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a b s t r a c t

One major obstacle in Heating, Ventilation and Air Conditioning (HVAC) system Fault Detection and
Diagnostics (FDD), retrofitting and energy performance evaluation is the lack of detailed hourly cooling
load data. Cooling load measurement in commercial buildings is expensive and sometimes very difficult
to implement. Detailed building simulation models, such as EnergyPlus, are too complicated to build and
also must be calibrated. In this paper, an hourly cooling load prediction model, called the ‘‘RC-S” model, is
proposed. This new cooling load calculation approach consists of a simplified thermal network model of
the building envelope, a thermal network model for the building internal mass and the internal cooling
load model from the submetering system. One existing RC model is introduced as reference model and
three types of ‘‘RC-S” models are set up in this study. Genetic algorithm (GA) is selected to optimize
the parameters in those models. Measurement data collected from a real commercial building and
simulation data obtained from EnergyPlus model of the same commercial building are used to train
and test the four models. The results prove that the proposed ‘‘RC-S” cooling load calculation method
is more accurate than the existing RC model and much simpler than whole building simulation models.
It can provide reasonable estimations of cooling loads for HVAC FDD and other performance evaluations.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The building sector is a major consumer of energy worldwide
and a large amount of energy is used for Heating, Ventilation and
Air Conditioning (HVAC) [1–5]. One cause of high consumption in
HVAC systems lies in their frequent failure to operate as intended
after a period of operation, even with correct commissioning [6,7].
In many buildings, energy performance is not a concern as long as
building comfort can be maintained. Many previous studies have
focused on enhancing the operating efficiency of HVAC systems.
These studies can be categorized by topic, such as Fault Detection
and Diagnostics (FDD), supervisor optimal control, retrofit and
continued commissioning. Reliable data on energy consumption
and cooling loads form an indispensable basis for these functions.

In the last decade, interval metering and submetering of com-
mercial building systems have become more popular in various
countries and regions of the world. The energy meter structure is
depicted in Fig. 1. Data on these meters are normally collected
every 5–15 min, so over time, overwhelming amounts of data
accumulate, providing a good platform for FDD and optimizing
control for HVAC systems.

However, unlike electricity, few buildings have their cooling
load metered. Cooling loads are typically measured using the sup-
ply and return temperatures and flow rates of chilled water. Cool-
ing load measurement is not very expensive for a newly
constructed system. However, it is often neglected because con-
tractors’ main concern is to meet the comfort requirements with
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Fig. 1. Submetering system schematics and classification levels.
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the lowest investment cost. In newly constructed buildings, the
temperature and flow sensors are buried inside the chilled water
pipe. The data are relatively accurate at the beginning, but sensors
will drift and degrade over time. In existing buildings, it is neces-
sary to drill holes to install sensors. Many building owners and
operators forbid drilling into high-pressure pipes because of liabil-
ity issues. In many cases, peeling off insulation and installing tem-
perature and ultrasonic flow sensors attached to pipes is also
prohibited.

In view of the importance of the cooling load and the difficulty
of installing meters, an increasing number of scholars are dedi-
cated to the study of calculating building loads with kinds of mod-
els. The paper is organized as follows. Section 2 is the literature
review. Section 3 elaborates the previous RC model and three
newly introduced models. This section also describes the principles
of the parameter calibration process for the external building
envelope and internal mass. Section 4 mainly describes the build-
ing information for the case study commercial building and its data
acquisition. Section 5 is composed of three parts. Section 5.1 intro-
duces the parameter calibration process for the external building
envelope. Measured data and simulated data are utilized to com-
pare and validate four models in Sections 5.2 and 5.3, respectively.
Finally, the results from measured data and simulated data are fur-
ther compared and summarized.

2. Literature review

In the 2001 ASHRAE Handbook—Fundamentals models are
divided into two basic categories: ‘forward modeling’ and ‘inverse
modeling’ [8]. Forward modeling generally begins with a physical
description of a building. This includes the building’s construction
materials, lighting, equipment, occupants and the type of HVAC
system. This type of model is typically used for designing a build-
ing and its HVAC system. Inverse models are derived from empir-
ical historical data and are expressed in terms of one or more
driving forces and a set of empirical parameters. A model form is
predetermined and measured data are used to get the parameters
that provide the most accurate representation for the chosen
model form and data set. This type of model can be used for retrofit
analysis, performance monitoring, FDD and on-line optimal
control.

Forward models, also known as law-driven models, physical
models or white box models, are the universally used method in
the field of building load prediction. However, as mentioned above,
the input parameters for these models are complicated and often
are not available. It takes time and effort to establish and calibrate
models, even for specialists with many years’ experience, but the
precision of the model still cannot be guaranteed [9–14]. Inverse
modeling, also called data-driven modeling, can be generally clas-
sified into black and gray models. Black box models include tradi-
tional regression models [15–17], artificial neural network (ANN)
models [18–21] and support vector machine (SVM) models
[22–24] and so on. Black box models are trained and driven by a
set of data. The training data set has stringent requirements on
quality and time span. Furthermore, the training data are supposed
to provide as much coverage of various conditions as possible.
Many inverse models tend to have poor precision and weak robust-
ness due to the lack of high-quality training data. Gray box models
sit between white and black box models. Their approaches differ
from black box approaches in that they use certain parameters
identified from a physical system model. Examples of gray box
models are decision tree models [25,26], Fourier series models
[27–29] and thermal network models (RC model) [30]. Considering
that the building loads have explicit components, RC models are
more accurate because their parameters have obvious physical
meanings and the models require less data than data-driven mod-
els. Therefore, RC models need less training and are more robust.
Based on circuit principles and Kirchhoff electric current theory,
a building thermal network model is presented as a simple simula-
tion model of transient heat transfer through the building envelope
and internal mass, which is called the ‘‘RC model”. R is the thermal
resistance of the material, and C is the heat capacity of materials.

The approaches to calculating the cooling load coming from a
building envelope using RC models are detailed in a book written
by Kreider and Rabl in the 1990s: ‘Heating and Cooling of Build-
ings: Design for Efficiency’ [30]. Braun and Chaturvedi [31] pro-
posed an inverse gray thermal network model for transient
building load prediction. Liao and Dexter [32] developed a gray
second-order physical model to simulate the dynamic behavior
of the existing heating system of a multi-zone residential building.
Mitchell [33] postulated that the nodal placement of the 3R2C
model could be obtained by matching the theoretical frequency
response characteristics of the building envelope with the fre-
quency response characteristics of the simplified model using a
genetic algorithm. The numbers in front of R and C stand for the
numbers of resistance and capacity factors in the model. Seem
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et al. [34] indicated that the 3R2Cmodel is very adaptable for mod-
eling the external building envelope. Xu and Wang [35,36] com-
pared the Conduction Transfer Function (CTF) model with the
3R2C model and validated the above viewpoint in Ref. [34]. Soon
afterwards, Xu and Wang [37,38] proposed a simplified 2R2C
model to consider the effect of the building internal mass on the
cooling load using a genetic algorithm for the lumped parameters.
However, the estimated cooling load deviates from the measured
cooling load by 22%.

The two main reasons which cause the RC model bias are as fol-
lows: (1) Using the serial 2R2C model to describe the building
internal mass is not accurate enough. In the 2R2C model, all inter-
nal mass, such as floors, internal walls and furniture, is seen as one
entity. The model cannot reflect the effects on cooling load caused
by the characteristics of different internal masses and the distribu-
tion differences of solar and internal radiation. (2) Researchers
used the design power rate and schedule to estimate the internal
cooling load from lighting and equipment in the previous study.
However, in real building operation, the hourly power rate is very
inconsistent with the design level.

Given these flaws, in this paper, a modified RC model for the
building load forecasting, called the ‘‘RC-S” model, is presented.
The S stands for submetering. The modeling of the external build-
ing envelope is same as in the conventional 3R2C model. However,
to better describe the cooling load effects caused by the character-
istics of different internal masses and radiation distribution differ-
ences, a parallel structure replaces the original serial model for
describing the building internal mass. Submetering data rather
than design data are used to estimate internal load and operating
schedules. A case study of a commercial building in Shanghai is
used to validate the proposed model and the result is promising.

3. Model descriptions

The principles of the RC models developed by Xu et al. [35–38]
and the improved RC-S models are described here to introduce
basic concepts of RC models. The RC model developed by Xu,
Wang, et al. is denoted as ‘model 0’ and the improved models are
denoted as ‘model 1’, ‘model 2’ and ‘model 3’, respectively.

3.1. Brief model introduction

3.1.1. Model 0
The structure of model 0 is illustrated in Fig. 2(a). The model

gives a detailed description of the building external envelope and
internal mass. Roofs and external walls are simplified as 3R2C
models in the model 0. It should be noted that external walls are
orientation-dependent due to different solar radiation at different
solar angles. Internal mass (ceilings, internal walls, furniture,
etc.) is described in a 2R2C series in the model. The parameters
of 3R2C models of building envelopes can be determined by com-
paring the theoretical frequency response characteristics of build-
ing envelopes with the frequency response characteristics of the
simplified model using a genetic algorithm, and the parameter
optimization of the 2R2C model of the building internal mass is
also optimized with a genetic algorithm by comparing the esti-
mated cooling load with the actual cooling load. The estimated
cooling load is calculated by following Eqs. (1)–(4) and (0-1)–(0-3).

Crf ;1
dTrf ;2ðtÞ

dt
¼ Tsol;rf ðtÞ � Trf ;2ðtÞ

Rrf ;1
� Trf ;2ðtÞ � Trf ;4ðtÞ

Rrf ;3
ð1Þ

Crf ;4
dTrf ;4ðtÞ

dt
¼ Trf ;2ðtÞ � Trf ;4ðtÞ

Rrf ;3
� Trf ;4ðtÞ � TinðtÞ

Rrf ;5
ð2Þ
Cei;2
dTei;2ðtÞ

dt
¼ Tsol;eiðtÞ � Tei;2ðtÞ

Rei;1
� Tei;2ðtÞ � Tei;4ðtÞ

Rei;3
ð3Þ

Cei;4
dTei;4ðtÞ

dt
¼ Tei;2ðtÞ � Tei;4ðtÞ

Rei;3
� Tei;4ðtÞ � TinðtÞ

Rei;5
ð4Þ

Cim;1
dTim;1ðtÞ

dt
¼ Qr;1 �

Tim;1ðtÞ � Tim;2ðtÞ
Rim;1

ð0-1Þ

Cim;2
dTim;2ðtÞ

dt
¼ Qr;2 þ

Tim;1ðtÞ � Tim;2ðtÞ
Rim;1

� Tim;2ðtÞ � TinðtÞ
Rim;2

ð0-2Þ

Qest ¼
Xn
i¼1

Tei;4ðtÞ � TinðtÞ
Rei;5

� �
þ Trf ;4ðtÞ � TinðtÞ

Rrf ;5

þ ToutðtÞ � TinðtÞ
Rwin

þ Tim;2ðtÞ � TinðtÞ
Rim;2

� �
� Cin

dTinðtÞ
dt

þ ðQconv þ Qfr þ QlaÞ ð0-3Þ
where R and C are resistance and capacitance, respectively; T is
temperature; and subscripts rf ; im; ei; win and in indicate roof,
internal mass, the ith external wall, window and inside, respec-
tively. Qr;1 and Qr;2, absorbed by the nodes Cim;1 and Cim;2, respec-
tively, are the radiation, including the solar radiation through
windows, from occupants, lights, equipment, etc. Qconv is the con-
vective heat from occupants, lights, equipment, etc. Qfr is the heat
transfer due to fresh air induction and infiltration (exfiltration).
Qla is the latent heat gain from occupants, etc. Qest is the estimated
cooling load.

Following Sections 3.1.2–3.1.4 are the detailed descriptions of
three improved models. The approach to modeling the external
envelope in the improved models is the same as that in model 0.
The main improvements are as follows: (1) Changing the model
structure of the building internal mass (as shown in the dotted
box in Fig. 2(a)), altering the form from series to parallel connec-
tions; and (2) Calculating the internal heat sources (occupants,
lighting, equipment, etc.) from submetering data. Model 0 calcu-
lates the internal heat sources by referring to the design power
in the relevant specification, while the modified models obtain
real-time power consumption data from submetering systems,
which is more reliable and accurate.

3.1.2. Model 1
The model is shown in Fig. 2(b). The model breaks the internal

mass into several categories according to their level of thermal
inertia, but not by the type of radiation these masses absorb. Ther-
mal mass is classified into these three groups: (1) light thermal
mass, which refers to carpet, light partitions, furniture, etc; (2)
medium thermal mass, which refers to the furniture and internal
walls with certain thicknesses; and (3) heavy thermal mass, repre-
sented by the thick floor slabs and weight-bearing walls. We
assume that different types of internal mass absorb uniform radi-
ation from glazing and internal heat sources. In other words,
Qr;11; Qr;12 and Qr;13 are all equal to one third of the total radiation.
The estimated cooling load is calculated by following Eqs. (1)–(4)
and (1-1)–(1-4).

Cim;11
dTim;11ðtÞ

dt
¼ Qr;11 �

Tim;11ðtÞ � TinðtÞ
Rim;11

ð1-1Þ

Cim;12
dTim;12ðtÞ

dt
¼ Qr;12 �

Tim;12ðtÞ � TinðtÞ
Rim;12

ð1-2Þ

Cim;13
dTim;13ðtÞ

dt
¼ Qr;13 �

Tim;13ðtÞ � TinðtÞ
Rim;13

ð1-3Þ
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Qest ¼
Xn
i¼1

Tei;4ðtÞ � TinðtÞ
Rei;5

� �
þ Trf ;4ðtÞ � TinðtÞ

Rrf ;5
þ ToutðtÞ � TinðtÞ

Rwin

þ Tim;11ðtÞ � TinðtÞ
Rim;11

þ Tim;12ðtÞ � TinðtÞ
Rim;12

þ Tim;13ðtÞ � TinðtÞ
Rim;13

� �

� Cin
dTinðtÞ
dt

þ ðQconv þ Qfr þ QlaÞ ð1-4Þ
3.1.3. Model 2
The model is shown in Fig. 2(c). The model breaks the internal

mass into several categories according to the type of radiation it
absorbs but not by the thermal mass level itself.

In Model 2, internal mass is also classified into the following
three groups based on its received radiation: (1) thermal mass
exposed to solar radiation, which is often represented by the floor,
ceiling, furniture and decoration close to the external windows; (2)
thermal mass which absorbs other radiation (from occupants,
lights and equipment), which normally refers to most floors, inter-
nal walls and furniture in the building; and (3) thermal mass which
is sheltered from any radiation, which refers to the floor slabs,
internal walls and furniture in the shade. Qr;21 is the solar radiation
through windows and Qr;22 is the total long-wave radiation from
occupants, lights and equipment. We assume that the resistances
and capacitances of internal mass are distributed evenly, that is,
Rim;21 ¼ Rim;22 ¼ Rim;23; Cim;21 ¼ Cim;22 ¼ Cim;23. The estimated cooling
load is calculated by following Eqs. (1)–(4) and (2-1)–(2-3).

Cim;21
dTim;21ðtÞ

dt
¼ Qr;21 �

Tim;21ðtÞ � TinðtÞ
Rim;21

ð2-1Þ
(a) mod

(b) model 1 (c) mod

Fig. 2. Schematics of the simplified bu
Cim;22
dTim;22ðtÞ

dt
¼ Qr;22 �

Tim;22ðtÞ � TinðtÞ
Rim;22

ð2-2Þ

Qest ¼
Xn
i¼1

Tei;4ðtÞ � TinðtÞ
Rei;5

� �
þ Trf ;4ðtÞ � TinðtÞ

Rrf ;5
þ ToutðtÞ � TinðtÞ

Rwin

þ Tim;21ðtÞ � TinðtÞ
Rim;21

þ Tim;22ðtÞ � TinðtÞ
Rim;22

þ Tim;23ðtÞ � TinðtÞ
Rim;23

� �

� Cin
dTinðtÞ
dt

þ ðQconv þ Qfr þ QlaÞ ð2-3Þ
3.1.4. Model 3
The model is shown in Fig. 2(d), and it is the most complicated

of the three improved models. Model 3 breaks the internal mass
into several categories, taking into consideration both the thermal
mass and the type of radiation it absorbs.

Internal mass is classified into two groups: light and heavy
mass. A series–parallel hybrid structure is adopted which considers
the temperature difference between the surface and internal space.
Because different mass receives different solar radiation, the
following assumptions are made: (1) only a small portion of direct
solar radiation heat through windows lands on the heavy internal
mass; and (2) Other long-wave radiation is radiated onto the heavy
and light thermal mass. The above hypotheses can be expressed
by the following equations: Rim;31 ¼ Rim;33 – Rim;35; Rim;32 ¼
Rim;34 – Rim;36; Cim;31 ¼ Cim;33 – Cim;35; Cim;32 ¼ Cim;34 – Cim;36. Qr;31

is the solar radiation from glazing. Qr;32 and Qr;33 are both equal
to half of the total long-wave radiation. The estimated cooling load
is calculated by following Eqs. (1)–(4) and (3-1)–(3-7).
el 0

el 2 (d) model 3

ilding cooling/heating load model.
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Cim;31
dTim;31ðtÞ

dt
¼ Qr;31 �

Tim;31ðtÞ � Tim;32ðtÞ
Rim;31

ð3-1Þ

Cim;33
dTim;33ðtÞ

dt
¼ Qr;32 �

Tim;33ðtÞ � Tim;34ðtÞ
Rim;33

ð3-2Þ

Cim;35
dTim;35ðtÞ

dt
¼ Qr;33 �

Tim;35ðtÞ � Tim;36ðtÞ
Rim;35

ð3-3Þ

Cim;32
dTim;32ðtÞ

dt
¼ Tim;31ðtÞ � Tim;32ðtÞ

Rim;31
� Tim;32ðtÞ � TinðtÞ

Rim;32
ð3-4Þ

Cim;34
dTim;34ðtÞ

dt
¼ Tim;33ðtÞ � Tim;34ðtÞ

Rim;33
� Tim;34ðtÞ � TinðtÞ

Rim;34
ð3-5Þ

Cim;36
dTim;36ðtÞ

dt
¼ Tim;35ðtÞ � Tim;36ðtÞ

Rim;35
� Tim;36ðtÞ � TinðtÞ

Rim;36
ð3-6Þ

Qest ¼
Xn
i¼1

Tei;4ðtÞ � TinðtÞ
Rei;5

� �
þ Trf ;4ðtÞ � TinðtÞ

Rrf ;5
þ ToutðtÞ � TinðtÞ

Rwin

þ Tim;32ðtÞ � TinðtÞ
Rim;32

þ Tim;34ðtÞ � TinðtÞ
Rim;34

þ Tim;36ðtÞ � TinðtÞ
Rim;36

� �

� Cin
dTinðtÞ
dt

þ ðQconv þ Qfr þ QlaÞ ð3-7Þ
3.2. Optimizing models of the building envelope

The aim of optimizing models for calculating cooling load
through the building envelope is to search the most suitable
parameters for describing the frequency and phase lag characteris-
tics and to find the one that best matches with the physical model.
The optimization process can be divided into three steps: (1)
deduce the equivalent frequency characteristics of the physical
model; (2) deduce the equivalent frequency characteristics of the
simplified 3R2C model; and (3) calculate the parameters of 3R2C
models of the building envelope using a genetic algorithm (GA),
ensuring the frequency characteristics of the two models are as
identical as possible.

3.2.1. Frequency characteristics of the physical model
The procedure for deducing the transmission matrix of heat

transfer for one-dimensional homogeneous multilayer plane con-
structions in the Laplace domain has been studied by many
researchers [38–41]. In this paper, the deduction process is only
summarized, instead of detailed.

Heat transfer through the building envelope is generally
regarded as a one-dimensional process, the model can be
expressed as the transmission Eq. (5) in terms of Laplace
variable s.
Fig. 3. The plan drawing (a) and outline drawin
TinðsÞ
qinðsÞ

" #
¼ MðsÞ

ToutðsÞ
qoutðsÞ

" #
¼

AðsÞ BðsÞ
CðsÞ DðsÞ

" #
ToutðsÞ
qoutðsÞ

" #
ð5Þ

where T is temperature, q is heat flow, and MðsÞ is the total trans-
mission matrix of the entire wall as well as the products of individ-
ual layer transmission matrices, including the surface films on both
sides. Thus, MðsÞ can also be expressed as Eq. (6) and AðsÞ; BðsÞ, etc.
are the elements in the matrix. In other words, we use matrix for-
mat to express the heat transfer equations and actually the
AðsÞ; BðsÞ, etc. are the coefficients of equations.

MðsÞ ¼
AðsÞ BðsÞ
CðsÞ DðsÞ

" #
¼ MinðsÞMnðsÞ . . .M1ðsÞMoutðsÞ ð6Þ

where MiðsÞ ¼
AiðsÞ BiðsÞ
CiðsÞ DiðsÞ

" #
ði ¼ 1;2;3 . . .Þ ð7Þ

Because Eq. (5) has a unique solution, there exists
AðsÞDðsÞ � BðsÞCðsÞ ¼ 0. Eq. (5) can thus be transformed into Eq. (8).

qoutðsÞ
qinðsÞ

" #
¼

�AðsÞ=BðsÞ 1=BðsÞ
�1=BðsÞ DðsÞ=BðsÞ

" #
ToutðsÞ
TinðsÞ

" #

¼
�GXðsÞ GYðsÞ
�GYðsÞ GZðsÞ

" #
ToutðsÞ
TinðsÞ

" # ð8Þ

where GXðsÞ ¼ AðsÞ=BðsÞ ð9Þ
GYðsÞ ¼ 1=BðsÞ ð10Þ
GZðsÞ ¼ DðsÞ=BðsÞ ð11Þ

Substituting s with jxðj ¼
ffiffiffiffiffiffiffi
�1

p
Þ in Eqs. (9)–(11) gives complex

functions GXðjxÞ; GY ðjxÞ and GZðjxÞ, which are the frequency char-
acteristics of the external, cross and internal heat conduction of the
theoretical building envelope model, respectively [42]. These fre-
quency characteristics are represented by the amplitudes and phase
lags of these three complex functions representing the theoretical
frequency characteristics of the external, cross and internal heat
conduction.

3.2.2. Frequency characteristics of the 3R2C model
The simplified 3R2C model resembles the theoretical model,

with the same transfer model. The only difference is that the nRnC
theoretical model is simplified to five elements (three resistances
and two capacitances). The 3R2C model can be represented by
Eq. (12).

qoutðsÞ
qinðsÞ

" #
¼

�A0ðsÞ=B0ðsÞ 1=B0ðsÞ
�1=B0ðsÞ D0ðsÞ=B0ðsÞ

" #
ToutðsÞ
TinðsÞ

" #

¼
�G0

XðsÞ G0
YðsÞ

�G0
YðsÞ G0

ZðsÞ

" #
ToutðsÞ
TinðsÞ

" # ð12Þ
g (b) of the building analyzed in this paper.
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where G0
XðsÞ ¼ A0ðsÞ=B0ðsÞ ð13Þ

G0
YðsÞ ¼ 1=B0ðsÞ ð14Þ

G0
ZðsÞ ¼ D0ðsÞ=B0ðsÞ ð15Þ

Substituting s with jx j ¼
ffiffiffiffiffiffiffi
�1

p� �
in Eqs. (13)–(15) yields complex

functions G0
XðjxÞ; G0

YðjxÞ and G0
ZðjxÞ, which are the frequency char-

acteristics of the external, cross and internal heat conduction of the
simplified 3R2C model, respectively [42]. These frequency charac-
teristics are also represented by the amplitudes and phase lags of
these three complex functions of the 3R2C model, which are com-
pared with the theoretical frequency characteristics to optimize
the theoretical parameters.

3.2.3. Objective function of parameter optimization
The optimization is actually searching for optimal parameters

which allow the simplified 3R2C model to behave as similarly to
the theoretical physical model as possible. The objective function
of the simplified 3R2C model is expressed in Eq. (16).

J3R2CðR1;R5;C4Þ ¼
XN
n¼1

X
m¼X;Y ;Z

WAM
m GmðjxnÞj j � G0

mðjxnÞ
�� ���� ���

þWPL
m PL GmðjxnÞð Þ � PL G0

mðjxnÞ
� 	�� ��� ð16Þ
Table 2
Material layers of the building envelope and main internal structures.

Envelope Layers Thickness (mm)

Roof Insulation mortar 20
Expanded perlite 50
Reinforced concrete 200
Cement mortar screeding 30
Lime mortar 20

External wall Granite 20
Insulation mortar 20
Cement mortar screeding 30
Concrete block 200
Lime mortar 30

External window Ordinary glass 3
Air space 6
Ordinary glass 3

Ground floor Cement base insulation mortar 300
Reinforced concrete 500
Cement mortar screeding 30

Internal structures Layers Thickness (mm)

Internal floor Lime mortar 30
Insulation mortar 20
Reinforced concrete 120
Lime mortar 30

Internal wall Lime mortar 30
Reinforced concrete 120
Lime mortar 30

Table 1
Submeters summary of the building studied in this paper.

Main submeters Directly measured Secondary submeters

Lighting-plug submeter Yes Lighting and plug
Exterior landscape lighting
corridor and public area lig

HVAC submeter No Terminal units
HVAC Plant

Power submeter Yes Elevator
Non-HVAC water pump
Ventilation/Exhaust fan

Others/Specials Yes Information center
where PL is the phase lag, AM is the amplitude, N is the number of
frequency points, and W is the weighting factor associated with the
amplitudes and phase lags of frequency characteristics of the exter-
nal, cross and internal heat conduction, respectively. In this study,
all of the weighting factors were set to 1, as it was found that this
value works well. The parameter optimization constraints are listed
in Eq. (17). R and C represent the total thermal resistance and ther-
mal capacitance, respectively. The specific values should be calcu-
lated according to the data of the actual case.
0 < R1 < R

0 < R5 < R

0 < R1 þ R5 < R

R3 ¼ R� R1 � R5

0 < C4 < C

C2 ¼ C � C4

8>>>>>>>><
>>>>>>>>:

ð17Þ
N is the number of frequency points. And the frequency range
ð10�n1 ;10�n2 Þ is determined as follows. n1; n2 and N are generally
chosen as 8, 3 and 10 ðn1 � n2Þ þ 1, respectively [43]. The use of a
GA estimator to optimize the parameters is described in detail in
Section 5.
Conductivity (W/m �C) Density (kg/m3) Specific heat (J/kg �C)

0.08 400 1045.8
0.16 400 1170
1.74 2500 920
0.93 1800 1050
0.81 1600 1050

3.49 2800 920
0.08 400 1045.8
0.93 1800 1050
0.68 1300 537.8
0.81 1600 1050

0.085 450 1164.8
1.74 2500 920
0.93 1800 1050

Conductivity (W/m �C) Density (kg/m3) Specific heat (J/kg �C)

0.81 1600 1050
0.08 400 1045.8
1.74 2500 920
0.81 1600 1050

0.81 1600 1050
1.74 2500 920
0.81 1600 1050

Directly measured Source of building cooling/heating load

No Yes
Yes No

hting No Yes
Yes Yes
Yes No
Yes No (motor is on the roof)
No Yes
No Yes
Yes Independent air-conditioning
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Fig. 4. Weather data for Shanghai from May 2014 to October 2014.
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3.3. Optimized model of building internal mass

The parameter optimization of the building internal mass is rel-
atively easy to implement. The objective is to minimize the inte-
grated root-mean-square error of the predicted load, as defined
in Eq. (18).

JRCðCim;1;Rim;1; . . .Cim;2;Rim;2; . . .Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 Qact;k � Qest;k

� 	2
N � 1

s
ð18Þ

where Qact and Q est are the actual measured and estimated cooling
loads, respectively, and Cim;1; Rim;1, etc. are the parameters of the
internal mass model, whose numbers are determined by the speci-
fied model.

It is also worth noting that a genetic algorithm (GA) is employed
as the parameter optimization method to identify a sufficiently
good solution. There have been massive books and research articles
on the principle and application of GA, so it will not be described in
detail in this paper.

Different from the complex optimization process of the building
envelope and internal mass, the internal heat gains are very easy to
calculate according to standards without complex models. It will
be calculated in detail in the next case study section.

4. Case study

4.1. Building description

Located in the Shanghai urban area, the target building is a
multi-function commercial building with eight floors from the
0
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0.6

0.8
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Fig. 5. Normal patterns of the
second floor underground (B2) to the sixth floor above ground
(F6). The second floor underground is not air conditioned and is
used for the HVAC plant and some facility rooms. The first floor
underground to the fourth floor serves as a shopping mall. The
open hours are from 9:00 a.m. to 22:00 p.m. The fifth and sixth
floors are office zones. Work hours are from 8:00 a.m. to 17:00 p.m.
The total building area of building A is approximately 68,000 m2

and the story height is 4.5 m. Building A covers an area of
9112 m2 in an irregular shape with a length of 153 m. The window
to wall ratio of each façade is 18% (east), 40% (south), 18% (west)
and 10% (north). The plan and outline drawings are shown in
Fig. 3. After an on-site survey, the detailed submeter data are
summarized in Table 1. The main HVAC equipment for this build-
ing is located on the second floor underground. The cooling tower
is on the roof and AHUs are on each floor serviced.

The material layers of the building envelope and main internal
structures are summarized in Table 2.
4.2. Data acquisition

4.2.1. Weather data
To obtain real-time weather data, a small weather station was

built and data acquisition began in April 2014. The record fre-
quency is 10 min. The collected data include outdoor air dry-bulb
temperature, relative humidity, horizontal solar radiation, wind
speed and wind direction. Among these parameters, the outdoor
air dry-bulb temperature, relative humidity and horizontal solar
radiation are more critical than the others. Just the data in August
and September are used in this paper and shown in Fig. 4.
13 14 15 16 17 18 19 20 21 22 23 0

occupancy load profile.



Table 3
Input data for the estimation of the building internal mass.

Internal mass Layers Thickness (mm) Conductivity (W/m �C) Density (kg/m3) Specific heat (J/kg �C)

Decoration 1 Wood 1 10 0.29 500 2510
Decoration 2 Wood 2 20 0.23 600 1890
Decoration 3 Fiberboard 50 0.29 500 2510
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4.2.2. On-site data
The solar air temperatures of external walls and roofs at differ-

ent orientations are site-measured and the wall temperature is cal-
culated by taking an average of temperature sensors attached to
the external walls. The indoor air temperature is also determined
in Eq. (19) as the weighted average of the temperature at different
spatial locations.

T ¼
Pn

i¼1TiViPn
i¼1Vi

ð19Þ

where T is the indoor mean temperature, Ti is the temperature of
the ith measurement point, and Vi is the volume of space i, n is
the total number of the spaces.

The lighting and equipment power intensity are directly
retrieved from the submetering system; the hourly power con-
sumption is treated as the power intensity over that period. If
the power consumption of a lighting-plug submeter is measured
at 800 kW/h, the lighting and equipment power intensity can be
considered to be 800 kW for that hour. Referring to the ASHRAE
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Fig. 6. Selected lighting-plug and power submeter d

Table 4
Results of the training and validation model of each submeter analyzed in this study.

Submeters Day type Training
model R2

Lighting-plug submeter
(excluding exterior landscape lighting)

Workday 0.9850

Non-workingday 0.9836
Power submeter (excluding elevator) Full year 0.9745
Handbook [44], convective and radiant heat from lighting and
equipment power were found to account for 80% and 20%
separately.

There is no automatic occupancy counting system in building A.
The on-site survey concluded that the peak occupant density of the
office area is 8 m2/person on workdays and that of the shopping
area is 6 m2/person. The schedules are shown in Fig. 5. Latent heat,
convective heat and radiant heat contribute 40%, 20% and 40% of
occupancy heat gains, respectively [44].

It can be inferred from the literature [45–47] that the modern
commercial building is sufficiently tight and the infiltration airflow
may be even as low as 0.1–0.3 ac/h for some tightly enclosed build-
ings. The shape coefficient and window to wall ratio of this build-
ing are both relatively small, and the building is well constructed.
Thus, an air change of 0.1 ac/h is used in this model. It is recom-
mended to set the outdoor air rate based on the actual HVAC
system. In this HVAC system, one AHU serves as a fresh air unit
on each floor and has a fixed outdoor air rate of approximately
1 ac/h, so the outdoor air rate in this model is also set to 1 ac/h.
cluding exterior landscape lighting)
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ata to train and validate Fourier series models.

Training
model CV (%)

Training
model MRE (%)

Validating
model CV (%)

Validating
model MRE (%)

6.529 4.772 4.518 4.255

6.357 4.433 3.074 3.825
7.479 4.685 5.482 4.082
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The cooling load can be calculated indirectly by measuring the
supply and return temperatures as well as the flow rate of the
chilled water trunk, as expressed in Eq. (20).

Hourly cooling load ¼
X60=t
1

CMjDTj � 60
t

� �
ð20Þ
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Fig. 7. Comparison of measured submeters

Table 5
Schedules set in the building energy simulation model of the building.

Submeters Lighting-plug submeter

Lighting-plug submeter of office area
in workdays

Lighting-plug submeter of
shopping area

Peak (kW) 227 628
Area (m2) 18,000 45,000
Density

(W)
12.61 13.96

1:00 0.00 0.00
2:00 0.00 0.00
3:00 0.00 0.00
4:00 0.00 0.00
5:00 0.00 0.00
6:00 0.00 0.00
7:00 0.35 0.32
8:00 0.63 0.37
9:00 0.77 0.76
10:00 0.89 0.95
11:00 0.92 0.96
12:00 1.00 0.96
13:00 0.82 1.00
14:00 0.72 0.99
15:00 0.78 0.94
16:00 0.83 0.97
17:00 0.88 0.98
18:00 0.96 0.97
19:00 0.90 0.97
20:00 0.78 0.96
21:00 0.65 0.89
22:00 0.54 0.57
23:00 0.00 0.00
0:00 0.00 0.00
where t is the data collection cycle of temperature and water flow
rate (min). C is the specific heat of water (4.187 kJ/(kg �C)). Mj is
the chilled water flow rate (kg/s). DTj is the temperature
difference between the chilled water (hot water) inlet and
outlet (�C).
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and simulated submeters for one week.

Power submeter

Night lighting in
workdays

Night lighting in non-
workdays

Power submeter (excluding
elevator)

303 166
63,000 63,000 63,000
4.81 4.81 2.63

0.63 0.66 0.33
0.58 0.63 0.31
0.56 0.58 0.29
0.54 0.54 0.28
0.54 0.54 0.27
0.68 0.60 0.25
0.00 0.00 0.33
0.00 0.00 0.48
0.00 0.00 0.87
0.00 0.00 1.00
0.00 0.00 0.99
0.00 0.00 0.98
0.00 0.00 0.98
0.00 0.00 0.99
0.00 0.00 1.00
0.00 0.00 0.99
0.00 0.00 0.99
0.00 0.00 0.98
0.00 0.00 0.99
0.00 0.00 0.98
0.00 0.00 0.91
0.00 0.00 0.67
1.00 0.78 0.42
0.75 0.72 0.36
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4.2.3. Physical model simulated data [49]
The comparison of four models is conducted using both testing

data and physical model simulated data. EnergyPlus is used to
establish the physical model and a set of complete EnergyPlus sim-
ulated data is used for calculations in Section 5.

The target building covers an area of 9,112 m2 in an irregular
shape (see Fig. 3). To simply the model, the building geometry is
changed to rectangular (152 m � 60 m) but the building area is left
unchanged, and the height is the same as that of the real building.
In the real building, there are four AHUs on each floor, so each floor
of the model is divided into four zones. The weather parameters in
the simulation model are set according to the acquired data
mentioned in Section 4.2.1. The settings for the building
envelope are based on Table 2 and lumped data, while Table 3 is
used for the building internal mass inputs. The occupant, infiltra-
tion airflow and fresh air volume inputs are set as described in
Section 4.2.2.

A physical model needs accurate inputs for the lighting and
equipment schedule. Refs. [29,48,49] declared that lighting and
equipment energy use varies periodically in daily and annual
cycles. These energy uses are independent of ambient temperature
and other weather variables in commercial buildings and can
therefore be expressed by a Fourier series model. For normal com-
mercial buildings, a Fourier series model with variable ‘h’ can ade-
quately reveal the power consumption characteristics of the
lighting and equipment (Eq. (21)). Day types must be separated
into working days and non-working days for the office building,
but the separation is unnecessary in shopping and retail buildings.

ELðEPÞ¼aþ
Xnmax

n¼1

dn sinð2pxnÞhþgn cosð2pxnÞh½ �þe; xn ¼ n
24

; n¼1�12

ð21Þ
Using the above Fourier series model, we can calculate the

hourly submeter in each day type. Under the same day type, the
Table 6
Details of actual external walls and roof of the building studied in this paper.

Envelope Layers Thickness (mm) Conductivity (W/m

Roof Outside surface film – –
Insulation mortar 20 0.08
Expanded perlite 50 0.16
Reinforced concrete 200 1.74
Cement mortar screeding 30 0.93
Lime mortar 20 0.81
Inside surface film – –

Total

External wall Outside surface film – –
Granite 20 3.49
Insulation mortar 20 0.08
Cement mortar screeding 30 0.93
Concrete block 200 0.68
Lime mortar 30 0.81
Inside surface film – –

Total

Table 7
Parameters of simplified 3R2C models of external wall and roof.

Envelope Model Parameters of resistance and cap

R1 C2

Roof Theoretical model – –
Optimal model 0.4640 40,066

External wall Theoretical model – –
Optimal model 0.0496 59,014
maximum hourly energy consumption at each submeter is chosen
as the set point and the ratio of the value of other time to the max-
imum value is calculated as a fraction of the schedule. The propor-
tions of convection and radiation heat from lamps and equipment
are standard values in the ASHRAE Handbook [44].

According to Table 1, it is not difficult to find that there are
only two types of submeters contributing to the cooling load.
They are (1) lighting-plug submeters (excluding exterior land-
scape lighting), and (2) power submeters (excluding the elevator).
Submeters in transition seasons are selected to train and validate
the Fourier series model (Eq. (21)). The spring training data from
March 29th, 2014, to April 27th, 2014, and fall validation data
from November 1st, 2014, to November 30th, 2014, are illustrated
in Fig. 6.

The training and validation results of each model, listed in
Table 4, are quite satisfactory. All R2 of the training models are lar-
ger than 0.95. The best result is generated by lighting-plug subme-
ters (excluding exterior landscape lighting) on non-workdays, with
a CV (coefficient of variation) of 3.074% and MRE (mean relative
error) of 3.825%.

Using the calculation, we can estimate the hourly electricity
consumption and maximum value of each submeter. After the
above work, the model setting becomes very simple. The maxi-
mum electricity consumption data for each submeter is chosen
as the design value and the ratio of the value at any other hour
to the peak value is calculated as the schedule factor. Using this
method, the schedules for this case are listed in Table 5 and the
comparison of measured submeters and simulated submeters for
one week is illustrated in Fig. 7.

This section includes a detailed description of an objective
building and the data acquisition process from on-site investiga-
tion and field testing. An EnergyPlus model is set up to provide
simulated data for the parameter identification process discussed
in Section 3.
�C) Density (kg/m3) Specific heat (J/kg �C) R (m2 k/W) C (J/m2 K)

– – 0.0400 –
400 1045.8 0.2500 8366
400 1170 0.3125 23,400
2500 920 0.1149 460,000
1800 1050 0.0323 56,700
1600 1050 0.0247 33,600
– – 0.1150 –

0.8894 582,066

– – 0.0400 –
2800 920 0.0057 51,520
400 1045.8 0.2500 8366
1800 1050 0.0323 56,700
1300 537.8 0.2941 139,828
1600 1050 0.0370 50,400
– – 0.1150 –

0.7741 306,814

acitance R (m2 k/W), C (J/m2 K)

R3 C4 R5 Rt Ct

– – – 0.8894 582,066
0.2685 542,000 0.1569 0.8894 582,066

– – – 0.7741 306,814
0.5862 247,800 0.1383 0.7741 306,814



(b) Cross heat conduction

(c) Internal heat conduction

(a) External heat conduction

Fig. 8. Bode diagrams of external wall.

(a) External heat conduction

(b) Cross heat conduction

(c) Internal heat conduction

Fig. 9. Bode diagrams of roof.
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5. Comparison of improved RC models

This section consists of three parts. Section 5.1 details the model
parameter process for the building envelope and analyzes the
modeling result. Monitored operating data and simulated data
are both used to compare and validate four models in Sections
5.2 and 5.3.
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5.1. Building envelope RC models

Based on the theory discussed in Section 3.2, a GA is utilized to
conduct the non-linear parameter identification of the 3R2C model
for the building external envelope (external walls and roofs). With
a GA estimator, the R and C can be determined and the frequency
response characteristic of the simplified model is then made to
agree with that of the theoretical model. The simplified 3R2C
model of the building envelope is calibrated with the real opera-
tions data. The detailed physical property parameters are tabulated
in Table 6. The nodal placement of 3R2C models is listed in Table 7.

As depicted by the Bode diagrams in Fig. 8, the frequency char-
acteristics of external, cross and internal heat conduction of the
external wall are displayed for both the 3R2C model and the phys-
ical model. Similarly, Fig. 9 compares the frequency and phase lag
characteristics of the roofs for the two models. Figs. 8(a) and 9(a)
show that the RC model matches with the theoretical physical
model in amplitudes and phase lags of the external heat conduc-
tion for the external walls. For the roofs, the two models have sim-
ilar characteristics in the low frequency region, but there is a large
bias in the high frequency region. However, the previous research
indicated that the heat transfers from cross and internal conduc-
tion have a more considerable effect than those from the external
heat conduction [38]. For cross heat conduction in both external
walls and roofs, as shown in Figs. 8(b) and 9(b), the amplitudes
and phase lags of the simplified model agree well with those of
the theoretical model. In the internal heat conduction process,
the simplified mode almost overlaps in the low and medium fre-
quency regions and produces little deviation from the frequency
responses of the theoretical model in the high frequency region
(see Figs. 8(c) and 9(c)).

Fig. 10 presents the heat gains profile calculated by the theoret-
ical model against that calculated by the simplified model for
external walls and roofs. It can be seen that the simplified model
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Table 8
Parameters of simplified internal mass models with on-site data.

Model No. Parameters R (m2 K/W)

Model 0 Rim;1 ¼ 0:0100
Rim;2 ¼ 0:0325

Model 1 Rim;11 ¼ 0:9586
Rim;12 ¼ 0:3794
Rim;13 ¼ 0:2617

Model 2 Rim;21 ¼ Rim;22 ¼ Rim;23 ¼ 0:4217

Model 3 Rim;31 ¼ Rim;33 ¼ 0:6560
Rim;32 ¼ Rim;34 ¼ 0:3431
Rim;35 ¼ 0:1291
Rim;36 ¼ 0:5290
has acceptable accuracy. The mean relative error between the
two models is 8.8% for the external wall and 7.9% for the roof using
Eq. (22).

MRE ¼
PN

k¼1 Qact;k � Qest;k

�� ��PN
k¼1 Qact;k

�� �� ð22Þ

where Qact is the heat gain calculated by the theoretical model at
the kth data point (kW). Q est is the heat gain calculated by the sim-
plified model at the kth data point (kW). N is the total number of
data points.

5.2. Internal mass RC model compared to measured data

To further validate the simplified model of the building internal
mass, a GA is still adopted as the efficient optimization means. The
description can be found in Section 3.3. The parameter identifica-
tion of the internal mass model is realized by figuring out the opti-
mal values of R and C, which allows the predicted cooling load to
best fit the measured cooling load.

The building thermal mass includes floor slabs, heavy interior
load-bearing walls, lightweight partitions and a host of furniture
and interior decorations. The area of the interior walls and floor
slabs can be estimated with a small margin of error, but it is diffi-
cult to estimate the area of the remaining thermal mass. Thus, the
search scope of R and C should be extended. In this paper, the
upper limit of the R value is defined as the sum of resistances of
the indoor air film and three times the resistance of the material.
The upper limit of the C value is three times the capacitance of
the material. The lower limit of both values is zero. The capacitance
of the air is neglected in the calculation.

The measured operations data are selected for the parameter
optimization process. The data acquisition and usage are explained
in Section 4.2.2. The climate parameters are collected from a small
13 14 15 16 17 18 19 20 21 22 23 0

gh external wall and roof.

Parameters C (MJ/(m2 K)) MRE (%)

Cim;1 ¼ 5:9938 16.57
Cim;2 ¼ 1:9787

Cim;11 ¼ 0:0175 13.04
Cim;12 ¼ 0:0276
Cim;13 ¼ 0:2968

Cim;21 ¼ Cim;22 ¼ Cim;23 ¼ 0:1822 12.15

Cim;31 ¼ Cim;33 ¼ 0:0288 12.25
Cim;32 ¼ Cim;34 ¼ 1:9964
Cim;35 ¼ 0:1947
Cim;36 ¼ 0:9592
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weather station and the specific weather data are shown in Fig. 4 in
Section 4.2. The measured hourly cooling load ranges from Aug.
15th to Sep. 30th, 2014, and data from Aug 29th and 31st are miss-
ing. Thus, data from Aug. 16th to 28th are selected for training the
four internal mass models. The hourly cooling load in September is
calculated by the trained models and compared to the actual mea-
sured cooling load. MRE is calculated for all four models and the
optimal parameter results are shown in Table 8.

Fig. 8 shows that the original model is the least accurate, and
the three modified models predict the cooling load trend better
than model 0. Model 2 is the best of the three improved models.
Fig. 11 illustrates the comparison of the model 2 predicted cooling
loads and the actual measured cooling load.
5.3. Internal mass RC model compared to physical model simulated
data

The comparison of internal mass RC models is identical to the
section above. Physical model simulated data rather than mea-
sured operations data are used to determine which RC model
works best. The simulation model and the calibration process are
described in Section 4.2.3. The simulated data for June is selected
for the parameter optimization and three months of data in July,
August and September are used for the estimation of the cooling
load. By comparing the RC calculated cooling load to the simulated
cooling loads, MREs are calculated for the four models. The result
of the parameter identification and model validation is summa-
rized in Table 9.

It can be concluded from Table 9 that model 0 is the least accu-
rate. The three modified models are better than model 0 in terms of
robustness and accuracy, and model 1 is the best. Fig. 12 demon-
strates that the simplified model 1 can accurately predict the
building dynamic thermal performance.
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Table 9
Parameters of simplified internal mass models with simulated data.

Model no. Parameters R (m2 K/W)

Model 0 Rim;1 ¼ 0:1576
Rim;2 ¼ 0:0289

Model 1 Rim;11 ¼ 0:2751
Rim;12 ¼ 0:1620
Rim;13 ¼ 0:9562

Model 2 Rim;21 ¼ Rim;22 ¼ Rim;23 ¼ 0:6251

Model 3 Rim;31 ¼ Rim;33 ¼ 1:9613
Rim;32 ¼ Rim;34 ¼ 1:0950
Rim;35 ¼ 1:8844
Rim;36 ¼ 0:4764
5.4. Analysis of results

The validation of the simplified models of the building envelope
and thermal mass are demonstrated in the previous three Sections
5.1,5.2,5.3. In this section, the results of comparing four models are
further discussed and analyzed. Using both measured operations
data and physical model simulation data, the results confirm that
model 0 (2R2C model for building internal mass) is the least accu-
rate in predicting the building cooling load. In terms of robustness
and accuracy, model 2 is more suitable with measured data and
model 1 has the best match with physical model simulated data.

These results can be explained by the following assumptions:
(1) It is assumed that the radiation heat distributes evenly on each
surface in EnergyPlus, leading to a uniform temperature for each
surface, which is not the case in reality. The sunlight irradiates
floors through windows, and the temperature of the floor in sun-
light is obviously higher than that of the shaded portion. This phe-
nomenon explains why the RC model trained with operations data
is sensitive to the distribution of the radiation while the physical
model using the simulated data is not sensitive to it. (2) The inter-
nal temperature of the building internal mass is considered to be
uniform in EnergyPlus; that is, the surface temperature is consis-
tent with the internal temperature. As a result, the entire internal
mass is involved in calculating the building cooling load. However,
when considering heavyweight thermal mass in practice, such as
some thick bearing walls, only the surface portion has an impact
on the building loads. Thus, the RC model trained by the measured
data is not very sensitive to the classification of thermal mass,
while the model trained by EnergyPlus simulated data is sensitive
to the classification.

The above discussion can explain why model 3 has an average
performance in the two optimization processes. The hybrid RC
model with parallel-connected after serial-connected masses is
adopted based on consideration of the inhomogeneous temperature
15 0:00 9-18 0:00 9-22 0:00 9-25 0:00 9-28 0:00

Model 2 estimated cooling load

odel-predicted hourly cooling load (model 2).

Parameters C (MJ/(m2 K)) MRE (%)

Cim;1 ¼ 1:7491 16.83
Cim;2 ¼ 0:3883

Cim;11 ¼ 0:0387 9.50
Cim;12 ¼ 0:0265
Cim;13 ¼ 0:2444

Cim;21 ¼ Cim;22 ¼ Cim;23 ¼ 0:0148 11.35

Cim;31 ¼ Cim;33 ¼ 0:6717 11.60
Cim;32 ¼ Cim;34 ¼ 0:3791
Cim;35 ¼ 0:6686
Cim;36 ¼ 0:1944
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distribution of the internalmass. In the simulation group,model 3 is
apparently not as good as model 1 due to the conditional assump-
tion made in EnergyPlus. However, from the optimization result
using the real operations data, model 3 is still not superior to other
models. Thus, there is no need to use a complicatedmodel (model 3)
and a 3R3C parallelmodel (model 2) is sufficient tomodel the build-
ing internal mass.
6. Conclusions

Building upon the previous research on RC models, this study
develops three improved RC-S models for calculating building
cooling loads. Measured electricity submetering data are added
to the model to calculate the internal heat gain from lighting and
equipment. The RC-S model is a combination of a simplified
3R2C model for the building envelope, a simplified model for the
building internal mass and an internal cooling load model based
on submetering data. The accuracy of the RC-S model in estimating
the cooling load is much better than traditional RC models. Com-
pared to measured cooling load data in the case study, the best
model is model 2, with a MRE of 12.15%. Compared to physical
model simulated data, the best model is model 1, with a MRE of
9.50%.

We draw the following conclusions from this study. The simpli-
fied 3R2C model is fairly accurate for calculating the cooling load
caused by the heat transfer of external walls and roofs. However,
the 3R2C model is not good enough for calculating internal mass
and internal heat gain. Three improved models proposed in this
paper are all better than the baseline model (model 0) in predicting
the cooling load. The comparison to the measured cooling load
study demonstrated that the model accuracy is sensitive to the dis-
tribution of the solar radiation rather than the classification of ther-
mal mass. Model 2 is the best model for estimating building cooling
load in reality. However, the comparison result in the simulation
data group is less sensitive to the distribution of the radiation than
the classification of thermal mass. Therefore, the calculation result
of model 1 is the closest to that of the EnergyPlus physical model
simulation. The simplified 3R3C parallel model is sufficient to
model the building internal mass and a more complex model con-
figuration does not demonstrate better performance.

The case study has demonstrated the feasibility and applicabil-
ity of the proposed ‘‘RC-S” method. To expand the application and
improve its efficiency, the methodology in this paper will be made
into a prototype toolkit for hourly building cooling load calculation
in future studies. And this toolkit can also be integrated in HVAC
system control, optimization or energy efficiency diagnosis
platform.
References

[1] Key World Energy Statistics. IEA; 2009.
[2] US Department of Energy. 2010 Buildings Energy Data Book; 2010.
[3] Council EPA. Directive 2010/31/EU of the European parliament and of the
council of 19 May, 2010 on the energy performance of buildings. Off J Eur
Union 2010:13–35.

[4] Building energy conservation research center of Tsinghua University. Annual
report on China building energy efficiency; 2013.

[5] Hong Taehoon, Koo Choongwan, Kim Jimin, Lee Minhyun, Jeong Kwangbok. A
review on sustainable construction management strategies for monitoring,
diagnosing, and retrofitting the building’s dynamic energy performance:
focused on the operation and maintenance phase. Appl Energy
2015;155:671–707.

[6] House J, Kelly G, (NIST). An overview of building diagnostic; 1999. <http://poet.
lbl.gov/diag-workshop/proceedings>.

[7] Liu M, Song L, Claridge D, et al. Development of wholebuilding fault detection
methods; 2002. <http://buildings.lbl.gov/hpcbs/pubs/E5P23T1c.pdf>.

[8] Handbook of fundamentals. American Society of Heating, Refrigerating and
Air-Conditioning Engineers, Atlanta, USA; 2001.

[9] Karlsson F, Rohdin P, Persson ML. Measured and predicted energy demand of a
low energy building: important aspects when using building energy
simulation. Buil Serv Eng Res Technol 2007;28:223–35.

[10] Zhou YP, Wu JY, Wang RZ, Shiochi S, Li YM. Simulation and experimental
validation of the variable-refrigerant-volume (VRV) air-conditioning system in
EnergyPlus. Energy Build 2008;40(6):1041–7.

[11] Al-Ajmi FF, Hanby VI. Simulation of energy consumption for Kuwaiti domestic
buildings. Energy Build 2008;40(6):1101–9.

[12] Coakley D, Raftery P, Keane M, Keane Marcus. A review of methods to match
building energy simulation models to measured data. Renew Sustain Energy
Rev 2014;37:123–41.

[13] Mustafaraj G, Marini D, Costa A, Keane M. Model calibration for building
energy efficiency simulation. Appl Energy 2014;130:72–85.

[14] Yang Z, Becerik-Gerber B. A model calibration framework for simultaneous
multi-level building energy simulation. Appl Energy 2015;149:415–31.

[15] Catalina T, Virgone J, Blanco E. Development and validation of regression
models to predict monthly heating demand for residential buildings. Energy
Build 2008;40(10):1825–32.

[16] Braun MR, Altan H, Beck SBM. Using regression analysis to predict the future
energy consumption of a supermarket in the UK. Appl Energy
2014;130:305–13.

[17] Vaghefi A, Jafari MA, Bisse E, Lu Y, Brouwer J. Modeling and forecasting of
cooling and electricity load demand. Appl Energy 2014;136:186–96.

[18] Ben-Nakhi AE, Mahmoud MA. Cooling load prediction for buildings using
general regression neural networks. Energy Convers Manage
2004;45:2127–41.

[19] Gonzalez PA, Zamarreno JM. Prediction of hourly energy consumption in
buildings based on a feedback artificial neural network. Energy Build 2005;37
(6):595–601.

[20] Hou Z, Lian Z, Yao Y, Yuan X. Cooling-load prediction by the combination of
rough set theory and an artificial neural-network based on data-fusion
technique. Appl Energy 2006;83:1033–46.

[21] Ekici BB, Aksoy UT. Prediction of building energy consumption by using
artificial neural networks. Adv Eng Softw 2009;40(5):356–62.

[22] Li Q, Meng Q, Cai J, Yoshino H, Mochida A. Applying support vector machine to
predict hourly cooling load in the building. Appl Energy 2009;86(10):2249–56.

[23] Hou Z, Lian Z. An application of support vector machines in cooling load
prediction. Int Syst Application ISA 2009;5:1–4.
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