When sampling a function
of N variables, the range of each variable is divided into M equally
probable intervals. MN sample points are placed to satisfy the Latin
hypercube requirements. Each sample is the only one in each axis-
aligned hyperplane containing it. With the same sample size, the Latin
hypercube sampling provides much more reliable representation of the
population than random sampling [37].

5. Literature review of HVAC intelligent design

5.1. Load calculation

The ultimate function of the HVAC system is to handle the building
load to keep the building indoor environment comfortable. Building
heat gain is the synthesis effect of several components including both
instant solar radiation and delayed release of radiation, heat transfer
through the envelope, and internal heat produced by humans, lighting,
and electrical equipment. It is a dynamic process following the pattern
of building usage schedules and weather condition. A precise estima-
tion of building load is essential for the system design and component
sizing. Several load calculation methods have been developed such as
total equivalent temperature difference (TETD), cooling load tempera-
ture difference (CLTD), transfer function method, heat balance, and
radiant time series [39]. TETD and CLTD can be used to estimate the
peak load, which is not sufficient for HVAC design. With the

development of computers, automated building load calculation pro-
grams have been developed.

Simulation programs such as EnergyPlus [40], eQuest [41], ESP-r
[42], IBPT [43], SIMBAD [44], and TRNSYS [45] are widely used for
building load calculation and energy analysis in the past decades. These
simulation programs were developed based on physical principles and
detailed input information. The following capabilities are commonly
available in an energy simulation tool: heating/cooling load calculation
considering conduction, convection, long wave and short wave radia-
tion; ventilation calculation with multiple zone airflow networks;
HVAC system performance integrating plants, distribution systems, and
terminals; and tight coupling between instantaneous building load and
HVAC system performance [18]. Crawley et al. [46] made a comparison
of the features and capabilities of 20 major building simulation pro-
grams. Load estimation accuracy is greatly improved with the help of
these programs. However, it is time-consuming to perform load esti-
mation using simulation tools because physical models have to be es-
tablished and hundreds of input parameters are required for the cal-
culation procedure.

Data-driven models ignore the physical principle of thermal transfer
and use a large amount data to figure out the underlying mechanism.
ANN is most widely used to build the black box. The success of ANNs
depends on five distinctive features: learning, self-adaptive, fault tol-
erance, flexibility, and real time response [49]. Besides, ANN is espe-
cially suitable for managing complex nonlinear problems. The data
usually coming from simulation tools or energy survey are split into
training set and test set. Training data are used to build the network and
find proper weighting factors while test data are used to measure the
accuracy. Table 1 lists the developed data-driven models for load esti-
mation. It should be noted that the load estimation discussed here is
different from the load prediction that uses previous data to infer the
load for the next few days or months. Among the three methods dis-
cussed here, ANN and ELM are capable of representing the nonlinear
relationships between input and output parameters while MLR cannot.
Numerous input variables are required for MLR to establish the load
estimation model in [51]. Besides, different models are built respec-
tively for each climate zone because the complicated relationship be-
tween weather and energy consumption cannot be mapped by a linear
model. From this viewpoint, the linear regression model is less accurate
for load estimation than the other two methods.

Gray models assume the physical structure and parameters with
definite physical meaning. The RC thermal network is a widely used
gray model for thermal delays caused by a building envelope and in-
ternal thermal mass effects. Later on, a modified RC model was devel-
oped. Seem et al. [57,58] proved that 3R2C was especially suitable for
calculating heat transfer through external building envelopes. The
2R2C model took the building internal mass (e.g., internal structure,
partitions, carpet, and furniture) into consideration [60]. It was re-
presented by a lumped thermal internal mass. More recent version of
RC models are 3R4C and 4R5C developed by Fraisse [59].

5.2. System selection

System selection is conducted in the early design phase. Numerous
choices of HVAC systems are available for a given building.
Conventionally, system selection is based on factors such as building
functions and weather condition. A suitable system selection is critical
for achieving high overall building performance. However, it is often
limited by the engineer's experience, capabilities, and time constraints,
resulting in suboptimum system selection. Expert systems and GA have
been adopted by researchers to solve this problem.

In the construction industry, a successful system design depends on
the engineer's knowledge and experience. Therefore, the knowledge-
based expert system (KBES) [61] was once a popular methodology to
help determine the appropriate HVAC system during the conceptual
stage. An expert system called Select-HVAC was developed by Fazio
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et al. [61]. It was used as an advisor, helping designers to configure and
size the HVAC equipment for different locations worldwide in terms of
indoor requirements and outdoor and indoor air pollution. Ballal [62]
developed a software package of expert system that provides guidelines
for selecting equipment for air-conditioning systems in an interactive
manner for any space located in India. Maor et al. [63] proposed a
general framework of KBES, which was capable of automatically syn-
thesizing the complete set of possible HVAC systems. This synthesis was
performed through two levels. Level 1 started with all possible primary
systems (or secondary systems) and used static expert knowledge to
generate the permissible design alternatives of secondary systems (or
primary systems). Level 2 used dynamic application knowledge in-
cluding intuition rules and matching rules to combine the secondary
systems among themselves with primary systems. ANSI/ASHRAE/
IESNA Standard 90.1-2001 was used to set the minimum allowable
energy performance for choosing equipment. A companion paper was
published later to demonstrate their methodology through an office
building [64]. In an ASHRAE research project, Shams et al. assembled,
developed, and verified a knowledge base for the selection of HVAC
system types for small office buildings (less than 20,000 ft2) in two
climatic regions: cold and hot/humid. This project included the selec-
tion of primary energy and distribution system types. A knowledge-
based system was developed [65,66]. With regard to primary energy
system, Case et al. [67] also created an expert system shell specifically
designed to address the task of designing thermal energy systems for
buildings.

Janghoo et al. [69] proposed an optimal design method for an
HVAC system using a modified GA called MIGA. This algorithm was
able to avoid converging to a partial optimal solution, which can easily
occur in a simple GA. Their research used TRNSYS to calculate the
cooling and heating loads. The analysis result was used to select the
type and capacity of the equipment system that could minimize energy
consumption. Bichiou et al. [70] developed a comprehensive simulation
environment for selecting an optimal HVAC system type and the best
combinations of building envelope and HVAC system features in re-
sidential buildings. GA was one of the three optimization algorithms
considered in this simulation environment. Life-cycle cost (LCC) was
used as the cost function to perform optimization. LCC contained both
initial cost and annual energy cost with the constraints of maintaining
acceptable thermal comfort. Annual cost was calculated with the whole
building simulation tool: DOE-2. Fourteen alternative HVAC systems
(including AC with furnace and AC with electric resistance) formed the
search space. This research also did a case study showing that it was
possible to design and operate a house with an annual total energy cost
of less than US$1000 in Boulder, CO; Chicago, IL; and Phoenix, AZ.

5.3. Zoning

Zoning of HVAC systems is determined through a delicate balance
between first cost and comfort. Ideally, each room or workspace should
be treated as one zone. Actually, in real design practice, rooms with
similar functions are often grouped into one zone to save budget. For
the sake of operating convenience and energy savings, the design cri-
terion states that rooms with different conditioning requirements,
functions, load features, or large distances are better served by separate
subsystems. This criterion differs from the conventional zoning
strategy, and GA is often used to find the optimum solution with
massive calculation.

The research done by Stanescu et al. [68] discussed an optimal
zoning strategy for HVAC system design. A GA combined with whole
building simulation software to evaluate the HVAC energy consumption
was proposed. The variables selected for optimization were the
grouping of zones served by the system and number of systems serving
the building. The HVAC system type in this research was specific to a
variable air volume (VAV) system. At first, variables (i.e., number of
systems and grouping of zones) were randomly initialized as the first

generation for optimization. The candidate solution used a permutation
representation as a set of integers. The length of the permutation vector
was the number of zones, each of which occurs once. Zones were ran-
domly placed in the vector and randomly selected break points were
used to group zones into systems. At each step, the evolved generation
was evaluated by the DOE-2 model to calculate the objective function
until the predefined condition was met. Three types of operators (i.e.,
mutation, mutation and crossover, and crossover) were analyzed in this
research. The HVAC energy consumption savings ranged from 22.7% to
25%, compared to the reference building. However, it required two to
four days to complete the computation because thousands of simula-
tions were performed using DOE-2. In their later research [71], a sim-
plified method was presented to evaluate the fitness of each alternative
solution. They proposed the idea of global load ratio (GLR), system load
ratio (SLR), and zone load ratio (ZLR) and found that GLR was closely
related to the HVAC energy consumption. The higher the GLR, the
lower the energy consumption. In the new optimization procedure, the
HVAC energy consumption calculation using a detailed DOE-2 model of
the building was no longer required. Computing time had been sig-
nificantly reduced with this simplified method and its accuracy ap-
proximated that of the detailed simulation method.
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Berquist et al. [72] also used GA for determining the zoning
strategy. Different from the mono-criteria optimization conducted by
Stanescu et al. [68,71], this research adopted multiple criteria (i.e.,
initial cost, system efficiency, and occupant comfort), and user-defined
weighting factor for each criterion was allowed to comply with the
current industry practice. They also performed a mathematical analysis
using Matlab coding to compare the energy consumption and days that
the room temperature exceeds the setpoint for different strategies.
Various supplier VAV specifications were found online and in-
corporated into the code.

5.4. Sizing

Proper sizing of system components (i.e., chiller, pump, air handling
unit (AHU), etc.) is very important for an efficient HVAC system op-
eration. Oversized systems operate away from the nominal conditions
and result in low efficiency, while undersized systems cannot meet the
building cooling or heating demand. The conventional sizing method is
based on the calculated peak load combined with some safety factors.
However, building loads rarely reach peak design values and plants
normally operate under partial load conditions. Therefore, research was
conducted attempting to optimize the system configuration. Djunaedy
[73] listed the signature and penalties of an oversized system with an
example of a rooftop unit. Lee et al. [74] developed a simplified model
for evaluating the performance of a chiller system considering the
number and capacity of chillers. It was claimed to be a convenient tool
for designers to quantify the trade-offs between energy efficiency and
other factors.

GA, as one of the most popular optimization algorithms, is also used
for HVAC system sizing. Wright and Farmani [75] developed a GA-
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based method for simultaneous optimization of building fabric con-
struction, HVAC system, and plant control strategy. The system was a
single-zone all-outside air system and the air treatment component to
be optimized included coil height, coil width, water circuit, and fan
size. The objective function was the operational cost. In his later re-
search, a multiobjective GA method was used to search for the optimum
pay-off characteristic between the energy cost and occupant thermal
comfort. The optimum pay-off characteristic was represented by a
Pareto set of solutions and GA was used as a search method to find the
optimal solution. This research was conducted on the same system as
his previous one [76].

The design parameters such as weather condition, internal load, and
building physics come from statistical data regardless of actual condi-
tion. Because the actual heating and cooling demands required to size
the system are always uncertain, an uncertainty analysis of HVAC
system sizing becomes a research hotspot. Building performance is as-
sessed under multiple possible conditions by which the determination is
based.

Huang et al. [77] proposed a method for HVAC system sizing con-
cerning peak load uncertainty and multiple-criteria decision making.
The conventional sizing method for components is based on a de-
terministic peak load, which is predicted from typical weather condi-
tions and a safety factor. The systems are always oversized. In their
research, they performed a Monte Carlo simulation to obtain the sta-
tistical distribution of peak load and corresponding energy consump-
tion and failure time. Combined with preference factors assigned by
customers, a simple multi-attribute rating technique was used to make
the final decision. They also proposed a strategy to optimize the con-
figuration of multiple-chiller plants taking into consideration the load
side uncertainty and the COP uncertainty through a life-cycle ana-
lysis [78]. Sun et al. [79] explored a new framework to guide the use of
uncertainty analysis and sensitivity analysis in HVAC system sizing.
Instead of conducting a deterministic calculation procedure after col-
lecting input data, a series of analysis including uncertainty quantifi-
cation, dynamic simulation, and probabilistic prediction of interested
index was performed to determine the quantifiable margins based on
the desired level of system performance guarantees. The uncertainty
quantification was specific to the parameters of weather, building en-
velope, material, and operation. A Monte Carlo based simulation was
used to sample the variables. Kang et al. [80] developed a sizing
method taking into consideration the scenario parameter uncertainty
and the discrete spectrum of nominal cooling capacity of chillers. This
approach revealed the impacts of scenario uncertainty on peak cooling
load, chiller LCC, and annual unmet hours based on Monte Carlo
method and dynamic simulation.

5.5. Configuration

Configuration refers to the integration of HVAC components to form
a system. Wright and Zhang et al. [81–84] developed a model-based
optimization procedure for the synthesis of a novel HVAC system
configuration using GA. Three suboptimization problems were con-
sidered in their research: the choice of component set, the design of
topological connections between components, and the system optimal
operation strategy design. Minimizing energy consumption was the
optimization objective of this research. This configuration synthesis was
a multi-level optimization problem. The topology optimization depends
on component selection, whereas the control strategy design changes
with the different components and topology. A simultaneous evolu-
tionary approach was adopted to solve this problem. All optimization
variables of the configuration have been encoded into an integrated
genotypic data structure. Once a configuration solution was developed,
the optimal control setpoints had to be optimized to assess the perfor-
mance of this configuration solution. In this research, a new evolu-
tionary algorithm operator named “Aging” was developed to solve the
problem of a single topology dominance due to the highly constrained

nature of this optimization problem [85]. The optimal synthesized
system developed by this method was judged by comparing with the
performance of three benchmark systems. The result showed that the
best of the synthesized system had a capacity that was also close to the
minimum possible capacity and its performance exceeded that of the
conventional system and was comparable to that of a conceptually
optimum system configuration.

5.6. Ductwork and piping

One of the most energy consuming and costly components of an
HVAC system is the fluid distribution system [87]. The main objective
of distribution system design is to provide the required fluid flow rate at
adequate pressure to each terminal demand point. Energy is required to
distribute fluid and overcome all pressure losses of various components
in the ducting system (e.g., fittings and dampers). The design procedure
of ducting system can be divided into three stages. First, the ductwork
layout needs to be determined. Then, the duct material and size and
fans are selected; finally, dampers for each branch are calculated to
balance the system.

For conventional duct network design, heuristics-based methods
without optimization are often used. Assumptions for variables such as
airflow rate and friction losses are based on design experience [88]. The
most commonly used methods are equal friction and static regain
method [39]. For computer-aided optimal duct design, the main goal is
to determine optimal duct sizes that could minimize LCCs. The most
widely known method is the T-method developed by Tsal and Chechik
[90,91]. This method used the idea of DP. It can determine optimal duct
sizes by optimum distribution of pressure throughout the system in
order to minimize LCC, which includes initial ductwork cost and year-
round energy consumption of the fan. Three major procedures were
incorporated in the method: system condensing, air-handling unit se-
lection, and system expansion. The T-method had been recommended
by the ASHRAE handbook for routine design practice. Although the T-
method was criticized for its shortcomings such as complex computa-
tion procedure, poor control of flow velocity and duct diameter [92],
and inapplicability to duct systems with multiple fans [93] it was the
first to introduce the idea of LCC for duct optimal design, where further
modified optimal methods were based.

Ting et al. [93] proposed a DP method, which considered the system
pressure equilibrium and least LCC, to derive the duct size and fan
capacity. The design process was divided into several stages each of
which was represented by a state vector comprising a set of state
variables describing the system condition such as the pressure value of
the duct. It used DP to obtain the optimal solution. Compared with the
T-method, DP produced a smaller duct area, and therefore, the initial
cost would be lower. Moon et al. [92] developed a modified T-method,
which could analyze the flow distribution for a multiple fan duct
system, and a bathroom ventilation system in a 20-story residential
building was selected as an example application.

Apart from the above DP-based optimal duct design methods, GA is
also a popular method for duct optimal design. The optimization ob-
jective is also the LCC. Asiedu et al. [94] proposed a GA-based duct
design method with a minimum LCC. It incorporated standard discrete
duct sizes, variable hourly operating conditions, and utility rates into
the design process with the constraints of pressure balancing and size/
flow limitations. Narváez et al. [95,96] used the GA method to de-
termine the optimal tube and pump size of hydraulic system taking into
consideration minimization of costs and constraints of velocity, flow,
and pressure. Each chromosome was a representation of the fluid
transportation system codified with two chains of whole numbers,
where the first part was the diameter of each pipe and the second one
was the pumping equipment. The individual was adjusted to minimize
the cost function representing the LCCs.

DP and GA are relatively complicated to implement and require
costly computations. Kim et al. [97,98] adopted a simple method for
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solving the VAV duct system optimization procedure: the Nelder–Mead
downhill simplex method (DSM). It was simple in calculation and un-
complicated in logic. The optimization procedure was mainly composed
of the calculation of hourly airflow rate, evaluation of the objective
function, and the generation of a design solution. The airflow rate was
calculated by an hourly building simulation program. Similar to the T-
method, the objective function was the LCC including initial cost and
fan operating energy. Mathematical models were developed. Then, the
Nelder–Mead DSM was applied first to find the continuous duct size,
and a penalty approach for integer/discrete programming was applied.
This method used the hourly airflow rate rather than the design airflow
rate for duct design. With respect to LCC, this method showed a 6–19%
savings compared to the equal friction method, 2–13% saving over the
static regain method, and 1–4% savings over the T-method.

Compared with duct size optimal design, there are also studies on
computer-aided duct layout. Jorens et al. [89] pointed out that previous
studies were mostly focused on optimization for duct size and material
selection. They proposed an optimization problem that integrated both
duct layout and size and material. It was characterized by discrete
decision variables and nonlinear constraints. The optimization algo-
rithm was developed in their later work. Bres et al. [99] developed a
method for automatically generating HVAC distribution subsystems. It
used minimum spanning tree algorithm to generate water distribution
system. However, this method was designed for building performance
simulation in early design stage. Issues such as collisions were not
considered in this research. Brahme [100] developed generative design
agents, which used heuristics and shortest-path algorithm for automatic
generation of duct layout. For this algorithm, zone is defined as an
architectural space conditioned by one air subsystem. Cluster is a set of
air terminals within a certain range. Branch is a duct that connects two
points. The design process is illustrated in Fig. 4. The building geometry
and type of HVAC system is input for the design agent. Terminals and
AHU are firstly placed in the design space considering air supply uni-
formity. Then terminals within 9–10m are gathered to constitute a
cluster, so the zone is divided into several clusters. For each cluster, a
brunch across the short axis of the cluster is generated. Each terminal is
then connected to the branch. At last, all cluster branches are connected

to the start node (i.e. AHU) [100].

5.7. System setting

System settings (i.e., air supply temperature, chilled water supply
temperature, room air temperature, supply air static pressure, etc.) play
an important role on system overall performance. For example, low
chilled water temperature reduces pump energy consumption but may

Fig. 4. Automatic ductwork layout procedure proposed by Brahme [100].

Table 2
Variables used for optimization [107].

Variable Lower bound Upper bound Unit

Heating setpoint 20 2 °C
Cooling setpoint 23 27 °C
Rh setpoint 30 60 %RH
Starting delay 0 30 min
Stopping delay 0 60 min
Supply airflow rate 0.118 0.708 m /s3

1st floor north window 4.76 14.3 m2

1st floor south window 2.2 6.6 m2

2nd floor north window 4.06 12.18 m2

2nd floor southwest window 1.38 4.14 m2

2nd floor southeast window 2.08 6.25 m2

Thickness of concrete 0.05 0.25 m

Fig. 5. Research trend of HVAC intelligent design.
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increase chiller energy consumption. Chilled water temperature setting
is an optimization problem with multiple variables, which should be
carefully considered from a global perspective. However, for industrial
design practice, the system setpoints are usually determined in ac-
cordance with the design condition based on designers experience and
rule of thumbs. It is usual that the setting of a chilled water system
deviates from the design condition for many years, resulting in energy
wastage. An approach to solve this problem is called model-based de-
sign (MBD), which relies on CI to optimize the HVAC system. The ty-
pical optimization model of MBD consists of three parts:

• models representing the HVAC system or its components,

• optimization objective and constraints,

• optimization algorithm, which is used to find the best solution.

One or several mathematical models are developed to represent the
system or components. The models are used to evaluate the system
performance during the optimization process. Two types of models (i.e.,
physical and data-driven) are mostly studies for MBD. Physical models
offer a detailed mathematical description of the HVAC system, which is
more accurate and reliable. Software, such as EnergyPlus and TRNSYS,
is often integrated to simulate the HVAC process. However, a detailed
simulation is time-consuming especially for complex systems. The data-
driven model is an alternative approach for modeling HVAC systems.
The effectiveness of such models for system setting has been

demonstrated in other research fields such as wastewater treatment
system design [101–103] and renewable energy producing using
building wastes, wind and solar [104,105]. The most common optimi-
zation objectives are operating energy and thermal comfort. The input
solutions are the values of HVAC system setpoints. Normally, users set
up constraints, which keeps the solution within a physically reasonable
region.

Pombeiro et al. [106] developed three optimization models: (1)
dynamic programming with simplified thermal models (STM), (2) GA
with STM, and (3) GA with EnergyPlus. They are used to find the op-
timal setting of indoor temperature and the battery state of charge of a
photovoltaic (PV) system in order to minimize energy cost and maintain
thermal comfort. Magnier et al. [107] considered a number of design
variables in the optimization, as presented in Table 2, including both
HVAC system setpoints and building geometric parameters. They used
ANN to model the building and the system. The multiobjective GA as
used to find the optimal setpoints. Kusiak et al. [108–112] performed a
series of studies to optimize system performance through adjusting
setpoints. They focused the setpoints on supply air temperature and
supply air static pressure. The objective system performance indices
included total energy, room air temperature ramp, and indoor air
quality. A specific multilayer perceptron neural network was developed
in each research to represent the system. Data used to train the network
were collected from an experiment conducted in a real commercial
building. Different optimization algorithms (i.e., evolutionary

Fig. 6. Framework of integrated HVAC design and optimization process based on BIM.
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optimization algorithm, particle swarm algorithm, harmony search al-
gorithm, and firefly algorithm) were tried and compared with each
other to find the optimal solution (i.e., supply air temperature and
supply air static pressure). The results showed that considerable energy
could be saved with optimized setpoints while maintaining indoor
thermal comfort and air quality.

6. Discussion

6.1. Research trend of CI application in HVAC design

When Alfred Wolff designed the first air-conditioning system in
1902 for the New York Stock Exchange, it took a year to complete the
drawings [114]. Computers have greatly improved the design effi-
ciency, especially in recent years when intelligent technologies
emerged. HVAC intelligent design is becoming an important research
area because HVAC design quality greatly impacts the whole building
operation and energy efficiency. Fig. 5 shows the number of publica-
tions reviewed in this paper since 1989. The number of publications
slightly dwindled down during the period from 2006 to 2010. However,
on the bright side, there is an increasing number of researchers devoted
to the study of HVAC intelligent design.

6.2. Typical workflow of HVAC optimization design

HVAC design is a complicated process containing several proce-
dures. The design cannot be simplified into a single mathematical
problem and be solved by a single method or algorithm. Most of the
studies discussed in this paper focus on a specific design problem such
as how to select proper system types or equipment. Though the design
problem varies with each other, many design problems are transformed
into optimization problems; thus, the problems can be solved auto-
matically by computer algorithms. Optimization deals with finding an
optimal solution to minimize or maximize an objective function with
several variables, which are subject to their constraints. This approach
is widely used in operations research, management science, and en-
gineering design. Three key elements, i.e., design variables, constraints,
and objective, comprise an optimization problem. The design variables
are the parameters that control the optimization structure. They can be
either continuous or discrete variables. The objective function F x( )
being optimized measures the effectiveness of the design. This function
could be formulated by a single function or multiple objectives as fol-
lows:

= …F x f x f x f x( ) { ( ), ( ), , ( )}p1 2

For the HVAC design problems discussed in this paper, the optimi-
zation objectives are mostly one or several of the following aspects:

• initial cost,

• operation energy consumption,

• maintenance cost,

• thermal comfort,

• indoor air quality.

The limits of the design variables are known as constraints. They set
the searching boundary ensuring that the optimal solution obtained
follows physical laws. Table 3 presents a summary of optimization
problem formulations discussed in this paper. GA and its modified
versions are most widely used methods to solve optimization problems,
owing to their robustness and easy implementation. One of the main
challenges for a robust optimization algorithm is to define an efficient
evaluation method for the fitness of a solution. For example, when
using operating energy consumption as the objective, the direct method
is to build an energy model and use the energy output for iteration.
However, iterations are very time-consuming as thousands of them are

required. Two methods are used to solve this problem. The first one is
the use of a simplified model as an alternative for trading accuracy for
efficiency. The second one is to train a data-driven model beforehand
using simulated data. Data-driven models run much faster than the
whole building simulation model. ANN is the most popular method for
training owing to its superior nonlinear characteristics. However, dif-
ferent data-driven models have to be trained for different objectives.
For example, when evaluating a multiobjective considering both oper-
ating energy and indoor air quality, separate models have to be trained
as they are influenced by different factors. Extensionality is another
consideration for data-driven models. If the test point is out of the
training range, the data-driven model will be unreliable. Therefore, it is
required that all possible situations should be covered when de-
termining the training dataset.

6.3. Integrated HVAC design and optimization process

The CI technologies reviewed in this paper are aimed at facilitating
the design process. Many methods and tools are developed and built.
However, most of these tools and methods are not used and finally
neglected. One major reason why they are very difficult to incorporate
into conventional design practice is that the problem formulation and
defining a design problem in mathematical approach require high skills
and experience. Such skills and experience are beyond the capability of
HVAC engineers. Moreover, the conventional design is conducted in 2D
graphs. Design information has to be extracted manually. The extrac-
tion itself is time-consuming and tedious. These are the reasons that all
activities are limited to specific research areas and it is seldom that any
of the AI methods are used in HVAC design practice.

In recent years, building information model (BIM) is gaining in-
creasing popularity in building design. BIM is a digital representation of
building characteristics and functionalities containing files in standard
format, which can be extracted, exchanged, or networked to support
decision making regarding a building or other built assets [113]. All
building information is structurally stored in the BIM model complying
with some type of standard format. Therefore, it is easy to extract re-
quired information using computer programs automatically. Moreover,
design changes can be made with minor intervention. For example, if
you want to change the duct diameter from 400mm to 500mm, all you
need to do is change the diameter number. The corresponding diagram
and drawing will be generated automatically. BIM makes the exchange
between design and optimization possible. In the light of BIM and the
typical solution procedure for optimization problems discussed in the
previous section, an integrated design and optimization framework is
proposed as shown in Fig. 6.

There are three core modules in this framework. They are informa-
tion extraction module, information conversion module, and optimization
module. Information extraction module is designed to read a BIM file and
extract information from it. A tool called SBT is embedded in this
module [115]. It is developed by Lawrence Berkeley National Labora-
tory. It is able to convert a BIM model to an EnergyPlus file and produce
a load profile for further analysis. Once the BIM building model is
available, the required information for each HVAC design procedure
can be extracted automatically using this module. For example, in-
formation such as room geometry, location, function, and load profile
will be collected to conduct zoning analysis. When the design in-
formation is ready, the information is passed to the information con-
version module. This module is a medium between the engineering de-
sign problem and optimization problem, which is in mathematical
form. In this module, the components, i.e., design variable, objectives,
and constraints, will be formulated and prepared for optimization
analysis. For the optimization module, it is designed to conduct the op-
timization calculation. Several optimization algorithms such as GA and
DP are available within this module. Users can choose the preferred one
or follow the recommended advice given by this tool. In Fig. 6, GA is
illustrated as an example. Finally, the calculated optimal solution is
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again converted into the engineering format using the information
conversion module. This tool can be designed as a plug-in of the BIM
software, which can help engineers make better decisions and without
bothering on coping with complicated mathematical problems.

7. Conclusions and further work

This paper has reviewed the problems, solving methods and appli-
cation examples of HVAC system optimization design. The main find-
ings and contributions of this paper are summarized as follows.

(1) The HVAC design process contains seven procedures. According the
problem characteristic and solving approaches, this paper defines
three type of optimization design problems, i.e. model estimation,
decision making and uncertainty analysis. Corresponding solving
methods and application methods are also presented. Other re-
searchers can refer to this result.

(2) For all three optimization design problems, decision making is most
essential. This paper introduces three solving methods. GA is the
most widely used one. Apart from basic version of GA, several
modified versions have been developed to strengthen performance.
Design variables, constraints, and objective are three key elements
to constitute a GA-based optimization problem. Constraints defines
the selecting range of design variables. The constraint setting values
should be in accordance with physical laws as well as mandatory
design codes. Objective formulation directly influences problem
solving efficiency.

(3) Building load calculation and objective formulation for GA-based
optimization belong to the category of model estimation problem.
Physical-based method and data-driven method are both applicable
to solve a model estimation problem. Choosing which method de-
pends on many factors, which include system design phase, esti-
mation accuracy, time limit, available building and system in-
formation etc. Physical-based method is more accurate and the
developed model can be used to conduct further parametric ana-
lysis, but establishing a detailed physical model is time-consuming
and requires much detailed information. Besides, complex physical
model calculation often has heavy computing burden. Whereas
data-driven method is less accurate, but is much faster and requires
less information. So data-driven method is more suitable for initial
design phase to get a general profile of system energy demand and
objective formulation of a complicated GA-based optimization
problem. However, it should be noticed that the data-driven model
is less extensible, so training cases of a data-driven model have to be
as diverse as possible to cover design condition of the target
building or system, or the predicted result is unreliable.

(4) As discussed in Section 6.2, HVAC optimization design process
follows a typical workflow. This paper proposes a framework of an
integrated automated optimization design tool. The framework is
developed based on BIM and the extracted typical optimization
design workflow. It aims to connect various design stages by im-
plementing structured information transfer between them and ul-
timately improve design efficiency and quality. However, this fra-
mework is just a conceptual version, more research is needed. We
will continue working on this topic to put this idea into practice.
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