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A B S T R A C T

This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate zone

with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. This

paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies this

procedure to eleven field test buildings. The results of a comparison between the measured demand

savings during the peak period and the savings predicted by the simulation model indicate that the

predicted demand shed match well with measured data for the corresponding auto-demand response

(Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after

calibrating the initial models with measured data. These improved models can be used to predict load

reductions for automated demand response events. The simulation results were compared with field test

data to confirm the actual effect of demand response strategies. Results indicate that the optimal

demand response strategies worked well for most of the buildings tested in this hot climate zone.
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1. Introduction

The potential for utilizing building thermal mass for load
shifting and peak demand reduction has been demonstrated in a
number of simulation, laboratory, and field studies. Rabl and
Norford [1] developed a date-based dynamic model to simulate the
effect of different thermostat control strategies for reducing peak
demand. Morris et al. [2] studied two optimal dynamic building
control strategies in a representative room in a large office
building. The experiments showed the reduction in peak cooling
load to be as much as 40%. Keeney and Braun [3] developed a
building cooling control strategy and conducted an experiment in a
large office building. They found the pre-cooling strategy could
limit the peak cooling load to 75% of the cooling capacity. Xu et al.
[4] demonstrated the potential for reducing peak electrical
demand in moderate-weight commercial buildings by modifying
the control of the heating, ventilation and air-conditioning (HVAC)
system. Field tests showed the chiller power was reduced by 80–
100% (1–2.3 W/ft2) during the peak period without causing
thermal comfort complaints. Xu and Haves [5] conducted a series
of field tests in two commercial buildings in Northern California to
investigate the effects of various pre-cooling and demand shed
strategies. Field tests demonstrated the potential to reduce the
cooling load 25–50% in peak hours and the importance of discharge
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strategies to avoid rebounds. Braun [6] presented an overview of
research related to the use of building thermal mass for shifting
and reducing peak cooling loads in commercial buildings and
provided specific results obtained through simulations, laboratory
tests and field studies.

Demand response (DR) is a process of managing customer
consumption of electricity in response to supply conditions to
reduce the electricity costs or improve the system reliability.
Demand shifting refers to a shift in the demand curve, brought
about by consuming electricity at a different time to benefit from
time-of-use rates, which can be achieved by utilizing thermal
energy storage such as ice storage or building thermal mass.
Demand shedding is a temporary reduction of peak electric
demand for achieving economic savings. Motegi et al. [7] provided
an introduction to commercial building control strategies and
techniques for demand response such as control strategies for
HVAC, lighting and other miscellaneous building end-use systems.
This report also summarized information from field demonstra-
tions of DR programs in commercial buildings.

This paper describes the development of simulation models for
eleven commercial buildings in a hot climate zone in California, the
use of DRQAT for evaluating DR potential in these buildings, and
how to optimize DR strategies developed by LBNL. DRQAT is based
on EnergyPlus simulations of prototypical buildings, developed by
Huang et al. [8], and HVAC equipment. It incorporates prototypical
buildings and equipment and allows the user to specify a relatively
small number of important parameters in order to make a quick
assessment of DR strategies that use a building’s thermal mass.
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Fig. 1. Development and calibration of the simulation model by using DRQAT.
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This tool was used to optimize the temperature control strategies
in eleven office buildings located in a hot climate zone in California
in 2008. Optimal demand response strategies, or those that
maximize demand response savings for these buildings, were
determined through comparison of simulation results of pre-
cooling strategies with the measured data from the same strategies
implemented in the buildings on test event days. Xu et al. [9]
conducted a series of simulations and strategy analyses by using
EnergyPlus to evaluate various demand response strategies. The
initial models were revised and the parameters were adjusted to
ensure the hourly simulation profile matched the measured data.

2. Development of optimal pre-cooling strategies

Fig. 1 shows the general procedure for developing and
calibrating the DRQAT simulation models for the field test
buildings. All of the models were calibrated with the measured
data to meet the acceptable tolerance levels developed in ASHRAE
Guideline 14 [10]. Based on the calibrated baseline models, various
demand response strategies were simulated to determine how to
discharge thermal mass efficiently and smoothly with no rebound
in electricity demand.

Yoon et al. [11] developed a systematic calibration method
using a ‘‘base load analysis approach’’ that calibrates a building
energy performance model with a combination of monthly utility
billing data and sub-metered data. The results of the case study
indicated that the approach provided a reliable and accurate
simulation of the monthly and annual building energy require-
ments. Reddy et al. [12,13] proposed a general methodology for
calibrating detailed building energy simulation programs based on
performance data and applied this methodology to three case
study office buildings. Pan et al. [14] conducted simulation model
calibration step by step in a high-rise commercial building based
on the approach proposed in ASHRAE Guideline 14-2002 [10].
Norford et al. [15] presented a commonsense procedure for
calibrating a DOE-2 computer model of a commercial building, and
identified the major building loads in the building including
lighting and equipment. The results from the calibrated DRQAT
simulation models were within the acceptable tolerance levels of
the measured data.

2.1. Simulation model development

The initial simulation models were developed after completing
field data collection. The quantity and accuracy of the collected
data, such as information about the building envelope, the
densities and operating schedules of occupancy, lighting and plug
loads, HVAC system characteristics, and building operation have a
direct impact on the accuracy of the simulation results. Therefore,
the more abundant and accuracy the data, the more accurately the
models can predict the peak load reduction.
Table 1
Initial simulation model input—building information.

Site No. Gross area (m2) Length (m) Width (m) Floo

#1 6,405.50 91.40 35.10 3.70

#2 5,833.70 91.40 32.00 3.70

#3 3,605.00 82.30 21.30 3.70

#4 6,849.10 62.50 27.40 3.70

#5 6,509.00 53.30 30.50 3.70

#6 10,470.70 64.00 27.40 3.70

#7 7,501.20 76.20 33.50 3.70

#8 7,775.00 128.00 30.50 3.70

#9 9,707.50 106.70 30.50 3.70

#10 11,057.60 61.00 45.70 3.70

#11 7,531.80 106.70 35.10 3.70
2.1.1. Inputs for the initial simulation model

Table 1 presents a summary of the building descriptions and
the internal loads of the eleven commercial buildings. The building
audits provided general information, such as number of stories,
gross area, window-to-wall ratio and other related information.
The building orientation, the length, and the width of each building
were measured with Google Earth, which offers maps and satellite
images of the buildings. The data collected suggested most of the
information related to schedules and demand intensities were not
available for these facilities and end-use sub-metering data was
not available. Therefore, the authors used default values for the
initial model because the buildings were ‘‘typical’’ office buil-
dings.Notes

Floor Height: height of the single floor;

WWR_SN: window-to-wall ratio for south and north sides of the

building;

WWR_EW: window-to-wall ratio for east and west sides of the

building;

Building Orientation: building north axis is specified relative to true

north and the value is specified in degrees from ‘‘true north’’

(Clockwise is positive)

Internal loads such as occupancy, lighting, and plug loads make
up the majority of cooling loads in office buildings. Therefore, the
r height (m) WWR_SN WWR_EW Building orientation

0.50 0.50 45

0.50 0.50 315

0.50 0.50 45

0.25 0.25 315

0.60 0.60 0

0.60 0.60 0

0.40 0.40 0

0.40 0.40 45

0.40 0.40 45

0.40 0.40 0

0.30 0.30 45



Table 2
Initial simulation model input—internal loads.

Site No. Year constructed Lighting density (W/m2) Plug density (W/m2) Occupancy (m2 per person)

Initial Calibrated

#1 1990 17.2 8.1 8.1 36.2

#2 1988 17.2 8.1 16.1 36.2

#3 1988 17.2 8.1 16.1 36.2

#4 1988 17.2 8.1 19.4 36.2

#5 1993 17.2 8.1 15.1 36.2

#6 1990 17.2 8.1 9.7 36.2

#7 2001 12.9 8.1 16.1 36.2

#8 2003 12.9 8.1 6.5 36.2

#9 2005 11.8 8.1 15.1 36.2

#10 2002 12.9 8.1 10.8 36.2

#11 1994 17.2 8.1 10.8 36.2

Fig. 2. Initial schedule of occupancy on weekdays.
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densities and operating schedules of the internal loads can
significantly influence the load profile of the whole building and
HVAC system. Where the end-use sub-metering was not available
for these eleven buildings, the internal occupancy, lighting and
equipment were estimated based on the characteristics of typical
office buildings. Table 2 presents the inputs of building internal
loads for the initial simulation models and the plug density values
for the calibrated model. With the information on building type
and year of built, the lighting intensity was estimated using
California’s Energy Efficiency Standards for Residential and Non-
Residential Buildings [16]. The plug intensity was estimated at
8.1 W/m2 (0.75 W/ft2), and occupancy intensity was 36.2 m2

(390 ft2) per person based on the characteristics of typical office
buildings. The initial schedules for lighting, equipment and people
were the same as typical operation of commercial buildings
benchmark models developed by Torcellini et al. [17], as shown in
Figs. 2 and 3.
Fig. 3. Initial schedules of lighting and plug power densities on weekdays.
Each building has packaged rooftop units with variable-air-
volume (VAV) distribution systems. On weekdays, the HVAC
systems start between 6 am and 8 am, and turn off around 6 pm.
The zone temperature for each building was monitored and
controlled by a fully equipped digital direct control (DDC) system,
which enables various global zone temperature reset strategies for
demand response analysis. The normal zone temperature setpoints
were about 25 8C (77 8F) in the summer period.

2.1.2. Initial simulation results

Using the information mentioned above, the initial DRQAT
simulation models were developed for each building. The initial
simulated model was calibrated with measured energy data. For
each initial simulation model, the absolute and the relative
difference between the simulation results and the measured data
were calculated. The electric consumption predicted by the
simulation models was compared to the buildings’ monthly utility
bills as well as to some spot measurements. The simulation results
and measured data for each building from the summer of 2007
were compared on both a monthly and hourly basis. In order to
compare the simulation results and measured data, both graphical
methods and statistical techniques were applied to determine
where the simulation results differed from the measured data.
Haberl and Thamilseran [18] and Kreider and Haberl [19,20] used
statistical mean bias error (MBE) and coefficient of variation of the
root mean squared error (CV(RMSE)) to evaluate the accuracy of
the predicted results of the simulation model. Pan et al. [14] and
Yoon et al. [11] also applied the criteria as shown in Table 3 into
the calibration procedure for energy simulation of commercial
buildings. Several calibration approaches and guidelines have been
developed that use statistical techniques as part of the calibration
process [10,21]. Table 3 presents the acceptable tolerance for
monthly and hourly data calibration according to ASHRAE
Guideline 14. The initial models were calibrated to achieve the
acceptable monthly tolerances based on the required MBE and
CV(RSME) then again calibrated based on hourly data to achieve a
higher level of accuracy.

The following criteria were used to assess the difference
between the simulation results and the measured data. MBE
indicates how well the energy consumption was predicted by the
Table 3
Acceptable calibration tolerances.

Calibration type Index Acceptable value

Monthly MBEmonth �5%

CV(RSMEmonth) 15%

Hourly MBEmonth �10%

CV(RSMEmonth) 30%
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model as compared to the measured data. CV(RMSE) was used to
determine how well a model matched the measured data while
accounting for cancellation errors.

MBEmonthð%Þ ¼
ðM � SÞmonth

Mmonth

� �
� 100

CVðRMSEmonthÞ ð%Þ ¼
RMSEmonth

Mmonth

� �
� 100

RMSEmonth ¼
P

monthðM � SÞ2month

h i
Nmonth

8<
:

9=
;

1=2

Mmonth ¼
P
ðMmonthÞ
Nmonth

where M is the measured electric consumption (kWh) in one
month, S is the simulated electric consumption (kWh) during the
same month, and N is the number of months in the field test period.

As shown in Fig. 4, only two simulation models were within the
required �10% tolerance before calibration. The simulated results for
the other nine buildings were much higher or lower than the
measured data, with some monthly MBE and CV(RMSE) values larger
than 20%. To ensure the model meets the acceptable tolerance and to
better understand what was happening in the initial models,
calibration of each building model’s subsystems was required.

2.1.3. Simulation model calibration

Based on the whole building calibrated simulation approach
developed in ASHRAE Guideline 14, attention was focused on the
initial models’ most important parameters, such as weather data
and internal loads (lighting and plug loads). The weather data used
in the initial models were TMY2 (typical meteorological year)
weather files available within DRQAT. Although some modelers
have reported using typical year weather data for model
calibration purposes, this approach was not recommended for
this project as since the measured data used for the comparison
occurred under actual weather conditions. During the calibration
process, real weather data from 2007 and 2008 (from the
EnergyPlus website) was applied to the simulation models.

After comparing the results of the initial simulation models and
the measured data, it was determined that the plug loads assumed
for most of the building models might be set too low, as shown in
Table 2. The occupancy, lighting and plug load schedules for
different weekdays were assumed to be similar to each other
throughout the year. Therefore, the densities and schedules of
lighting and plug loads from the whole building electricity data were
estimated for the heating period from November 1st 2007 to
Fig. 4. Difference of monthly electric usage between initial model and measured

data for eleven buildings.
February 28th 2008. The cooling plants were completely locked out
during cooler weather, or when the maximum outside temperature
was 12.8 8C (55 8F) or lower. Thus, the whole building power on
these days only included lighting, plug and fan power. By analyzing
the daily energy use of the building under theses cold weather
conditions, the internal loads could be separated out from the whole
building power. This method was applied to buildings where the
heating sources were gas, steam, or hot water from other facilities.
Significant differences were observed in the operation of lighting
and plug loads between the initial models and real buildings, which
led to high MBEs and CV(RMSE) for most of the models.

As mentioned earlier, Table 2 lists the building internal loads
assumed for the initial and calibrated simulation models. The
lighting and occupancy schedules were the same for both initial
and calibrated models, while the plug load densities were changed
for each building based on the electrical usage measured during
the cold weather time period.

Office building #8 offers an example of the model calibration
procedure. Site #8 is a typical office building: two-story with a
large portion of the floor area covered with carpets. Large areas of
each façade single pane with low-e glazing. The internal
equipment and lighting loads were typical for office buildings
and the occupancy density in the office area was approximately
390–400 ft2 per person. Figs. 5 and 6 show the weekday and
weekend/holiday lighting and plug loads schedules after calibra-
tion. The electric usage was constant during the unoccupied
period. The occupancy schedule for the calibrated model was the
same as that for the initial simulation model.

2.1.4. Calibrated simulation models

Fig. 7 presents the monthly comparison between the calibrated
simulation results and the measured data in 2007. The results
Fig. 5. Calibrated schedules of lighting and plug densities on weekdays.

Fig. 6. Calibrated schedules of lighting and plug densities on weekend and holidays.



Fig. 7. Difference of monthly electric usage between calibrated model and

measured data for field test buildings.

Fig. 9. Pre-cooling and zonal temperature reset strategies.
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indicate that monthly simulation results were almost within�5% of
the measured data. Some monthly MBEs and CV(RMSE) were higher
but still within �10%. The acceptable calibration tolerances were
achieved based on the hourly calibration criteria. Generally, the
calibrated models provided reasonably good predictions of the
monthly electrical usage as compared to the measurements. With
respect to the hourly calibration, the lighting and plug load densities
and schedules used in the models were constant throughout the year. In
reality, they may vary slightly from day-to-day. Fig. 8 compares the
simulated and measured whole building electrical demand for building
#8 on weekdays from August 20th to 24th. As shown in Fig. 8, the
simulated interval electrical demand and the measured data agree
pretty well despite the discrepancy between the simulation model and
actual operation. Interval errors between the simulated results of the
calibrated model were typically within�15%. Therefore, the calibrated
model was deemed acceptable for evaluating the impact of various pre-
cooling and temperature reset strategies.

2.2. Optimization of pre-cooling strategies

Calibrated models were used to investigate and analyze various
pre-cooling strategies. The pre-cooling and zone temperature reset
strategies that have been examined in this study are shown in Fig. 9.
According to the trended operation data, each of these buildings
were normally operated at constant setpoints around 25 8C (77 8F)
throughout the warm-up and occupied hours. After 6 pm, the
system was shut off and zone temperatures started to float. The
setpoints in individual zones ranged from 23.9 8C (75 8F) to 26.7 8C
(80 8F), with an average value of about 25 8C (77 8F).
Fig. 8. Comparison of electrical demand between calibrated model and measured

data.
The first strategy was termed as ‘‘pre-cooling with linear temp
reset’’. From 5 am to 12 pm, mostly during occupied hours, all of
the zone temperature setpoints were reduced to 23.9 8C (75 8F).
From 12 pm to 6 pm, the high price periods, the setpoints were
raised linearly to 26.7 8C (80 8F). After 6 pm, before the system was
shut off, the setpoints were rolled back to 25 8C (77 8F).

The second strategy was termed as ‘‘pre-cooling with exponen-
tial temp reset’’. While the pre-cooling period was same as the first
strategy, the temperatures were raised up exponentially rather
than linearly in the afternoon period.

The third strategy was called ‘‘no pre-cooling with exponential
temp reset’’. The zone temperatures were raised exponentially in
the afternoon in the same way as in the last strategy, but without
pre-cooling from 5 am to 12 pm. One aim of the tests was to
determine the effect of the pre-cooling on peak demand shedding.

The fourth strategy was called ‘‘pre-cooling with step temp
reset’’. The zone temperature setpoints were reduced to 23.9 8C
(75 8F) from 5 am to 12 pm. The setpoints were raised to 26.1 8C
(79 8F) at 12 pm and remained there until 3 pm. At 3 pm, the zone
temperature setpoints were reset at 26.7 8C (80 8F) and remained
there for the duration of the afternoon.

A series of simulations for each of the four pre-cooling
strategies was conducted for each building. Simulation results
were compared with measured data. Fig. 10 shows the simulation
results for one office building. The plot illustrates the demand shed
for different types of pre-cooling strategies during the high price
period. The ‘‘Pre-cooling with step temp set up’’ strategy load
profile was much flatter than others, and the ‘‘Pre-cooling with
exponential temp set up’’ strategy load profile was also better than
the ‘‘No pre-cooling with exponential temp set up’’ and ‘‘Pre-
cooling with linear temp set up’’ strategies’ load profiles. The ‘‘Pre-
Fig. 10. Simulation results of proposed pre-cooling strategies.



Fig. 11. Pre-cooling strategies on Auto-DR test days.
Fig. 12. Field test results of pre-cooling strategies on one Auto-DR test day.
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cooling with step temp set up’’ strategy could discharge the
thermal mass more smoothly and create a flat power profile during
the peak period. The ‘‘Pre-cooling with linear temp set up’’ strategy
load profile fluctuated throughout the temperature reset period
and the shed was smaller than that of ‘‘exponential set up’’ and
‘‘step set up’’ strategies.

3. Pre-cooling field test analysis

In summer 2008, the optimal pre-cooling strategy was imple-
mented in each building using a signal initiated by the automated
demand response (Auto-DR) system, which eliminates the need for
human intervention in each field test building. Auto-DR can be
defined as fully automated DR initiated by a signal from a utility or
other appropriate entity that provides fully automated connectivity
to customer end-use control strategies [22,23]. It allows greater
levels of participation and improved reliability and repeatability of
the demand response and customer facilities [24]. A recently
published specification describes an open standards-based com-
munications data model designed to promote common information
exchange between the utility or Independent System Operator and
electric customers using demand response price and reliability
signals [25]. In this study, field tests of optimal pre-cooling strategies
using the Auto-DR system were conducted on all twelve DR events
from July to September. Fig. 11 shows the pre-cooling strategy used
on the Auto-DR event days for each of the buildings.

3.1. Baseline model confirmation

In the 2003 and 2004 studies, a strong correlation between
maximum outside air temperature and whole building peak power
was observed [4]. In order to minimize the weather difference
between simulations and test days, baseline days for each test day
were selected based on similarity of peak outside air temperatures,
and profiles of the outside temperatures.

Simply comparing maximum outside air temperature was not a
reliable method to select baselines. The average variance of hourly
outside air temperatures (AVHOAT) between the baseline days and
test days provides an additional metric defined as:

AVHOAT ¼ 1
24

X24

i¼1

ðBi � TiÞ2
Table 4
OA temperature comparison between baseline days and Auto-DR test days.

Index Test day Baseline days

Date 9/3/08 9/2/08

Peak OA temperature (8C) 36.7 37.2

AVHOAT (8C) – 1.65
where Bi is the hourly outside air temperature of baseline days and
Ti is the hourly outside air temperature of Auto-DR test days.

Table 4 presents five potential baseline days that had similar
maximum outside air temperature to that of the 9/3/2008 test day.
By only comparing the peak OA temperature, any of these five
baseline days could be considered to be the best baseline day. The
AVHOAT method, however, shows that 9/4/2008 had the smallest
AVHOAT and the hourly outside air temperature on baseline days
were almost the same as that on the Auto-DR event day—thus 9/4/
2008 would be the best match to use for the baseline day. This
same AVHOAT method was used to select the best baseline days for
the other test event days.

LBNL developed a baseline model to estimate the demand
savings from implementing the DR strategies. Previous research
recommended a weather-sensitive baseline model with adjust-
ments for morning load variations. With respect to the LBNL
baseline model, the whole building power baseline was
estimated using a regression model that assumes that whole
building power was linearly correlated with outside air
temperature (OAT) [26]. Each of these two baselines were
applied to evaluate the effect of demand response strategies for
decreasing the peak demand.

In general, the baseline models for each Auto-DR event day
were achieved based on similarity of the peak and hourly outside
air temperature between the baseline days and the Auto-DR event
days and with the assumption of similar internal operating loads
such as lighting and plug loads. However, some buildings were not
very sensitive to outside weather conditions; rather, lighting and
plug loads account for the majority of electricity usage—these
loads significantly influenced the whole building power profile.
Under this condition, a combination of end-use sub-metering and
weather condition sensitivity analysis was recommended to find
suitable baseline days for each Auto-DR event day.

3.2. Field test results

Fig. 12 shows the whole building power for the 9/3/2008 Auto-
DR event days as well as the corresponding 9/4/2008 baselines
from the (AVHOAT) and LBNL baseline models. As shown in Fig. 12,
there was little difference between these two baseline models due
to the high similarity between the selected baseline day and the
Auto-DR day.
9/4/08 9/5/08 9/15/08 9/25/08

36.1 37.8 37.2 36.7

0.53 0.55 2.42 1.50



Fig. 13. Comparison of measured and simulated average demand savings for field

test buildings.
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The field test results in Fig. 12 show significant peak demand
savings for the ‘‘Pre-cooling with step set up’’ strategy throughout
the Auto-DR event days in the office building (#8). Note that the
load shifted from the afternoon peak period to the morning off-
peak period (pre-cooling period). By operating the optimal pre-
cooling strategy as shown in Fig. 11, the average peak demand
saving was about 18% of the whole facility load based on the 6-h
peak period, and the peak demand was reduced by as much as 23%.
Meanwhile, the demand curve during the peak period was
controlled at a nearly constant value; no rebounds were observed
for the electrical demand of the HVAC system. The trend data
indicated that the temperature had not reached the 26.7 8C (80 8F)
setpoint at the end of the HVAC system operation, due to the
discharged cooling energy from building thermal mass. If the
thermal mass had been fully discharged during the peak period,
the HVAC system would have had to provide more cooling to keep
the building at the setpoints—thus resulting in higher demand. As
this building had sufficient thermal mass to carry the building at
the experimental setpoints, the peak period zone temperature
setpoints could have been reset higher to take full advantage of the
building’s thermal mass.

3.3. Comparison of measured data and simulation predictions

Fig. 13 compares the measured data to the simulation results.
Depending on the test day, the average demand shift predicted by
the simulation models was slightly higher or lower than the
Fig. 14. Comparison of the three Auto-DR test days’ whol
measured data. Among the DRQAT inputs, level of thermal mass
had the largest impact on peak demand reductions. The building
thermal mass level was set to ‘‘Medium’’ in the first calibrated
models, which was confirmed according to the characteristics of
typical office buildings [17]. The survey data did not provide
enough information to quantify thermal mass. The thermal mass
level was generally reset to match actual conditions in the
individual buildings based on the building’s structure survey data.
In the future, the building thermal capacity can be estimated by
several models developed by Braun and Lee [6,27,28] through
short-term measurement and field surveys.

In Fig. 13, during the peak period, with the exception of
buildings #4 and #6, simulated demand savings agree well with
those of the measured data. To determine the cause for
inconsistency in office building #4s results, a detailed analysis
of the actual whole building electric load profile was conducted for
the Auto-DR test days. By comparing the on Auto-DR test days’
whole building power profiles with the baseline days’ profiles, the
results in Fig. 14i indicated that the pre-cooling with zone
temperature reset strategy did not work on the Auto-DR test days,
as there were some implementation problems. There was no trend
to achieve demand shed when Auto-DR signal was activated. It was
verified that this building did not participated in the Auto-DR
program during the summer 2008. Office building #6s measured
average demand savings were higher than those of the simulation
model. This discrepancy may have been due to the chiller staging
control with the operation of zone temperature reset during the
peak period. As shown in Fig. 15, the whole building power profile
fluctuated throughout the peak period, while the simulated power
profile during the peak hours was flat. Though significant average
demand savings were achieved, the peak demand was even higher
than normal operation without the demand response strategy.

The optimal pre-cooling strategy worked well in the other office
buildings and was able to reduce the peak electric demand
significantly. As shown in Fig. 12, the whole building power (WBP)
profiles on the Auto-DR test days indicted no rebound in the
afternoon. Table 5 presents a summary of measured and simulated
demand savings for all eleven test buildings—the electrical
demand during the peak period was reduced by 15–30% on the
Auto-DR event days. The pre-cooling with zone temperature step
reset strategy was successful in decreasing the peak demand of the
whole building, thus providing significant energy cost savings. The
comparison results indicate that the calibrated models can be used
to predict the demand savings from other demand response
strategies.
e building power profiles and the baseline’s profiles.



Table 5
Summary of measured and simulated demand savings for field test buildings.

Site No. Demand savings kW W/m2 WBP%

Max Ave Max Ave Max Ave

#1 Measured 43.5 30.0 6.8 4.7 17% 12%

Simulated 62.2 36.7 9.7 5.7 23% 13%

#2 Measured 61.9 24.6 10.6 4.2 17% 7%

Simulated 64.8 36.1 11.1 6.2 20% 11%

#3 Measured 63.5 23.5 8.2 3.0 30% 11%

Simulated 54.1 24.6 15.1 6.8 24% 11%

#4 Measured 31.0 16.4 4.0 2.2 7% 4%

Simulated 100.3 48.0 14.6 7.0 22% 10%

#5 Measured 56.9 26.8 7.3 3.5 17% 8%

Simulated 62.6 31.2 9.6 4.8 16% 8%

#6 Measured 234.2 94.2 30.1 12.2 46% 18%

Simulated 77.5 37.1 7.4 3.6 13% 6%

#7 Measured 101.0 42.1 13.0 5.4 26% 11%

Simulated 85.4 47.8 11.4 6.4 23% 13%

#8 Measured 74.4 55.1 9.6 7.1 27% 20%

Simulated 80.7 48.9 10.4 6.2 26% 16%

#9 Measured 74.5 51.9 9.6 6.7 16% 11%

Simulated 105.5 60.2 10.9 6.2 23% 13%

#10 Measured 130.1 88.6 16.7 11.4 27% 18%

Simulated 139.7 88.2 12.6 8.0 31% 20%

#11 Measured 115.5 66.1 14.9 8.5 25% 14%

Simulated 90.1 58.8 12.0 7.8 25% 16%

Fig. 15. Discrepancy between measured and simulated demand savings in site #6.
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4. Guidelines to develop and calibrate DRQAT model

Through this study, this experience with simulation-based DR
optimization was summarized in a procedure to develop and
calibrate DRQAT building models with the following steps:

� Generate a DRQAT initial simulation model with basic building
information.
� Replace TMY weather file in DRQAT and regenerate an EPW

EnergyPlus file with real weather data collected from the site or
the nearby weather stations.
� Use whole building power under extreme cold weather

conditions to estimate the actual lighting and equipment end-
use load profiles. The method will not work if electricity or heat
pumps were used as heating sources.
� Run simulations and compare the simulated results with the

measured data.
� Readjust the internal load schedule until the simulated monthly

and hourly demand data match with the measured data.
5. Conclusions and recommendations for future work

This paper evaluated how to optimize and verify pre-cooling
strategies for office buildings in a hot climate zone with the
assistance of the Demand Response Quick Assessment Tool
(DRQAT)—a building energy simulation tool. The simulation
results from calibrated simulation models matched well with
the actual monthly and hourly data. Using the calibrated
simulation models, a series of simulations were conducted to
determine optimal pre-cooling strategies for the eleven buildings.
‘‘Pre-cooling with exponential temp set up’’ and ‘‘Pre-cooling with
step temp set up’’ strategies turned out to be better DR strategies
compared to the ‘‘Pre-cooling with linear temp set up’’ strategy.

The field test results indicated that the pre-cooling strategies
were able to reduce the peak demand as expected on Auto-DR
event days. For all test buildings, the electrical demand during
the peak period was reduced by 15–30% on the Auto-DR event
days.

The demand shed predicted by DRQAT matched well with the
measured data on Auto-DR event days. The study showed that after
refining and calibrating the initial simulation models based on
measured data, the accuracy of the models was greatly improved
and the models could be used to reliably predict load reductions in
most of buildings on DR event days within �10%. Although
agreement was found between the carefully calibrated baseline
model and the measured interval meter data, efforts in the following
areas can further improve the accuracy of the simulations and
usefulness of the DRQAT tool: measured or real weather data, sub-
metered HVAC and whole building power, and better estimation of
building internal mass. This study confirms that sub-metered HVAC
and whole building power data were crucial to the accuracy of the
models. If this data is not available, the auditor may conduct a manual
test on a weekend to measure end-use consumption and demand
indirectly. It was difficult to assess the building’s thermal mass level.
It would be useful to conduct short-term measurements and field
investigations to determine the capacity of the building’s thermal
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mass and incorporate these mass models [6,29] into the simulation
model.
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