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� A methodology of building energy performance diagnosis at multiple levels is developed.
� Proposed approach is based on the building and key equipment power data rather than complicated and unreliable BA data.
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� Faulty operation and corresponding energy saving measures of different systems are identified.
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The proposed energy performance diagnosis is intended to identify poor energy performance in a build-
ing and pinpoint the causes to provide suggestions for building operators to implement timely repair and
maintenance. Many previous studies have probed the complicated problem of building energy perfor-
mance diagnosis to achieve energy conservation and better performance. However, few of them have
been successful because most of these methods rely on a large amount of data from an Energy
Management and Control System (EMCS), and these data are unreliable. A detailed description of the
methodology based on energy consumption data is presented in this paper along with the development
of a prototype integrated toolkit. Weekly, daily and hourly diagnoses are developed at the whole building
level, system level and component level, respectively. To validate the feasibility and applicability of the
method, a case study on an office building demonstrating the proposed method was completed and was
able to detect underperformance operation and energy waste.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The building sector is widely recognized as a major consumer of
both energy and resources [1]. Currently, the building sector takes
up 41.3% of the total primary energy in the United States and
approximately 40% in the EU (European Union) [2,3]. Experience
has demonstrated that 20% of this energy is wasted due to unno-
ticed faults and underperformance occurring at different levels of
the building [4]. Building energy performance diagnosis has grad-
ually become a useful tool that can track, detect and handle abnor-
mal systematic behavior and help operation personnel to identify
energy waste and inefficient operation. In many buildings, approx-
imately 15% of the building energy can be saved using the results of
an energy performance diagnosis [5].
Energy benchmarking plays a significant role in the process of
an energy performance diagnosis. To build a benchmark, models
are needed and better benchmarks need more precise models.
The methods of energy benchmark modeling can be universally
categorized into white box methods, black box methods and gray
box methods [6,7]. The black box methods, such as the artificial
neural network (ANN), supports vector machine (SVM) and regres-
sion method, are used when detailed building information is not
available but sufficient historical data can be provided. Especially,
ANN and SVM methods are capable of solving nonlinear problems
to predict building energy consumption, and the latter is even
effective with limited training data [8,9]. If the benchmarks have
a stringent requirement on modeling transient behavior, the RC
(Resistance-Capacitance) Network method [10,11], a gray box
method, is an ideal alternative. The white box method, also termed
as a first-principle based method, as it uses physical principles to
calculate the energy performance, requires a large amount of
specific building data. Some sophisticated simulation software
packages, such as DOE-2, EnergyPlus, BLAST, ESP-r, are often used

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2016.01.054&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2016.01.054
mailto:xupeng@tongji.edu.cn
http://dx.doi.org/10.1016/j.apenergy.2016.01.054
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


Nomenclature

CVr coefficient of variation
q correlation coefficient
EPI energy performance indices
HDHs heating degree hours
CDHs cooling degree hours
DAY working days in one week
Tb benchmark temperature
Tm daily mean temperature
Y weekly power consumption kW h
T daily average ambient temperature
WW day type
EAC HVAC terminal power consumption kW h
C0, C1, C2 regression coefficients
UL upper limit value
LL lower limit value
Q1 the first quartile
Q3 the third quartile
IQR interquartile range
a constant mean hourly submeter

h hour of day
xn Fourier frequency for hour
e residual
CV(RMSE) rooted mean squared errorbxi the ith prediction energy use data
xi the ith measured energy data
�x mean value of the training data
n data number of the dataset
m variable number in the regression model
CAM characteristic average method
CULLM characteristic upper-lower limit method
SRM specific regression method
AE absolute error
RE relative error
COP coefficient of performance
WTF water transportation factor
EER energy efficiency ratio
CL cooling load
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to predict the energy consumption [12]. Proactive system identifi-
cation models can also be used because they are high fidelity mod-
els and computationally efficient [13]. To summarize, different
models are used for different benchmark and diagnostic purposes.

The current methods of building energy performance diagnoses
can be grouped into three categories according to the scope of their
diagnosis: whole building level diagnosis, system and component
level diagnosis and multi-level diagnosis [14].

A whole building level diagnosis normally does not need a mas-
sive amount of information on the building operation [15]. This
type of diagnosis typically requires electricity, gas or chilled water
energy consumption data at the building level and then identifies
operation problems by calculating the building energy consump-
tion deviations from that of the design intent [16]. The idea of
whole building level diagnosis has been embedded into some auto-
mated whole building diagnostic (AWBD) software, such as the
Automated Building Commissioning Analysis Tool (ABCAT) and
the Whole Building Diagnostician (WBD) [17]. ABCAT, of which
input parameters are building power consumption, cooling load,
heating load and weather data, uses first principle models to pre-
dict whole building energy consumption [18]. Many further
researches make a headway regarding the application and opti-
mization of ABCAT [16,19,20]. Unlike ABCAT, WBD uses a multi-
variable bin method that can be categorized as a black box method
for building level diagnosis. The WBE (Whole-building Energy
Diagnostician) module, one of the diagnostic modules in WBD,
classifies the loads into different variable bins and uses bin medi-
ans to gauge the expected energy consumption from each bin [21].

A whole building diagnosis only addresses the overall consump-
tion of the building. To identify and locate exactly which compo-
nent or subsystem leads to underperformance issues, a more
targeted investigation of the system or component is needed
[22,23]. John proposed an intelligent data analysis method using
the modified z-score to identify abnormal power consumption in
HVAC systems [24]. Wang et al. presented an approach that detects
different kinds of faulty operations of HVAC components through
trend data analysis and functional testing [25]. Khan et al.
employed pattern recognition techniques and ANN Ensembling
approaches to diagnose the anomalies for lighting systems and
whole building power consumption [26].

By comparison, multi-level diagnosis has the most comprehen-
sive scope and largest coverage, expanding the inspection of
energy performance from whole building level to system and com-
ponent levels. A prototype EARM-OAM (Energy Assessment and
Reporting Method’s -Office Assessment Method) enables us to have
a hierarchical diagnosis for an office building at multiple levels
[27,28]. Yan et al. proposed a novel diagnosis method for energy
information in poor buildings with limited energy use data and
some building automation data. The monthly energy performance
of a whole building and system level is examined by general rules,
such as the energy use intensity (EUI), and then the energy-
conservation potential of the HVAC components is calculated [15].

In a nutshell, previous studies of multi-level diagnoses merely
stick to the building energy performance in a fixed time span,
e.g., monthly diagnosis [15]. On the other hand, multi-level diagno-
sis requires detailed information and often relies on trend data
from Building Automation Systems (BAS). It is nonetheless the case
that the measured data from BAS is inaccurate and sensor-bias
errors frequently occur due to the encompassing nature of sophis-
ticated systems [29,30]. For example, temperature measurements
are vulnerable to ambient environmental fluctuations and pressure
signals are often obtained by intrusive measurements. Addition-
ally, the placement of flow and temperature sensors in large ducts
or pipes is another factor to consider. Besides, there are also the
issues of missing, mislabeled and distorted data from the transmis-
sion of large amounts of BAS data. By contrast, building power
measurements are more reliable and practical. Norford et al. pro-
posed two techniques for using electrical power data for FDD in
HVAC equipment. One was based on gray-box correlations of elec-
trical power with flow or other variables, and the second one relied
on physical models of the electromechanical dynamics with sub-
metered data for a pump or a fan [31,32]. The authors stated that
both methods are potentially more robust than FDD methods that
rely on temperature and flow sensors in the sense that they do not
require estimations of small temperature differences with sensors
that are subject to errors [32]. Armstrong et al. [33] developed a
device called the Non-Intrusive Load Monitor (NILM) that detects
various faults in rooftop cooling units by observing variations in
high-frequency sampled electrical data. Hence, it can be seen that
the power measurement based FDD is forging its way as a new
approach for identifying faults.

In 1992, Hart formally proposed a concept of ‘energy sub-
metering’; since then, more and more large commercial buildings
are sub-metered [34]. For example, the California Public Utilities



Fig. 1. Proposed diagnostic methodology from temporal level and content level.
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Commission (CPUC) issued a decision on sub-metering of electric-
ity in multi-story commercial buildings [35]. By knowing where
power is used or wasted, sub-metering can not only help building
owners and tenants solve the split incentive issue, but also to know
which building equipment and system needs upgrades or better
management and scheduling. Also, to promote sub-metering, the
U.S. Department of Energy’s Buildings Technologies Pro-
gram announced one of its latest challenges: an initiative to
develop a $100 wireless sub-meter [36]. In 2008, the Ministry of
Housing and Urban-Rural Development of China (MOHURD) put
forward a new policy and offered subsidies to promote sub-
metering [37]. To date thousands of large commercial buildings
in China have installed sub-metering systems. With the establish-
ment of the energy consumption monitoring platform in nearly all
major cities, an overwhelming amount of power consumption data
is accumulated in databases.

So far there are quite a few papers utilizing the sub-metering
data in building applications. Jain et al. explored the use of
power-metering-based energy forecasting in residential buildings
[38]. Fan et al. used power consumption data and meteorological
variables to develop ensemble models to predict next-day energy
consumption and peak power demand [39]. Ji et al. disaggregated
HVAC terminal end-use from the lighting-plug or power sub-
meters in commercial buildings using a Fourier series model by
analyzing the pattern of the sub-metering data [40]. Ji et al. also
developed a new bottom-up model calibration procedure with
sub-metering data and cooling/heating loads during the building
operation phase [41]. However, studies pertaining to the subject
of building performance assessment and diagnosis are to a lesser
extent limited. Henze et al. demonstrated an energy signal tool
that estimates energy use at different sub-metered levels for com-
mercial buildings [42]. Xiao et al. used data mining (DM) tech-
niques to mine sub-metering data retrieved from a real building
and detected several fault conditions, such as the problem of deficit
flow and abnormal operation of the pumps [43]. Later, a frame-
work for building diagnostics using DM was proposed by Fan
et al. to discover and apply knowledge hidden in the massive
amount of power data. Changes in building operation strategies
and some non-typical building operation conditions can be identi-
fied. Under that framework, domain knowledge and DM expertise
are requisite [44].

To more effectively use sub-metering data in the scope of build-
ing energy performance diagnoses, a methodology is proposed in
this paper that makes substantial improvements from prior
researches. The originality of the method lies in the following
features:

� A comprehensive energy performance diagnosis at different
levels and time spans is used. The energy performance diagno-
sis is more thorough and detailed than in previous studies.

� Robust power data from sub-metering instead of BAS is used,
which makes the energy performance diagnosis more practical
in the near term and rely less on data quality improvement of
BAS.

� The diagnostic procedure is automated and less dependent on
the domain knowledge, making it possible to develop into a
prototype toolkit.

� The diagnostic results have adequate consistency and accuracy,
which makes possible to detect abnormal operations at multi-
ple levels in real buildings.

� The abnormalities are in the form of a three-tier output that can
be easily comprehended by the building operators or users.

In the methodology, as shown in Fig. 1, weekly, daily and hourly
diagnostic modes are presented at different temporal levels.
Weekly diagnoses, as the most macroscopic time level, allows us
to have a quick and broad perception of the building energy perfor-
mance. Daily diagnoses, which evaluate different energy uses in a
whole day, are the most useful and practical. Hourly diagnoses
are rather detailed and can supplement daily diagnoses to figure
out faults when abnormal operation is detected. On the other hand,
total power consumption, four main sub-meters and several sec-
ondary sub items are diagnosed at different system levels. Differ-
ent system levels are matched with corresponding temporal
levels. For building total energy consumption, we mainly focus
on weekly energy use. For energy performance in devices such as
chillers, we pay more attention to daily and hourly energy
performance.

The rest of the paper is organized as follows. Section 2 gives a
brief description of the basic idea and schematics of the proposed
methodology. Sections 3 and 4 gradually elaborate the methodol-
ogy. Section 5 presents a case study to verify the validity and fea-
sibility of the method. The method successfully pinpointed poor
building energy performance and identified the underlying causes.

2. The outline of the methodology

The kernel outline of the building energy performance diagnos-
tic methodology is depicted in Fig. 2.

The power consumption of the sub-meters, weather data, build-
ing design data and some in-situ data are the basic required inputs
in the method. Some power consumption models serve as the
foundation of the method. The detailed diagnostic procedure
includes automatic selection of the prediction models and the rules
for the multi-level building energy performance diagnosis. The
prediction models are chosen by an automatic selection algorithm
to calculate the forecasted baseline, which is then compared with
the sub-metering data. Relevant diagnostic results are obtained
by analyzing the deviation with diagnostic rules. Various energy
performance indices (EPI) for the consumption of the HVAC com-
ponents are used to assess energy performance.

3. Energy benchmarking methods

The prediction models are set up to provide benchmark energy
consumption data for the building energy efficiency diagnosis.
Energy consumption models rather than component performance
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models are used here not only because energy is the most impor-
tant issue, but also because they are applicable to data from sub-
metering monitoring systems. A physics-based model of building
energy consumption is difficult to be built due to the lack of
detailed input information. A model established with simulation
tools aimed at one specific single building and is unlikely to be use-
ful for other buildings. Black-box models, which are accurate and
extendable, can be used, but they often require a long training per-
iod. Despite the fact they are generally acknowledged as being less
accurate, regression methods are relatively easy to develop. The
results in our previous studies demonstrates that regression mod-
els have a sufficient precision for energy efficiency diagnoses using
suitable influence factors [40,45].

So in this paper, the following prediction methods are adopted
for the building performance diagnoses with consideration of both
the feasibility and precision: (1) Regression method, (2) Character-
istic average method, (3) Characteristic upper-lower limit method,
(4) Fourier series method.

3.1. Data classification

By analyzing the monitoring data, it was found that the data
from different building functional areas need to be treated differ-
ently. Office and commercial buildings have very different cooling
load patterns because of their different occupants and equipment.
Besides, scheduling and meteorological conditions have a partial
impact on energy use. This study only targets three building types:
office buildings, shopping and retail buildings and mixed-use
buildings. A mixed-use building refers to a high-rise tower with
a retail area in the lower portion of the building. These types of
buildings are very popular in many parts of Asia. Normally, office
buildings operate on weekdays and close on weekends and holi-
days, so lighting and HVAC energy consumption in office buildings
is different than in shopping malls. As a result, the datasets were
divided into two temporal partitions: workdays and non-working
days. The HVAC energy consumption patterns also change with
the seasons, and so a season division based on the climatic param-
eter was also required to predict the total and HVAC power
consumption.

3.2. Season division

The season division presented here is mainly based on a corre-
lation analysis between the building energy consumption and out-
door climate parameter rather than the conventional four seasons
defined in meteorology. The daily average temperature was
selected as the metric to determine the season division on that
day. The reference temperature, also known as the base tempera-
ture, is a balance point temperature at which the HVAC systems
do not need to operate to maintain comfortable conditions. The
base temperature does not vary very much for a certain type of
building and can be calculated from historical data. A whole-year
of historical power consumption data in distinct building types
was selected and the base temperature was then determined
through the relationship between the consumption and outdoor
temperature. In this way, the whole year can be divided into a cool-
ing season, heating season and transition season.

From Fig. 3, it can be found that office buildings and mixed-use
buildings begin cooling when the daily mean temperature (Tm) is
over 20 �C and begin heating when Tm is below 12 �C. Similarly,
for commercial buildings, cooling starts when the outdoor air tem-
perature is over 15 �C, and heating starts when the outdoor tem-
perature is below 10 �C. In other words, for office buildings and
mixed-use buildings, the day is defined as a cooling day when Tm
is above 20 �C. The day is defined as a heating day when Tm is lower
than 12 �C, otherwise it is deemed a transition day. Likewise, for
commercial buildings, the day is defined as a cooling day when
Tm is above 15 �C and as a heating day when Tm is below 10 �C,
and the rest are transition days. The detailed season division
approach of a day based on Tm is tabulated in Table 1. The season
division of a week depends on which day type is most prevalent
in the week. That is to say, if there are five cooling days and two
transition days in a week, then the week is treated as the cooling
season for the weekly diagnosis.
3.3. Specific regression method

The multi-variable regression model is well applied in the pre-
sented diagnosis algorithm, of which the scope ranged from the
weekly and daily prediction for total energy consumptions with
four main sub-meters, as well as several secondary sub items
except for the HVAC components. This section proposes specific
forms of the weekly and daily prediction models for different
building types.

The weekly prediction model uses the concept of the cooling/
heating degree hour. Just as with the degree days, degree hours
represent a versatile climatic indicator in the analysis of building
energy performance that require less data and can be used to esti-
mate how energy consumption may be influenced by major design
factors (e.g. insulation level, glazing area rate of the building,
assumptions about infiltration, etc.). Heating degree hours (HDHs)
are defined as the deviation from the outdoor mean temperature in
that hour from a heating reference temperature, accounting only
for the positive values. Likewise, cooling degree hours (CDHs) are
calculated from the temperatures above the base temperature.
For a short period of time (daily, weekly, etc.), the accumulated
cooling/heating degree hours (ACDHs/AHDHs) are calculated using
the following Eqs. (1) and (2):

ACDH ¼
XN
j¼1

ðCDHjÞ
if Tj > Tb then CDHj ¼ Tj � Tb

else CDHj ¼ 0

�
ð1Þ
AHDH ¼
XN
j¼1

ðHDHjÞ
if Tj < Tb then HDHj ¼ Tb � Tj

else HDH ¼ 0

�
ð2Þ

where N is the period of time i.e. number of hours in the week. The
corresponding number of hours for the accumulated degree-hours
for any period of time is determined by summing the hours with
the difference between Tj and Tb.

In daily prediction models, because of the relatively strong cor-
relation between HVAC power consumption and Tm, a cubic poly-
nomial was used to reflect their relationship.
3.3.1. Weekly prediction models
The specific functions of the weekly prediction models are sum-

marized in Table 2. Weekly prediction model I was used for weekly
predictions of the building total power consumption and HVAC
power consumption. Weekly prediction model II was applied in
the weekly prediction of the four main sub-meters except for HVAC
sub-meters, in which case HVAC terminal end-use was mixed with
the lighting-plug or power sub-meter. To avoid of the difficulty of
isolating HVAC terminal energy consumption, the HVAC consump-
tion was added as an influence factor to characterize the feature
that the lighting, power and special sub-meters change over the
ambient temperature.

Where Y represents the weekly power consumption in kW h,
DAY represents the number of working days in a whole week,
ACDH/AHDH are the accumulated cooling/heating degree hours
with the base temperature, EACT is the HVAC terminal power con-
sumption in kW h, and C0, C1, C2 are the regression coefficients.
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3.3.2. Daily prediction models
The specific functions of the daily prediction models are sum-

marized in Table 3. Daily prediction model I is applicable to the
daily prediction of building total power consumption and HVAC
power consumption. The data were divided into six datasets
according to the day type and season partition before the regres-
sion, though model I has the single formation. Daily prediction
models II and III were applied in the daily prediction of the four
main sub-meters except for HVAC sub-meters, in which case the
HVAC terminal end-use is mixed with a lighting-plug or power
sub-meter. The difference between the two models lies in whether
the day type partition is accounted for.

Where Y represents the daily power consumption, kW h, Tm is
the daily average ambient temperature in K, WW reflects the day
type and equals 1 on workdays and 0 on non-working days, EACT
is the HVAC terminal power consumption in kW h, and C0, C1, C2
are the regression coefficients.
3.4. Characteristic average method

The method is used in weekly and daily prediction of total
energy consumption, four main sub-meters, both for daily and
hourly prediction of secondary sub items except for the HVAC com-
ponents. The characteristic average model fundamentally follows
the idea of the moving average approach and the classification in
data mining. The historical data were sorted into categories mainly
according to its characteristics. In the building sub-metering data,
the total and HVAC power consumption changed noticeably with
the ambient temperature. However, power consumption is still
not fully correlated to the meteorological parameters, for instance,
unmixed lighting-plug sub-meters and power sub-meters. A three-
year statistical analysis of the lighting-plug and power sub-meters
in Shanghai is tabulated in Table 4. The coefficient of variance (CV)
indicates the discreteness of the same characteristic dataset. From
Table 4, it can be inferred that certain power consumptions, like
from a lighting-plug, power plug or special sub-meters, can be pre-
dicted by the characteristic average model in the same time period
and characteristic, as long as they are not mixed with the HVAC
terminal consumption.

The factors considered during data splitting were different due
to various energy consumption features. In the weekly prediction
model, the factor considered was just the season. In the daily pre-
diction model, the season, month and day type were taken into
account. In the hourly prediction, the factors that mattered were
month, day type and hour. The specific function and applicable sit-
uation of the characteristic average models are listed in Table 5.
Fig. 2. General outline of the multi-level buildi
3.5. Characteristic upper-lower limit method

The model employs a box-whisker-mean plot and gives reason-
able upper-lower limit values using the following Eqs. (3) and (4).
This plot type provides a threshold band by eliminating the outliers
and can be used in circumstances that other prediction approaches
are unable to be used in line with the diagnostic algorithm.

UL ¼ Q3 þ 1:5� IQR ð3Þ

LL ¼ Q1 � 1:5� IQR ð4Þ
where UL and LL means the upper and lower limit value, Q1 and Q3

is the first quartile and the third quartile, respectively, and IQR is
interquartile range, that is, IQR = Q3 � Q1.

3.6. Specific Fourier series method

Our previous studies proved that the Fourier series model can
be well tuned to predict the energy use that varies periodically
in daily cycles (i.e. hourly lighting-plug and power sub-meters)
[38]. The specific Fourier series models for office and shopping
buildings are listed in Table 6. Note that the method could not
work provided that the HVAC terminal circuits are mixed with
lighting or power circuits.

Where a represents the constant mean hourly sub-meter, the
middle term indicates the diurnal hourly amplitude, h is the hour
of day, xn is Fourier frequency for the hour, and e is the residual.

4. Diagnostic algorithm

The algorithm is in a top-down time sequence: weekly, daily
and hourly. The general procedure of the multi-level diagnosis
algorithm can be divided into two steps. The first step is to auto-
matically select prediction methods, which is presented in Sec-
tion 4.1. The second step is to compare the deviation with
certain allowable tolerances and eventually calculate the outcome,
which is detailed in Section 4.2. Particularly, for the HVAC compo-
nents, an index-based diagnostic algorithm is proposed in this
study due to the sophisticated nature of energy use in the HVAC
components.

4.1. Automatic selection of benchmarking methods

The first step of the algorithm is to choose the appropriate pre-
diction model for the kind of power consumption according to its
energy use feature. To determine and quantify the energy use
ng energy performance diagnostic method.
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Fig. 3. Scatter diagram of total power consumption corresponding to Tm in a year of (a) an office building (b) a commercial building (c) a mixed-use building.

Table 1
Season division approach based on daily mean temperature (Tm).

Building type Cooling day Heating day Transition day

Office >20 <12 12–20
Commercial >15 <10 10–15
Mixed-use >20 <12 12–20
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feature of the training dataset, several statistical parameters are
introduced. The coefficient of variation (CVr), as defined in Eq.
(5), indicates the discreteness of the dataset, which is regarded
as the threshold for deciding whether or not to adopt the charac-
teristic average model. The correlation coefficient (q) represents
the correlation degree of two datasets. In this paper we use it to
demonstrate whether the dataset is related to the day type. The
determination coefficient (R2) reflects how well the regression
model fits. The coefficient of variation of the rooted mean squared
error (CV(RMSE)) expresses the uncertainty of the regression
model, denoted by Eq. (6). The regression model in Section 3.3 is
thought to be applicable if the following conditions are met:
R2 > 0.6, CV(RMSE) < 0.2. It is worth noting that outliers should
be eliminated to obtain a better fit, and the regression model is
not available if the outlier surpasses 20% of the original training
data.

CVr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi��xÞ2

n�1

r
�x

� 100% ð5Þ

where CVr is the coefficient of variation, �x is the mean value of the
dataset, and n is the data number in the dataset.

CVðRMSEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�bxi Þ2

n�m

r
�x

� 100% ð6Þ

where CV(RMSE) is the coefficient of variation of the rooted mean
squared error, bxi is the ith prediction energy use data while xi rep-
resents the ith measured energy data, �x is the mean value of the
Table 2
Separate weekly regression prediction model for different building types.

Model Building type Season divi

(1) Office, Mixed-use Cooling
Heating
Transition

Commercial Cooling
Heating
Transition

(2) Office, Mixed-use —
Commercial
training data, n is the data number of the dataset, and m is the vari-
able number in the regression model.

The detailed methods are described in the time sequence as
follows.

4.1.1. Weekly diagnosis
As shown the flow chart depicted in Fig. 4, the weekly power

consumption E should be longer than one year to ensure the train-
ing data cover all four seasons. CV of the dataset is calculated to
judge whether the weekly power consumption changes with the
season. After testing the algorithm and studying the energy use
feature of many large commercial buildings, we set the baseline
of CV to 20%. That is to say, if the CV value is less than 20%, the
characteristic average model is selected. On the contrary, the
weekly power consumption E is thought to be relative to the sea-
son and have a HVAC component. The next step is to see whether
the power consumption E is total or just HVAC power consump-
tion. If so, the season division is needed and CV values are calcu-
lated with respect to the divided dataset. If not, we need to
calculate the correlation coefficient (q) between the dataset E
and HVAC terminal consumption to determine whether the power
consumption E is mixed with the HVAC terminal. Specific regres-
sion method (1) is used under the condition that the CV value is
more than 20% and model prediction is met. Specific regression
method (3) will be adopted provided that q is more than 0.3 and
model prediction is met. Otherwise, the algorithm will jump to
the characteristic upper-lower-limit model.

4.1.2. Daily diagnosis
The flow chart of the daily diagnosis is shown at length in Fig. 5.

It follows the same idea as the weekly algorithm but is more
sophisticated. To avoid repetition, it is not described in this paper.

4.2. Diagnostic rules

The general diagnostic rules after automatically selecting pre-
diction methods are elaborately illustrated in Fig. 6.
sion Specific function

Y ¼ C0 þ C1 � DAY þ C2 � ACDH20
Y ¼ C0 þ C1 � DAY þ C2 � AHDH12
Y ¼ C0 þ C1 � DAY þ C2 � ACDH20þ C3 � AHDH12
Y ¼ C0 þ C1 � ACDH15
Y ¼ C0 þ C1 � AHDH10
Y ¼ C0 þ C1 � ACDH15þ C2 � AHDH10

Y ¼ C0 þ C1 � DAY þ C2 � EACT
Y ¼ C0 þ C1 � EACT



Table 3
Separate daily regression prediction models.

Model Specific function

(1) Y ¼ C0 þ C1 � Tm þ C2 � T2
m þ C3 � T3

m

(2) Y ¼ C0 þ C1 �WWþ C2 � EACT
(3) Y ¼ C0 þ C1 � EACT

Table 5
Specific function of characteristic average models and their applicable situation.

Model Specific function Comment

Weekly (1) �x ¼ 1
n

Pn
i¼1xi � Where x is weekly power con-

sumption; n is the number of
weeks in that year

� Model is for the cases that �x is not
correlated to season

(2) �xs ¼ 1
ns

Pns
i¼1xi � Where subscript s represents sea-

sons: cooling, heating and transi-
tion season; ns is the number of
weeks in that season

� Model is for the cases that �xs is
correlated to season

Daily (1) �ym ¼ 1
pm

Ppm
i¼1yi � Where y is daily power consump-

tion; Subscript m means month:
1–12; pm is the number of days
in that month

� Model is for the cases that �ym is
neither correlated to season nor
day type

(2) �ym;w ¼ 1
pm;w

Ppm;w

i¼1 yi � Where subscript w is day type:
workday and nonworkday; pm,w

is the number of days of same
type in a month

� Model is for the cases that �ym;w is
not correlated to season but corre-
lated to day type

(3) �ys ¼ 1
ps

Pps
i¼1yi � Where subscript s represents sea-

sons: cooling, heating and transi-
tion season; ps is the number of
days in that season

� Model is for the cases that �ys is
correlated to season but not corre-
lated to day type

(4) �ys;w ¼ 1
ps;w

Pps;w
i¼1yi � Where ps,w is the number of days

of in that season
� Model is for the cases that �ys;w is
correlated to both season and
day type

Hourly (1) �zm;w;h ¼ 1
qm;w;h

Pqm;w;h

i¼1 zi � Where z is hourly power con-
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Except for the characteristic upper-lower-limit method, the sec-
ond move of the algorithm is to compare the sub-metering data to
the expected benchmark consumption. The residual and absolute
error (AE) are used as the judgment parameter within the process.

The threshold is closely bound up with the prediction methods,
therefore for different methods, the threshold of residual is set fol-
lowing the rules in Table 7. The algorithm flags the energy con-
sumption as high/low when it exceeds the baseline by the
predetermined threshold. However, the residual alone cannot dif-
ferentiate the severity grades of the building power consumption.
In other words, though residual of some small power sub-items far
exceeds its threshold, it has slight impact on the building energy
because it contributes little to the whole building power consump-
tion. So we introduce a three-tier error output (I/II/III high/low) to
reflect the severity by setting the lower and upper threshold of
absolute error. In the weekly diagnosis for instance, the lower
threshold of absolute error is defined as the 1% of the median
weekly total building power consumption in a whole year. And
the upper threshold of absolute error is defined as the 10% of the
median weekly total building power consumption in a whole year.
Likewise, the lower and upper threshold of absolute error are
defined as the 1% and 10% of the median daily total building power
consumption in a whole year respectively in the daily diagnosis.

Whereas for the characteristic upper-lower limit method dis-
cussed in Section 3.5, sub-metering data needs to fall between
the proposed upper and lower bounds. When the bound is brea-
ched, we consider it as a III-level severe error due to the wide range
of the method.
sumption; Subscript h means
hour: 0–23; qm,w,h is the number
of days of same day type at hour
h in that month

� Model is for hourly prediction of
lighting-plug, power and special
submeters

Table 6
Hourly lighting-plug and power submeters prediction models of different building
types.

Building type Specific function
4.3. Energy efficiency diagnosis of HVAC components

The energy use of HVAC components is very complex and influ-
enced by multitudinous factors. We are incapable of setting up rel-
atively simple prediction models that fulfil the precision
requirement only with the sub-metering power consumption. In
this case, rule-based diagnostic algorithm assisted by the energy
performance index of HVAC components is adopted for HVAC com-
ponent level diagnosis.
Office building E ¼ aþP6
n¼1 dn sinð2pxnhÞ þ dn cosð2pxnhÞ½ � þ e

Commercial building E ¼ aþP11
n¼1 dn sinð2pxnhÞ þ dn cosð2pxnhÞ½ � þ e
4.3.1. Daily diagnosis

The daily diagnosis involves the inspection on the on/off state
and operating efficiency of the key HVAC components.

We detect abnormal HVAC component operation mainly
depending on the operation time of the building and the cooling/
heating demand in that period of time. The diagnosis of key HVAC
components follows this order: cold and heat sources, distribution
systems, and HVAC terminals. When chillers are not in operation,
Table 4
Data analysis of daily lighting-plug submeter consumption of different building types.

Building type Day type 2013.1 2

Mean CV (%) M

Office WD 3022.7 4.28 2
NWD 1346.4 9.06 1

Mixed-use WD 9436.3 3.72 9
NWD 4979.6 7.74 5

Commercial – 15,448 1.28 1
the diagnostic of the distribution systems and HVAC terminals
are meaningless.

Under the circumstance that the cold/heat source operates nor-
mally, the first diagnose is its operation efficiency. Energy perfor-
mance indices (EPI) of different HVAC components are
introduced, as shown in Table 8.
014.1 2015.1 CV (%)

ean CV (%) Mean CV (%)

806.2 4.91 2908.4 11.14 8.12
361.9 9.27 1263.9 9.72 9.55

545.4 5.85 9291.4 2.82 4.34
160.1 7.15 5029.6 5.7 6.76

6,022 2.67 14,264 1.81 5.22



Fig. 4. Flow chart of automatically selecting prediction methods in the weekly diagnosis.

Fig. 5. Flow chart of automatically selecting prediction methods in the daily diagnosis.
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The above thresholds follow the standard and average perfor-
mance of large commercial buildings in Shanghai. Where in other
part of the world, these numbers may be changeable.
Where coefficient of performance (COP), water transportation
factor (WTF) and energy efficiency ratio (EER) are the energy
performance indices (EPIs) for cold/heat source, pumps and HVAC



Fig. 6. Flow chart of the general rules for the weekly, daily and hourly diagnosis.

Table 7
Threshold setting of residual for different prediction methods.

Specific regression method Characteristic average
method

Condition Threshold Condition Threshold

R2 P 0.6, CV(RMSE) < 5% ±20% CVr 6 10% ±20%
R2 P 0.6, 5% 6 CV(RMSE) < 15% ±25% 10% 6 CVr < 20% ±25%
R2 P 0.6, 15% 6 CV(RMSE) < 25% ±30% CVr P 20% ±30%

Table 8
Energy performance indices (EPI) of different HVAC components.

HVAC
components

EPI Component type EPI
threshold

Cold and heat
source

COP ¼ CL
Esource

Air source heat pump Cooling/
heating 2.8/
2.4

Chiller 4.8

Distribution
systems

WTF ¼ CL
Epump

Chilled water pump 30
Cooling water pump 25
Hot water pump 30
Chilled and hot water pumps 30

HVAC
terminal

EER ¼ CL
Eterminal

All-air system 6
Fan coil unit with independent
fresh air system

9

Fan coil unit 24

Table 9
Overall rule-based HVAC components diagnosis results.

Diagnostic results and categories Diagn

Air so
chille

Daily

On-off status Standby or off U

Should not start but actually do U

Should start but actually not U

Normal
Auto-follow the chiller

Operation efficiency Low efficiency U

Slightly low efficiency U

Normal U

Cooling/heating supply is not sufficient U

On-off time Switch on in advance
Switch off in advance
Switch off later than the chiller
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terminal respectively. Esource, Epump, Eterminal are the power con-
sumption of the components, which can be obtained directly from
the sub-metering data. Cooling load (CL) is calculated in Eq. (7).
using the first thermodynamic law. QElectricity-indept equals to the
heat gain from the building envelope, fresh air and occupants.
Einternal represents the heat gains released from internal equipment
and lighting while Edelivery represents heat gains produced by cool-
ing delivery system (i.e chilled water pumps air handing unit fans),
which is assumed to be the same as the power consumption mea-
sured by the sub-metering system.

CL ¼ QElectricity-indept þ Einternal þ Edelivery ð7Þ
4.3.2. Hourly diagnosis
The scope of the hourly diagnosis is almost the same as the

daily diagnosis. Similarly, we are about to diagnose the on/off state
and operating efficiency of the HVAC components. The difference
lies in that we need to think more carefully, considering the condi-
tion that the chiller may be switched off in advance and HVAC
pumps and terminal may shut down after the chiller. The overall
rule-based HVAC components diagnosis results are listed in
Table 9.
ostic objects and time

urce heat pump/
r

Electric boiler Pumps/HVAC
terminal

Hourly Daily Hourly Daily Hourly

U U U U U

U U U U U

U U U U U

U U

U U

U U U

U U U

U U U

U

U U

U U

U



Table 10
Weekly prediction method of different energy type and its threshold.

Data classification (CVr) Model selection Model precision Threshold

Submeters (CVr) Season (CVr) R2 CV(RMSE)

Total (32.2%) Cooling (27.0%) Y = 18481.3 + 2033.6 � Days + 15.2 � ACDH20 0.8640 10.2% ±25%
Transition (15.5%) Weekly characteristic average models (2) ±25%
Heating (25.8%) Y = �6667.5 + 7466.2 � Days + 22.7 � AHDH12 0.8281 11.1% ±25%

HVAC (50.1%) Cooling (39.6%) Y = 4916.3 + 1312.2 � Days + 12.1 � ACDH20 0.8128 17.5% ±30%
Transition (34.7%) Y = 4893 + 1063 � Days � 10 � ACDH20 + 27AHDH12 0.7032 20.4% ±30%
Heating (36.6%) Y = �17767.8 + 6206.7 � Days + 20.9 � AHDH12 0.8271 15.8% ±30%

Lighting and plug (19.9%) Weekly characteristic average models (1) ±25%
Power (4.4%) Weekly characteristic average models (1) ±20%
Special (24.2%) (qAC = 0.698) Y = 59.32 + 5.45 � Days + 0.0019 � EAC 0.6597 13.9% ±25%

Table 11
Weekly energy performance diagnosis result of the building.

Season Starting
Saturday

Total HVAC Lighting Power Special

Heating 2014/1/18 Normal I level
high

Normal Normal Normal

Transition 2014/3/29 Normal Normal Normal Normal Normal
Cooling 2014/8/23 Normal I level

high
I level
low

Normal Normal
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5. Case analysis

The methodology described above has been made into a
prototype toolkit for comprehensive building energy performance
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Fig. 8. Broken line graph of metered and pre
diagnoses. The toolkit has been validated in 50 large commercial
buildings of different types in Shanghai. The total area of these
buildings is more than one million square meters.

One case study of an office building is described here to show
how the proposed methodology is applied to a comprehensive
building energy performance diagnosis. The Shanghai Municipal
Archives was built in 1991. As with many old buildings, some doc-
umentation and drawings of this building are missing. To acquire
the description of the building, site visits and interviews with the
facility managers were required. The building is served by three
identical centrifugal chillers, each of which is associated with a
constant-speed chilled water pump and a constant-speed con-
denser water pump. The lighting system mainly consists of incan-
descent lights and a small proportion of T8 fluorescent lamps. Four
traction-elevators serve the office and the warehouse. The detailed
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Table 12
Daily diagnosis for HVAC components on abnormal days.

Date HVAC consumption Chiller Boiler Chilled/hot water pump HVAC terminal

2014/1/18 III level high Standby or off Should not start but do Follow the chiller/boiler Follow the chiller/boiler
2014/8/17 III level high Should not start but do Standby or off Follow the chiller/boiler Follow the chiller/boiler
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Fig. 9. Diagram of hourly HVAC component consumption.
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information in terms of the HVAC, lighting, power systems is sum-
marized in Appendix Table A1. Historical sub-metering data in
2013 was selected as the training data. The top-down time
approach was used to diagnose the whole building energy perfor-
mance in 2014, including the total power consumption, four sub-
meters on the system level and several sub-items on the compo-
nent level. A representative week was selected from each season
division and then diagnosed. The energy performance of 21 days
in the three weeks were subsequently evaluated. An hourly diag-
nosis is presented and accounts for the days when an anomaly
occurred.
5.1. Weekly and daily diagnosis (Whole building and system level)

According to the method in Section 3, different types of energy
consumption are aligned with respective prediction methods
based on the energy use feature through an automatic model selec-
tion algorithm. A weekly prediction model and its diagnostic
threshold are shown in Table 10.

The weekly diagnosis, tabulated in Table 11, is the result of the
diagnosis discussed in Section 4. In the same way, the daily
7.48%

26.48%

27.41%

38.63%

 Low efficiency
 Slightly low efficiency
 Normal
 Cooling/ Heating supply 
is not sufficient

Chilled water pump

Fig. 10. Operation status of chilled w
prediction models and diagnostic results are also tabulated in
Appendix Tables A2 and A3. Figs. 7 and 8 further describe the
deviation between the predicted and sub-metering data of the
daily total and HVAC power consumption in these three weeks.

As the weekly and daily diagnostic outcome shows, the HVAC
power consumption in the heating week appears I-level high. The
HVAC power consumption on Jan. 18th was III-level high and con-
sistent with the weekly diagnosis. Meanwhile in the cooling week,
the HVAC power consumption on Aug. 17th was III-level high,
leading to the I-level high in the weekly diagnosis. Lighting and
plug power consumption on Aug. 18th and 20th were III-level
low, resulting in the I-level low in the weekly diagnosis. The total
consumption remained normal because the HVAC and lighting
consumption mutually offset. A special sub-meter contributed a
small share of the total consumption, but did not affect the diag-
nostic outcome of the total power consumption.
5.2. Daily and hourly diagnosis (component level)

To go a step further, daily and hourly diagnosis on the compo-
nent level of four sub-meters were conducted to figure out the
anomalies in these exceptional days. The HVAC component level
daily diagnosis is illustrated in Table 12. Component diagnosis of
other sub-meters is shown in Appendix Tables A4–A6.

It was found that the root causes for the extremely high HVAC
consumption on Jan. 18th and Aug. 17th lay in the boiler or chiller.
They should not be operated on non-workdays. The hot water
pumps/chilled water pumps and terminals automatically follow
the starting of boilers/chillers. To identify the exact time when
the anomalies happened, we conducted an hourly diagnosis and
found that the boiler operated from 7 a.m to 13 a.m on that day
and the HVAC terminal ran the entire day, as shown in Fig. 9.

The HVAC component level diagnosis also enabled us to find
that the chilled water pump operated at a low efficiency for
38.6% of the running time, as illustrated in Fig. 10. Through a site
survey and preliminary analysis, we found that a small water
transportation factor was caused by over sizing the pump. Further-
more, Fig. 10 demonstrates that the HVAC terminals operate at a
low efficiency even for 80% of the operating time. The underlying
reason is that the heat transfer effect had severely degraded
1.87%
11.21%

5.92%

81%

 Low efficiency
 Slightly low efficiency
 Normal
 Cooling/ Heating supply 
is not sufficient

HVAC terminals

ater pump and HVAC terminals.
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because the building was built in 1991, and the return air inlet of
the air handling unit had not been cleaned for a long time. The
fan has to operate at a high volume to satisfy the cooling load.

This real case study is only one of the 50 tests this study cov-
ered. These tests validated the feasibility of the methodology to
isolate low efficiency parts and help to expose the causes in an
existing office building. Weekly diagnosis offers us a general view
of the building energy performance. If abnormally high energy con-
sumption occurs in this week, great attention should be taken. But
different sub-meters are likely to cancel each other out in the
weekly diagnosis, so we need to dig deeper into the daily diagnosis
even if the weekly diagnosis shows good results. As far as the
hourly diagnosis is concerned, the result maintains consistency
for the daily diagnosis in the methodology. As a result, hourly diag-
nosis can only detect energy waste in one of the sub systems and
generate warnings, but mechanical failure diagnosis still relies on
operations personnel.
Table A1
Description of the validation building.

Basic information

Building type Office building
Gross area (m2) 19,991
Height (m)/floor 34/8
Operating time 9:00–17:00

HVAC
Centrifugal chiller 3 ⁄ Cooling Capacity: 556 kW; Motor Input Power:

115 kW
Electric boiler 1 ⁄ Heating Capacity: 730 kW; Motor Input Power:

730 kW
Chilled water pumps 3 ⁄ Flow Rate: 69 m3/h; Head: 47 m; Power: 15 kW
Condenser water

pumps
3 ⁄ Flow Rate: 18 m3/h; Head: 21 m; Power: 22 kW

Cooling tower 3 ⁄ Flow Rate: 150 m3/h; Power: 6 kW
Terminal end-use AHU + FCU

Lighting
Incandescent lamp 129 kW
T8 fluorescent lamp 2.8 kW
TS lamp 27 kW

Lifts
Type 1 2 ⁄ 10 kW for Office
Type 2 2 ⁄ 20 kW for Warehouse

Transducer
2 ⁄ 800 kVA
6. Concluding remarks

This paper puts forward a comprehensive building energy per-
formance diagnosis methodology using sub-meters in large com-
mercial buildings. This method covers the scope of the whole
building consumption, lighting-plug, HVAC, power and special
sub-meters and components on the content level as well as the
weekly, daily and hourly diagnosis on the temporal level.

Different prediction methods were adopted to provide a bench-
mark for the diagnostic procedure according to the energy use
characteristics. Specific regression models are suitable in the diag-
nosis of the consumption in relation to the temperature. Character-
istic average methods can be applied to predict daily lighting-plug
and power consumption that have small fluctuations. Fourier ser-
ies methods were shown to have a high precision to predict the
hourly periodic power consumption, such as from lighting-plug
sub-meters. The characteristic upper-lower limit method gives a
rational range of power consumption. In the diagnostic algorithm,
thresholds are determined according to the model precision and
abnormal severity of the power consumption. The alarms are
reflected by a three-tier output. Especially for HVAC components,
the calculated performance indices are compared with the generic
benchmarks of performance indices. The methodology has been
developed into a building energy performance toolkit and was
tested in 50 buildings (office, commercial and mixed-use) to
Table A2
Daily prediction method of different energy type and its threshold.

Data classification Model

Submeter (qWW) Day type (CVr) Season (CVr)

Total (0.677) Workdays (33.2%) Cooling (27.9%) Y = 331
Transition (18.2%) Daily c
Heating (23.1%) Y = 105

Non-workdays (14.5%) Daily c

HVAC (0.630) Workdays (49.4%) Cooling (39.4%) Y = 259
Transition (38.7%) Y = �64
Heating (32.0%) Y = 740

Non-workdays (31.7%) Cooling (30.5%) Y = 191
Transition (15.4%) Daily c
Heating (23.5%) Daily c

Lighting and plug (0.817) Workdays (18.4%) Daily c
Non-workdays (17.8%) Daily c

Power (0.113) (4.6%) Daily c

Special (0.760) Workdays (24.6%) Weekly
Non-workdays (18.9%) Weekly
validate the feasibility of the methods. Compared with traditional
diagnostics, this method is more applicable and relies less on
building control data. The accuracy of the prediction methods,
the optimization of the diagnostic procedure and the application
to more types of the buildings are key issues for future studies.
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Appendix A

See Tables A1–A6.
selection Model precision Threshold

R2 CV(RMSE)

39.5 � 3994.7 � T + 173.9 � T2 � 2.2 � T3 0.7793 13.2% ±25%
haracteristic average models (4) ±25%
48.6 + 977.1 � T � 315.4 � T2 + 17.7 � T3 0.6981 12.7% ±25%
haracteristic average models (2) ±25%

78.7 � 3363.5 � T + 146.8 � T2 � 1.9 � T3 0.7203 21.0% ±30%
11.7 + 3039.0 � T � 265.1 � T2 + 6.7 � T3 0.7086 19.2% ±30%
9.6 + 895.1 � T � 283.7 � T2 + 15.9 � T3 0.7020 17.5% ±30%
5.1 � 176.2 � T + 7.1 � T2 � 0.07 � T3 0.7728 12.6% ±25%
haracteristic average models (4) ±25%
haracteristic upper-lower limit model

haracteristic average models (2) ±25%
haracteristic average models (2) ±25%

haracteristic average models (1) ±20%

characteristic average models (2) ±30%
characteristic average models (2) ±25%



Table A3
Daily energy performance diagnosis result of the building.

Date WD Total HVAC Lighting -plug Power Special

2014/1/12 0 Normal Normal Normal Normal Normal
2014/1/13 1 Normal Normal Normal Normal Normal
2014/1/14 1 Normal Normal Normal Normal Normal
2014/1/15 1 Normal Normal Normal Normal Normal
2014/1/16 1 Normal Normal Normal Normal Normal
2014/1/17 1 Normal Normal Normal Normal Normal
2014/1/18 0 III level high III level high Normal Normal Normal
2014/3/23 0 Normal Normal Normal Normal Normal
2014/3/24 1 Normal Normal Normal Normal Normal
2014/3/25 1 Normal Normal Normal Normal Normal
2014/3/26 1 Normal Normal Normal Normal I level low
2014/3/27 1 Normal Normal Normal Normal Normal
2014/3/28 1 Normal Normal Normal Normal Normal
2014/3/29 0 Normal Normal Normal Normal Normal
2014/8/17 0 I level high III level high Normal Normal Normal
2014/8/18 1 Normal Normal III level low Normal Normal
2014/8/19 1 Normal Normal Normal Normal Normal
2014/8/20 1 Normal Normal III level low Normal Normal
2014/8/21 1 Normal Normal Normal Normal Normal
2014/8/22 1 Normal Normal Normal Normal Normal
2014/8/23 0 Normal Normal Normal Normal I level low

Table A4
Diagnostic result of lighting-plug submeter and its component.

Date Day WD Indoor
illuminance

Outdoor
lighting

Other
circuit

2014/8/18 Mon. 1 III level low Normal III level low
2014/8/20 Wed. 1 III level low Normal III level low

Table A5
Diagnostic result of power submeter and its component.

Date Day WD Elevator Fan Other circuit

2014/3/26 Wed. 1 Normal Normal Normal
2014/8/23 Sat. 0 Normal Normal Normal

Table A6
Diagnostic result of special submeter and its component.

Date Day WD Information
Center

Kitchen and
canteen

Other
circuit

2014/3/26 Wed. 1 I level low I level low Normal
2014/8/23 Sat. 0 I level low Normal I level low
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