
Energy & Buildings 243 (2021) 110967
Contents lists available at ScienceDirect

Energy & Buildings

journal homepage: www.elsevier .com/locate /enb
A non-intrusive approach for fault detection and diagnosis of water
distribution systems based on image sensors, audio sensors and an
inspection robot
https://doi.org/10.1016/j.enbuild.2021.110967
0378-7788/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author at. Department of Mechanical and Energy Engineering,
Tongji University, Room A434, No. 4800 Cao’an Road, Shanghai 201804, China.

E-mail address: xupeng@tongji.edu.cn (P. Xu).
Ruikai He a, Peng Xu a,⇑, Zhibo Chen a, Wei Luo a, Zhineng Su b, Jiong Mao c

aDepartment of Mechanical and Energy Engineering, Tongji University, Shanghai 201804, China
b Shanghai Hongqiao International Airport, Shanghai 201804, China
c Shanghai Dynawin Facility Management Co.,Ltd, Shanghai 201804, China
a r t i c l e i n f o

Article history:
Received 21 November 2020
Revised 2 February 2021
Accepted 23 March 2021
Available online 30 March 2021

Keywords:
Fault diagnosis
Audio signal processing
Image processing
Inspection robot
a b s t r a c t

Fault diagnosis is important to maintain the normal operation of air-conditioning systems, reduce the
energy consumption in buildings, and increase the service life of air-conditioning system equipment.
We present a novel approach for fault detection and diagnosis system that relies on image and audio
sensors and relevant algorithms.
This paper proposes a fault diagnosis algorithm based on a robot that can automatically capture audio

and image signals from microphone arrays and cameras during inspection in a chiller room. It includes
audio- and image-based fault diagnosis algorithms. The validity of the algorithm combined with sensors
is verified using data from actual equipment in a chiller room.
The audio-based algorithm, which can monitor the abnormal sound of pumps to detect faults, utilizes

Fourier transform, a finite impulse response digital filter, and an autoregressive integrated moving aver-
age model. We analyze the frequency domain of the pump signal and set the appropriate threshold to
monitor abnormal signals based on the fitted model. Meanwhile, the image-based algorithms are divided
into three sections to achieve three functions: 1) an AlexNet convolutional neural network is modified to
classify the images of the chiller room equipment obtained by the visible light camera; 2) image mor-
phology methods and trigonometric functions are used to read the dials’ indicators acquired by the vis-
ible light camera; and 3) optical character recognition is used to obtain the highest temperature value in
the infrared image of the pump captured by the infrared camera, which helps maintenance staff verify the
operation of the pump and detect faults as soon as possible.
These diagnostic algorithms are non-intrusive, low cost, and easy to deploy. Combined with real-time

data collection from the sensors on the robot, the algorithms can effectively improve the intelligence of
the equipment room and allocate human resources more reasonably.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

The chiller room, which controls the temperature and humidity
of the entire building, mainly includes core equipment such as chil-
lers, chilled water pumps, cooling water pumps, water collectors,
and manifolds, and some pipelines such as the chilled water and
cooling water loops, which form an important part of a heating,
ventilation, and air conditioning (HVAC) system Although these
facilities provide thermal comfort to people, they are energy con-
suming when faults occur in improper routine operations and poor
preventive maintenance of a HVAC system [1] Currently, with the
restricted use of fossil fuels, fault detection and diagnostic (FDD)
technologies for chiller room facilities play an important role in
improving the energy efficiency of buildings. FDD approaches in
HVAC area were categorized into three class: quantitative model-
based method, qualitative model-based method and process his-
tory based method [1]. While these FDD approaches can diagnose
specific problems (e.g., low delta-T syndrome of chilled water sys-
tems[2]), they all require large amounts of HVAC system operating
data to analyze, and not all building automation systems (BASs)[3]
have the ability to save such data in real. If the need to access these
data could interfere with the normal operation of the equipment,
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such as taking pressure points on pipes and stripping the
insulation from pipes to measure temperature or pressure, it
would be intrusive. In this study, we used images of equipment
(visible images and infrared images) and sounds emitted by equip-
ment to detect whether the equipment is operating abnormally
without diagnosing the specific problems so as to schedule reason-
ably the working hours of operation and maintenance personnel.

1.2. Related work about equipment diagnostic methods

In addition to data collected by BASs, images and audio signals
can be used to diagnose faults. Infrared thermography is a major
focus in image-based because temperature is an important indica-
tor of the structural health of equipment and components as
malfunctioning machines often differ from well-working machines
in their temperature distribution [4]. Bandyopadhyay et al. [5]
developed a fault diagnosis combining an image processing
method and the nearest neighbor algorithm to detect initial faults
in insulated gate bipolar transistors of motor converters. Myrans
et al. [5] developed a method for automatic, online, near real-
time sewer fault detection using closed circuit television to extract
still photos, and a random forest classifier with high accuracy using
the hidden Markov model and order oblivious filter to reduce the
false negative rate of detection. Guan Wang et al. [6] built a shal-
low convolutional neural network and implemented migration
learning by fine-tuning the top layer of an already trained neural
network (NN) to determine the disease severity in a small sample
of fine-textured crops. They used multiple NNs and parameter
combinations for training, and ultimately concluded that the
VGG16 network using migration learning led to the most accurate
predictions. This study uses an AlexNet [7] network and migration
learning idea to identify photographs of equipment taken by robots
during inspections in the machine room, as will be elaborated later
in 2 Materials and Methods. AlexNet and VGG16 are also both
conventional neural networks, and both can be used for classifica-
tion tasks. Adam Glowacz et al. [8] used infrared thermal images to
diagnose a three-phase induction motor. The magenta image was
extracted to obtain a fault feature vector, followed by backpropa-
gation NN, nearest neighbor classifier, and K-means clustering
methods for fault feature training and identification.

Overall, there are two main types of fault diagnosis using
images at this stage. The first type of diagnosis applies traditional
image processing techniques to visible or infrared images and
combines them with feature extraction and classification methods
to carry out effective fault identification. The other type uses large
quantities of images to train deep NNs, and then utilizes the
trained NN for fault classification to discriminate the fault.

Vilela et al. [9] stated that the acoustic properties of a machine
usually change when a failure occurs. Sound can be used to analyze
to operation condition of the fan coil in a HVAC system [10], the
flight condition of a unmanned aerial vehicles (UAV)[11] and so
on. Therefore, the sound of a machine carries information about
its operation condition, and the information is useful in diagnosing.
Extracting the acoustic characteristics of a machine is very useful
in troubleshooting.

In terms of audio, there are two main types of machine sound
information: 1) the vibration signal produced by the vibration of
the machine when the machine is working, and 2) audio signals
propagated by fluctuations in the surrounding air medium caused
by machine vibration. The study of vibration signals mainly
includes time domain, frequency domain, time frequency, and non-
linear analysis [12]. The time domain analysis mainly includes
time signature analysis (TCAs) that involve various factors such
as frequency averages, standard deviations, and peak [13-16].
The frequency domain analysis considers the spectral characteris-
tics, such as the frequency averages, standard deviations, and the
2

peak, energy, and spectral energy ratios, which are often used to
troubleshoot pumps, motors, and gearboxes [13,17,18]. The
short-time Fourier transform is a traditional time frequency analy-
sis method[19,20] that can analyze unsteady signals. In the past
20 years, new techniques such as empirical modal decomposition
[13,21], Hilbert–Huang transform [13,22], wavelet transform
[23,24] and NN[25,26] have also been used in time frequency anal-
ysis. Audio signals can be converted to spectrograms and analyzed
with convolutional neural networks (CNNs) [25] or recurrent neu-
ral networks (RNNs)[26]. Many advances methods using finite
impulse response (FIR) have been used to monitor complex sys-
tems[27,28].Gino Iannace et al.[10] measured the noises emitted
by fan coil in an open-plan office to detect its operating conditions.
Correlation analysis was used to compare the average pectral
levels in a 1/3 octave band. A recursive feature elimination and a
decision tree were used to identify operating conditions.

Adam Glowacz et al. [29] identified single-phase induced motor
bearing and stator faults based on acoustic signals. The significant
frequency feature vector is extracted as a training fault feature, and
finally, the fault feature classification identification is satisfactorily
performed in the nearest neighbor classifier, nearest mean classi-
fier, and Gaussian mixture model.

Glowacz [30] used audio signals for fault diagnosis analysis of
single-phase induction motors. A motor in five operating states
was studied, and audio signals in different states were classified
using the nearest neighbor classifier.

Liu Mengyue [31] adopted vibration singals for fault diagnosis
study of motor bearings. In order to extract fault features from
complex signals, the fault extraction methods based on wavelet
packet and ensemble empirical mode decomposition (EEMD) were
studied separately. Multiclass relevance vector machine (M�RVM)
was used to achieve the motor intelligent diagnosis of bearing
faults. Li Ye [32] also used EEMD to handle noise in non-
stationary and nonlinear vibration singals. Unlike Mengyue,
improved local mean decomposition (ILMD) was proposed to
extract fault features and incremental probabilistic neural network
(IPNN) was used to diagnose bearing faults.

At this stage, the mainstream research method for audio signal
fault diagnosis obtains the original signal, then processes the orig-
inal signal and uses various mathematical methods to extract the
transformed signal fault feature as a fault diagnosis data source.
The diagnostic methods include not only simple traditional math-
ematical feature calculations but also machine learning models to
train classifiers and identifiers. The overall process can be divided
into two major parts: feature extraction and feature identification.

Whether it is image-based or audio-based diagnosis, the instal-
lation of sensors affects the normal operation of the equipment
(e.g. motors, pumps) to a greater or lesser extent. Although the pre-
vious approach can diagnose specific problems within a particular
facility, it is more demanding in terms of sensor location. The
installation of sensors on or near the equipment can effectively
reduce the interference of other sound sources on the fault diagno-
sis, but the fundamental issue is that it might affect the operation
of the equipment. High demands are placed on the resolution and
location of the image sensor to accurately determine the wear and
tear of the equipment and other potential problems, which may be
intrusive to equipment. In addition, the diagnostic methods based
on these two different types of data are not sufficiently integrated.
Conversely, we leverage the use of general images, infrared images,
and audio data by combining them.

1.3. Outline of the non-intrusive FDD approach

In the FDD proposed in this paper, sensors that collect data for
real-time diagnostics are installed on a inspection robot, which
does not interfere with the operation of the equipment.. We use
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a inspection robot for FDD in a chiller room. The cost of the inspec-
tion system is manageable, and there is no requirement for high-
resolution image sensors. The quality of the existing BASs will
not affect FDD. The proposed methodology contains an audio-
based algorithm and an image-based algorithm, and we explain
them in 2 Materials and Methods. Relying on inspection robots
to inspect the chiller room, sensors collect the operational audio
signals and images of equipment through microphone, visible light
camera, and infrared camera. The steps for FDD with a inspection
robot: when the robot takes a picture of the equipment with the
visible light camera module at the pre-set position, it identifies
the type of equipment: 1) if it is a dial, the robot reads the dial
and determine if the operating condition of pipeline is normal. 2)
it is a pump, the robot calls the audio sensor so as to detect
whether sound from the pump is normal or not, and calls the infra-
red camera module to read the temperature on the infrared picture
to determine if the pump is overheated. The diagnostic idea is
shown in Fig. 1.

2. Materials and methods

2.1. Hardware and software setup

The audio signals and images are the important basis for the
non-instrusive FDD approach. We utilized the ReSpeaker Mic Array
v2.0[33] as a sampling device for audio signals, which is a far-field
sound capture array device that incorporates four Pulse Density
Modulation (PDM) microphones to enhance the device’s acoustic
digital signal processing performance. Determination of sample
frequency is discussed in 2.2.1 Selection of Sample Frequency.

Pictures of equipment including temperature and pressure dials
were taken in a real chiller room. We utilized RER-USB13MAF-V7S
Fig. 1. General idea of th
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[34] as visible light camera module and FLIR A315[35] as infrared
camera module. The details of the chiller room is in 3.1 The Details
of the Chiller Room.

We used Python3 and MATLAB to verify the algorithms in the
proposed FDD approach.

2.2. Methods in the non-intrusive FDD approach

The proposed fault diagnosis algorithm is developed in terms of
both sound and image, as shown in Fig. 2. The audio signal fault
diagnosis algorithm is developed based on audio signals collected
from different pumps in a LANDSEA chiller room. In 2.2.2 Fre-
quency Domain Analysis, Fourier Transform (FT)[12] is used to
transform the time-domain signals into frequency domain signals,
and FIR digital filters[12] are used to analyze the signals in three
frequency bands: high-, medium-, and low-frequency domains.
In 2.2.3 Time Series Model Fitting to Diagnose, the extracted audio
signals are modeled using an autoregressive integrated moving
average (ARIMA)[36] model, and the fault diagnosis is performed
using the threshold method based on the prediction confidence
level. Image troubleshooting algorithms covers the classification
of equipment in the freezer room using AlexNet[7] (2.2.4 Equip-
ment Images Classification), the dial indicator reading based on
morphological operations[37] (2.2.5 Dial Indicator Reading) and
recognition of the infrared image temperature based on optical
character recognition (OCR)[37] (2.2.6 Infrared Images Recogni-
tion). First, we classify the images of the facilities collected by
the visible light camera sensor installed in the inspection robot.
Then, for the images of pressure and temperature dials, the corre-
sponding algorithm is used to judge whether the pipeline pressure
and temperature are normal. Regarding the images of water
pumps, OCR is used to identify the highest temperature indicator
e robot inspection.



Fig. 2. Overview of non-intrusive diagnostic algorithm.
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of the infrared image, so as to judge whether the temperature of
the water pump is abnormal.
2.2.1. Selection of sample frequency
In the audio-based fault diagnosis, the first step is to determine

the audio sample frequency of the audio sensor. FT is a linear inte-
gral transform[12]. In practice, we sample discrete time signals in
engineering situations. An infinitely long sequence must be inter-
cepted into a finitely long sequence for discrete Fourier transform
(DFT) [12] analysis and processing. Fast Fourier transform (FFT)
[12] is a general term that designates a practical method for the
scientifically efficient computation of DFT. FFT makes the analysis
of actual signals more feasible. Therefore, we adopt different sam-
ple frequencies to collect audio signals, and then use Python to
convert these by FFT. Eventually, we study the frequency domain
range where the signal energy is mainly concentrated and ensure
that there is no aliasing in the frequency domain of the collected
signals. As described above, it is more reasonable to use the sample
frequency for both microphone arrays and further analysis.
2.2.2. Frequency domain analysis
After determining the pump sound sample frequency, an FIR

digital filter can be utilized to obtain the desired frequency domain
to achieve signal separation for the further analysis. The original
signal is filtered to obtain the required frequency components.
According to the analysis of the pump audio signal in the frequency
domain, we determined the audio-based diagnosis method. The FIR
digital filter can be expressed as a Z-transformation:

H zð Þ ¼
XN

n¼0
h nð ÞZ�n ð1Þ

where N is the number of filter steps designed, and hðnÞ is a
finite length series. The impulse response, i.e., the designed filter
coefficients are

nð Þ ¼ bn;n ¼ 0;1;2; � � �N ð2Þ
We used MATLAB to design a GUI application for audio signal

filtering (3.3 Frequency Domain Characteristics of Water Pumps).
With this GUI, the original signal can be flexibly filtered into mul-
tiple signals according to its frequency components. The filtering
results can be used to analyze the characteristics of pump audio
4

signals in different frequency domains, so as to determine whether
the audio-based algorithm is developed from the time domain or
the frequency domain.
2.2.3. Time series model fitting to diagnose
After the frequency domain analysis of the pump audio signal,

the audio-based fault diagnosis algorithm was developed from
the time domain analysis. We used the ARIMA[36] model to fit
the pump high-, medium-, and low-frequency domain signals. If
the original time series (audio signal) is non-smooth, the d-order
difference operation is first performed to turn it into a smooth time
series; for a smooth series, the ARMA (p,q) model is used directly.
The ARIMA modeling flowchart is shown in Fig. 3.

The auto regression (AR) model describes the relationship
between current and historical values and uses the variables’
own historical time data to predict them:

xt ¼ lþ /1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ ut ð3Þ
where x is the variable, t is the time, l is a constant, /i is the

autocorrelation coefficient, ut is the error, and p is the number of
the autoregressive terms. In particular, when /i < 0:05, the model
is inappropriate, and the premise of ARIMA modeling is that the
data are smooth.

Moving average (MA) model: sometimes, in the AR model, ut is
a white noise, which is usually expressed as

ut ¼ et þ h1et�1 þ h2et�2 þ � � � þ hqet�q ð4Þ
where et is random error, and q is the MA number of terms.

When ut ¼ et , ut is white noise. Combining the AR model with
the MA model yields Eq. (5), and each symbol has the same mean-
ing as that in Eqs. (3) and (4).

xt ¼ lþ /1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ et þ h1et�1 þ h2et�2

þ � � � þ hqet�q# ð5Þ
In this study, the augmented Dickey-Fuller (ADF)[36] test was

used to test the signal for smoothness. The p-order autoregressive
process of the time series is constructed and the characteristic
roots ki of its characteristic equations are found, where
i ¼ 1;2; � � � ; p. If all the characteristic roots fall within the unit circle
kij j < 1; i ¼ 1;2;3; :::; p, the time series is smooth. If a characteristic



Fig. 3. ARIMA modeling flowchart.
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root is the unit root, which means kij j ¼ 1; 9i 2 1;2;3; � � � ; p, then
the time series is not smooth. The hypothetical test condition is
as follows:

Original hypothesis H0: The time series is not smooth when at
least one characteristic root is the unit root.

Alternative hypothesis H1: All characteristic roots are within
the unit circle, and thus the time series is smooth.

At some level of significance, the time series is a smooth series
when it can significantly reject the original hypothesis H0, which
means that the time series is smooth.

To determine if the smooth time series has any value for further
analysis, a pure randomness test needs to be performed to deter-
mine if it is a purely random series. As smooth time series gener-
ally have only short-term correlations, we only need to test
whether there is a short-term correlation in the smooth time series
to enable us to determine whether the series is a purely random
sequence. The hypothetical test condition is as follows:

Original hypothesis H0: Sequence values with a number of delay
periods not greater than m periods are independent of each other.

Alternative hypothesis H1: There is a correlation between
sequence values for which the number of delay periods is not
greater than m periods.

We use q to represent the autocorrelation coefficient and the
subscript to represent the number of periods of delay; then, the
hypothesis test condition can be expressed in Eqs. (6) and (7):

H0 : q1 ¼ q2 ¼ . . . ¼ qm ¼ 0;8m P 1# ð6Þ
5

H1 : 9qk–0;8m P 1; k 6 m# ð7Þ
The LB statistic is constructed to test this joint hypothesis.

LB ¼ n nþ 2ð ÞPm
k¼1

q2
k

^

n�k

 !2

ð8Þ

The value of the LB statistic is calculated and its corresponding
p-value is found. If the p-value is significantly greater than the set
significance level a, then the original hypothesis H0 cannot be
rejected; conversely, if the p-value is less than the significance
level a, then the original hypothesis H0 can be rejected, thus deter-
mining that the sequence is not a purely random sequence.

After confirming the smooth non-pure random time series, the
time series can be analyzed using the ARIMAmodel. The parameter
d of the ARIMA model is confirmed by whether the original data is
a smooth or differential smooth time series. p and q are determined
by autocorrelation function (ACF) plots and partial autocorrelation
function (PACF) plots, respectively. After determining the approxi-
mate range of the p and q values, the grid search algorithm is used
to further confirm the p and q values using the Bayesian informa-
tion criterion (BIC)[36]. The model that minimizes the BIC value is
also the optimal model for this case.

BIC ¼ �2lnðf ðy; hkÞÞ þ lnðnÞK ð9Þ
where K is the number of model parameters, n is the number of

samples, and f ðy; hkÞ is the likelihood function[38], which is a func-
tion of the parameter h and represents the likelihood of h. lnðnÞK
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(penalty term) is effective in avoiding dimensional catastrophes
when the number of dimensions is excessively large and the size
of the training sample data is relatively small.

Finally, the validity of the model needs to be tested, which
includes testing the significance of the model and the significance
of the parameters. If the residual term after model fitting is a
purely random series, the model is significantly valid, indicating
that the fitted model adequately extracts valuable information
from the original data. The method for the model significance test
is the same as that for detecting whether a smooth time series is
random or not.

The unknown parameters that correspond to key variables are
needed for the detection, and these that fail to pass the significance
test can be deleted because these parameters have little effect on
the model. In the final fitted model, all parameters should signifi-
cantly affect the model.

To validate the model, data equivalent to the length of the fitted
data are predicted by the abovementioned ARIMA models. If the
amplitudes of 5% of the sample points in an audio exceed the
threshold (the upper and lower limits of the 95% confidence inter-
val), the pump will be considered to be in abnormal operation dur-
ing this period.

2.2.4. Equipment images classification
When the robot patrols the chiller room, it takes many pictures

(of chillers, water pumps, temperature dials, and pressure dials) in
the pre-set position by Light Detection and Ranging (LIDAR)[39],
which is a method for measuring distances by illuminating the tar-
get with laser light and measuring the reflection with a sensor.
When the equipment is identified accurately, further diagnosis
makes sense. We adopt the modified AlexNet to recognize the vis-
ible light pictures taken by the robot. The feature extraction
remains unchanged, and the part of the classification is rebuilt
according to the requirements of the issues to be addressed: to
change the output of the fully connected layer to 4 (means 4 types
of equipment in 3.1 The Details of the Chiller Room). In model
training, only the parameters for the classification are updated. Pic-
tures of the four types of equipment taken in the actual server
room were used as training and test sets. The height and width
of all images were adjusted to 224 * 224 and flipped horizontally
with 50% probability to increase the number of equipment images
in the training set.

To enhance the training effect of the model, we standardized
each of the three color channels of the images: the mean and stan-
dard deviation of all pixels were determined separately for each
color channel, and then each pixel of that color channel was calcu-
lated as a standardized pixel value according to Eq. (10):

Pixelout channel½ � ¼ Pixelin channel½ � � Pixelmean channel½ �
Pixelstd channel½ � ð10Þ

where the subscript in represents the pixel value before stan-
dardization, out represents the pixel value after standardization,
mean represents the mean of the pixel value of the channel, and
std represents the standard deviation of the pixel value of the
channel.

2.2.5. Dial indicator reading
There are pressure dials and temperature dials on the pipes in

the plant room, so reading the indications on the dials can be used
to check the condition of pipes. To make the readings more accu-
rate, standardized photography should be acquired before reading
the dial. Standardized photography means that the photographs
taken by the robot should be sharp and clear, and the dial to be
read should be vertical and centered on the photograph. Fig. 4.
illustrates the dial indicator reading process. Based on the above
6

assumptions, this part of the algorithm can be divided into three
parts: 1) identify the position of the pointer in the image because
the pointer is crucial to the reading, 2) calculate the angle between
the pointer and the negative y-axis, which help us obtain the angle
between the pointer and the zero mark, 3) convert it (the angle
between the pointer and the zero mark) to the corresponding pres-
sure or temperature value, thus realizing the function of reading
the dial number automatically. Image scaling/rotating mainly
involves adjusting the resolution of the image and changing its size
without losing necessary information. When H=W of the input
image is less than 1, it is designed to rotate 90� counterclockwise.

The grayscale images are binarized in R, G, and B channels after
rotation and scaling, which is achieved by the maximum inter-
class variance (OTSU)[37], and then the logic AND operation is per-
formed on the three binarized images. The purpose of this step is to
initially separate the object from the background. After obtaining
the binary image of the dial, we have to split the pointer from it.
First, we take the complement set to the binary image so that only
the dial is left in the entire image. Except for the white background
in the image, the pointer section is the maximum connectivity
domain, and thus we can extract the pointer from the image. For
smoother pointer boundaries and higher quality image support
for subsequent pointer angle algorithm design, we choose the clos-
ing operation[37] so that the tiny break in the tip of the pointer is
partially bridged. The image is cropped so that the pointer fills the
entire picture as much as possible. It is supposed that the binary
image to be cropped is a matrixMn�m, where n represents the num-
ber of rows and m represents the number of columns.

Algorithm: image crop for pointer

Input: Matrix of the binary image to be cropped Mn�m

Output: boundary coordinates (row1,column1), (row1,colum-
n2), (row2,column1), (row2,column2)

for i = 1 to m by 1 do
for j = 1 to n by 1 do
if M[j,i] = 1 then
row1 = i ; column1 = j
break
break
for i = m to 1 by �1 do
for j = n to 1 by �1 do
if M[j,i] = 1 then
row2 = i ;column2 = j
break
break
return row1;column1;row2;column2
Once the image cropping is complete, the tip of the pointer can

be extracted from it, as the image of the pointer tip is more appro-
priate for calculating the angle due to the uniformity of the tip. We
cropped the image of the pointer and assumed that the matrix of
the image of the pointer is Mm0 �n0 .

Algorithm: image crop for tip of the pointer

Input: the matrix of the image of pointer Mm0 �n0

Output: the matrix of the image cropped again Mm}�n}

if m
0

n0 > 1:2 then

do m} ¼ 1
3 �m0 ; n} ¼ n0

else
do n} ¼ 1

3 � n0 ; m} ¼ m0

end if
return m0 0

;n0 0

Once an image of the part of the needle tip is available, the next
step is to calculate the angle between the pointer and the y-axis. In
the width direction, the midpoints of multiple pointer sections are



Fig. 4. Dial indicator reading process.
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taken, and the angle is calculated using an arc-tangent trigonomet-
ric function. Therefore, to ensure the reliability and generalizability
of the algorithm, the entire dial must be divided into different part.
For pointers in different parts, the calculation method needs to be
adjusted when calculating the angle. The partitioning of the dial is
shown in Fig. 5. The blue box shows the image of the pointer.
When H=W > 1:2, the pointer is located at part2 or part3. If
H=W < 1:2, the pointer is in part1 or part4. H=W ¼ 1:2indicates
that the angle between the tip of the pointer and the positive
y-axis is 50�.
Fig. 5. Partitioning of the dial. The blue box shows the image of the pointer. When
H=W > 1:2, the pointer is located at part2 or part3. If H=W < 1:2, the pointer is in
part1 or part4. H=W ¼ 1:2indicates that the angle between the tip of the pointer
and the positive y-axis is 50�. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Furthermore, we need to know whether the pointer falls in
part2 or part3, and whether the pointer falls in part1 or part4.
The judgment process is shown in Fig. 6. After initial partitioning,
when the pointer falls in part1 or part4, at 1/8 and 7/8 of the width,
the number of pixels is compared with a pixel value equal to 1. If
the pointer lands on part2 or part3, a rotation of 90� counterclock-
wise is necessary before the abovementioned steps. When
w1 ¼ w2, the pointer is at 12o’clock.

Once the location of the pointer has been determined, the next
step is to calculate the angle between the pointer and the negative
y-axis in a counterclockwise direction. There are slight differences
in the calculation in different parts. It is assumed that the size of
the image of the tip is p� q.

Calculation in part1: obtain two vertical coordinates
y1; y2; y1–y2and y1 < y2 and find the corresponding horizontal
coordinates x1; x2 of the midpoint. The angle is calculated using
Eqs. (13 and 14):

angle
0¼arctanðy2 � y1

x1 � x2
Þ; angle0 2 �p

2
;
p
2

� �
ð13Þ
angle¼angle
0
; angle

0 2 ð0; p2Þ
angle¼angle

0þp; angle0 2 ð� p
2 ;0Þ

(
ð14Þ

Especially, when x1 ¼ x2, angle = 90�.
Calculation in part2: First, rotate the image 90� counterclock-

wise, then repeat the steps in calculation in part1. The angle is cal-
culated using Eq. (15):

angle ¼arctan
�
y2 � y1
x1 � x2

�
þ p

2
; angle 2 7p

9
;p

� �
ð15Þ

Especially, when x1 ¼ x2, angle = 180�.



Fig. 6. Determination of the place where the pointer falls.
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Calculation in part3: The steps are the same as that in the calcu-
lation in part2. The angle is calculated using Eq. (16):

angle ¼arctanðy2 � y1
x1 � x2

Þ þ 3p
2

; angle 2 p;
11p
9

� �
ð16Þ

Especially, when x1 ¼ x2, angle = 180�.
Calculation in part4: the same procedure as that in the calcula-

tion in part1. The angle is calculated using Eqs. (17 and 18):

angle
0¼arctanðy2 � y1

x1 � x2
Þ; angle0 2 �p

2
;
p
2

� �
ð17Þ

angle¼angle
0þp; angle0 2 ð0; p2Þ

angle¼angle
0þ2p; angle

0 2 ð� p
2 ;0Þ

(
ð18Þ

Especially, when x1 ¼ x2, angle = 270�.
To ensure accuracy, it is advisable to take multiple sets of points

to calculate the angle repeatedly. In the wide direction, a set of
points y1; y2ðy1 < y2Þ is picked up by a certain step and the above
calculation steps are repeated. We take the 0.4 and 0.6 percentile
angle values and subsequently average them, which better prevent
outliers. Ultimately, we have to translate the angle into the corre-
sponding temperature and pressure.

The conversion angle into temperature/pressure is different for
different dials, and thus the temperature dials and pressure dials
(Fig. 7) in the LANDSEA chiller room are used as research objects
in this study. Taking two anchor points, one anchor point corre-
sponds to 50�C at 12o’clock on the dial, and the other anchor point
corresponds to 0�C. The angle between the two temperatures was
42�. Given that the actual shooting is not perfect, the angle ranges
from 42� to 46�, and 44� (average value) is taken as the final angle
result and the correspondence relation is approximately 1.136 ℃/�.
The conversion from angle to pressure is the same as that for tem-
perature: an anchor is taken as 0.8 MPa at 12o’clock and the other
corresponds to 0 MPa. The angle between these is an average of
130�, and the corresponding relationship is approximately 6.154
8

� 10–3 MPa/�. Eventually, we can obtain the actual indication on
the dials.

2.2.6. Infrared images recognition
The temperature of the water pump during operation is also a

key indicator of whether the pump is operating properly. Dial read-
ing is a good method to monitor the temperatures and pressures of
pipelines, but this technique is impractical for pump temperature
monitoring. For pump temperature monitoring, this study pro-
poses another method, which involves recognizing infrared
images. Reading the number in the upper right corner of the infra-
red image helps the staff to know the highest temperature of the
pump. Fig. 8 illustrates the process of the infrared image.

In the infrared image taken by the FLIR infrared camera
mounted on the inspection robot, the maximum temperature is
displayed in a fixed position whose coordinates are positioned
from 279 to 315 on the x-axis and from 5 to 25 on the y-axis,
assuming that the lower left corner of the image is the origin of
the Cartesian coordinate system. The cropped color image is grayed
and subsequently binarized using the OTSU[37]. To ensure recogni-
tion accuracy, the image needs to be enlarged and the enlargement
scale is determined by grid search. In the search, the optimal scale
factor is designed to be chosen from 1 to 5 in increments of 0.1, and
then we record the accuracy of identifying 100 different infrared
images at different scales. The results of the grid search are shown
in Fig. 9.
3. Results

3.1. The Details of the chiller room

The proposed algorithm was validated in a real chiller room in
Shanghai. The equipment in the chiller room includes 6 screw heat
pump units, 2 screw chiller units, and several vertical and horizon-
tal pumps. There are also water system pipelines, which are



Fig. 7. Temperature dial (left) and pressure dial (right).

Fig. 8. Process of infrared image recognition.
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equipped with dials to show the pressure or temperature of the
medium in the pipes (Fig. 10.).
3.2. Determination of sample frequency

We used the radio signals of hot water pump #1 from a real
chiller room to analyze the pump radio. This audio signals include
the sound emitted by the pump itself when it was operating and
9

the ambient sound around it. Three different sampling frequencies,
44100, 22050, and 11025 Hz, were used in the sampling process
(20 s). An FFT is performed on the signal (0.1 s) using Python. It
is more reasonable to determine which sampling frequency is used
for subsequent audio signal analysis by observing the results of the
Fourier transform. Fig. 11 shows the results of the FFT. Finally, we
chose 11025 Hz as the optimal sampling frequency because spec-
tral overlap was small at the sampling frequency of 11025 Hz
and filtering did not have a significant impact on the 0–3000 Hz
band.
3.3. Frequency domain characteristics of water pumps

We used MATLAB to design a GUI application to filter the audio
signals (Fig. 12). We choose the fir2 function of the FIR digital filter
in MATLAB to design the filter. In particular, when using the fir2
function to design the filter, we should truncate the filter coeffi-
cients obtained, and the truncation length is the design order. After
truncation, we can obtain the FIR. In the fir2 filter, the frequency
break points corresponding to the 18 sliders are set, and frequency
points 2 ½0;1�, which represent the percentage of the actual fre-
quency domain from 0 to 5512.5 Hz. It should be noted that the
frequency break point corresponding to the filter frequency value
is the product of 5512.5 Hz and the break point value. The
imported original data comprise the pump audio signal of 30 s.

We filtered the audio signal from the hot water secondary
pump # 1 in the LANDSEA chiller room. The low-, medium-, and
high-frequency signals are separated, where the higher amplitude
part is worthy of further study because this is the main information
from the equipment itself, and the lower amplitude part is mainly
from various other sources, such as other facilities. The low-
frequency domain ranges from 0 to 535 Hz. We moved the sliders
to 1 before 0.097 in the filter GUI. The frequency of the medium-
frequency domain signal ranges from 625 to 1333 Hz when all
the sliders are moved from 0.1134 to 0.2418 in the GUI of the filter
to 1. The frequency rate of the high-frequency domain signal
ranges from 1666 to 4000 Hz, and we pushed all the sliders
between 0.3023 and 0.7256 of the filter GUI to 1.

In addition, we filtered specific frequency bands, which were
the peak amplitude of the low-frequency domain signal, the peak
amplitude of the medium-frequency domain signal, and the peak
amplitude of the high-frequency domain signal. The low-
frequency peak amplitude signal and the high-frequency peak
amplitude signal are displayed in Fig. 13(d)(e). Moving the sliders



Fig. 9. Relationship between enlargement scale and recognition accuracy. When the enlargement scale is getting larger and larger, the recognition accuracy of OCR is
decreasing generally. When the enlargement scale takes 1.2 to 2.0, the recognition accuracy reaches 1.0, so we choose 1.5 as the optimal enlargement scale according to our
experience.

Fig. 10. The equipment in the real chiller room.

R. He, P. Xu, Z. Chen et al. Energy & Buildings 243 (2021) 110967
to 1 before 0.0227 yielded the peak amplitude frequency domain of
the low-frequency signal (Fig. 13(d)), with a similar process for the
analysis of medium- and high-frequency signals. Moving the slid-
ers from 0.3023 and 0.3628 to 1 provided the frequency of the peak
portion of the high-frequency signal (Fig. 13(e)).

It can be observed that, in 0.1 s audio signal, the extent of oscil-
lation gradually becomes stronger from the low- to high-frequency
domain signals. At the same time, they are not of the same ampli-
tude, reflecting the different weights of each part of the signal in
the original signal, and the medium-frequency domain signal
accounts for a relatively larger proportion. After extracting the
low-, mid-, and high-frequency peak amplitude signals, the fre-
quency range of the signal becomes narrower, with fewer fre-
quency components, and therefore the signal oscillations in the
time domain become weaker and more regular. In general, 1) the
frequency domain of the original pump signal after FFT is complex,
with high amplitude in some frequency domains and low ampli-
tude in most frequency domains. It can be inferred that the higher
amplitude, to some extent, can reflect the characteristics of the
equipment. 2) The collected audio signals, including signals from
the machine itself and ambient mixed signals, are complex and
10
irregular in components. The source of the interfering signal is dif-
ficult to control, and thus it cannot be conclusively assumed to be a
useless signal component.
3.4. Pump fault detection from audio signals

The signal frequency component is complex and confusing;
therefore, signal analysis using the time domain is more appropri-
ate to address the issues in this study. We proposed to model each
of the three frequency domains of audio signals using ARIMA for
pump diagnosis. The following experiment was implemented in
Python. Before applying the ARIMA model to a pump audio, pre-
processing of the signal is required, as follows.

1) The signal is verified for smoothness. For the original data,
the first and last 1 s data are deleted, leaving the middle 28 s of sig-
nal data, of which the first 25 s are used as training data, after 3 s
used as test data. Because too many data points (due to high sam-
ple frequency) are not suitable for real-time inspection and fault
diagnosis, sample frequency reduction is necessary, and the data
are taken in a fixed step and the sampling frequency is reduced



Fig. 11. Results of FFT (sampling frequency 44100, 22050, 11025 Hz). (a–c) show the FFT results after continuous sampling of the sound from the same pump using 44100 Hz,
22050 Hz and 11025 Hz, respectively. We found that the signal energy was mainly concentrated within 3000 Hz, so we were mainly concerned with the 0–3000 Hz band.
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to 256 Hz. A smoothing check is performed on the training data
and test data.

By analyzing the ACF and PACF plots (Fig. 14), it can be inferred
that the original data are closer to a smooth time series. When
detecting the smoothness of a low-frequency signal using the unit
root, ptrain_low = 2.7 � 10�11�0.1, ptest_low = 2.6 � 10�25�0.1. The
original hypothesis H0 can be rejected, and the training and test
data can be considered as a smooth time series. In a similar way,
ptrain_medium = 5.9 � 10�19�0.1, ptest_medium = 2.3 � 10�7�0.1,
ptrain_high = 1.5 � 10�12�0.1, and ptest_high = 8.6 � 10�11�0.1. The
11
medium- and high-frequency domain signals are also smooth.
The ACF and PACF plots of the medium- and high-frequency
domains are shown in Fig. 14(b,c), which have a similar pattern
to the low-frequency signal. The original data are a time-
smoothed series.

2) Detecting that the time series to be fitted is not a purely ran-
dom sequence ensures that the time series is of analytical value.
Combined with the ACF and PACF plots of the signal, the number
of delay periods for correlation is small, barely more than 10 peri-
ods, and thus we selected a delay of 12 periods when calculating



Fig. 12. Interface of the designed GUI application.
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the LB statistic. Here, we set the significance level of the test at 1%.
The LB statistics and p-value results of the training data for the sig-
nals in the three frequency domains are presented in Table 1.

For low-frequency signals, the p-values of the training data LB
statistic are far less than 0.01 after order 3; for medium-
frequency signals, the p-values of the training data LB statistic
are far less than 0.01 after order 2; for high-frequency signals, all
the p-values of the training data LB statistic are far less than 0.01
after order 1. The statistical test results of the signals in all the
three frequency domains indicate that the p-value tends to
decrease as the number of delay periods increases. The results of
the above analysis indicate that the training data are a non-pure
random smooth series, which is valuable for time series analysis.
The ARIMA model was then used to analyze the time series.

The three parameters d, p, and q are crucial in determining the
ARIMAmodel. By observing the ACF and PACF plots in Fig. 14, it can
be observed that the data have a weak short-term correlation,
which is barely more than a 5th order delay, and thus the ranges
of p and q are not too wide for a reasonable model. Therefore,
the grid search selects a range of 0–5 for p and 0–5 for q. According
to the BIC criterion, the ultimate optimal model should be the
model that meets the BIC value minimization in the grid search.
The final grid search results are listed in Table 2.

Finally, the model and parameters were tested for significance.
The ACF and PACF plots of the residuals after fitting the ARMA
models with the signal training data of the three frequency
domains are shown in Fig. 15.

The residuals of the models were then tested for pure random-
ness based on the LB statistic, and the results are presented in
Table 3. The LB statistic of the residuals of the model and their p-
values are much greater than 0.01, and therefore the original
hypothesis H0 that the residuals of the low-frequency signal fitting
model are purely random sequences cannot be rejected.

The fit statistics of the ARMA model for the low-frequency
domain signal training data are listed in Table 4. From the column
of P > |t|, except for the first parameter of q, which almost satisfies
the 5% confidence level significance test, all the parameters pass
the significance test; thus, they can be considered as valuable
parameters, and the selection of the whole parameter set is reason-
able. In a similar way, in the fit statistic (Table 4) of the ARMA
model for the medium-frequency domain signal training data,
except for the first and third parameter of q, which are some way
12
from meeting the 5% confidence level significance test, all the
parameters can be considered as valuable parameters. In the fit
statistic (Table 4) of the ARMA model for the high-frequency
domain signal training data, all five parameters passed the signifi-
cance test and could be considered valuable parameters, and the
entire set of parameters was reasonably selected.

Based on the final fit (Figure 16), the upper and lower 95% con-
fidence intervals of the fitted data were used as thresholds to
detect whether the signal was unusual due to the high uncertainty
of the signal itself. The threshold determines the range limit for the
fluctuation of the normal audio signal, which can detect some
abnormal sounds such as whistling and other sharp noises[40].
Fig. 17 shows the result of backward prediction of data of equal
length using the ARMA model. For other pumps, the audio signals
can also be divided into three frequency domains to establish the
ARIMA model using thresholds to determine whether the audio
signal is unusual or not.

3.5. Equipment identification

According to 2.2.4 Equipment Images Classification, AlexNet is
retained using Pytorch. The training set contains 403 pictures of
equipment in the chiller room, including horizontal pumps, verti-
cal pumps, dials, and compressors, and it is verified with 20 homol-
ogous pictures. The model was trained on the GPU for 20 rounds,
and all the images were trained by the model in each round. The
initial learning rate k was set to 0.005, the learning rate decay
was set to 10% every 5 rounds, the weight decay coefficient was
set to 0.0001, and the momentum parameter was set to 0.9. The
final training and validation losses were both reduced to zero,
and the training and validation accuracy reached 100%. The results
of the model classification of new images are shown in Fig. 18.

3.6. Temperature and pressure monitoring of pipelines

When the robot recognizes the photo of the dial during inspec-
tion, it can read the dial indicator using the corresponding algo-
rithm(2.2.5 Dial Indicator Reading). Fig. 17 shows the process of
reading the dial indication by processing the dial image with the
proposed algorithm. From the final results, the result of the auto-
matic reading is similar to that of the manual reading. Different
pressure and temperature thresholds are set depending on the pipe
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Fig. 14. ACF and PACF plots of three different frequency domain signals. ACF and PACF plots of training data in the three frequency domains for 1–25 s are shown on the left
and the right side shows ACF and PACF plots of the test data in the three frequency domains for 25–28 s, which shows that both the training and test data are not highly
correlated after a 1st order delay.

3
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type to indicate whether the medium in the pipe is in a normal
state or not.

When the robot recognizes the photo of the dial during inspec-
tion, it can read the dial indicator using the corresponding algo-
Fig. 13. Results of filtering. (a) shows the 0–535 Hz (low frequency band) frequency dom
domain characteristics, and (c) shows the 1666–4000 Hz (high frequency band) freque
frequency domains are comparable. (d) shows the peak amplitude in the low-frequency

14
rithm. Fig. 19 shows the process of reading the dial indication by
processing the dial image with the proposed algorithm. From the
final results, the result of the automatic reading is similar to that
of the manual reading. Different pressure and temperature thresh-
ain characteristics, (b) shows the 625–1333 Hz (medium frequency band) frequency
ncy domain characteristics. It can be seen that the peak amplitudes in the three
domain in the 0–125 Hz band. (e).



Table 1
LB statistics and p-value results of the training data for the signals.

Low-frequency domain Medium-frequency domain High-frequency domain

LB-value p-value LB-value p-value LB-value p-value

1 5.147 2.328e–02 4.700 3.016e–02 29.857 4.652e–08
2 7.537 2.308e–02 20.876 2.930e–05 100.000 1.929e–22
3 25.847 1.026e–05 22.582 4.935e–05 100.022 1.537e–21
4 34.719 5.307e–07 31.515 2.403e–06 103.381 1.874e–21
5 39.983 1.505e–07 50.251 1.231e–09 124.730 3.122e–25
6 56.141 2.726e–10 50.503 3.726e–09 155.773 4.650e–31
7 63.348 3.226e–11 68.234 3.354e–12 176.775 9.343e–35
8 64.737 5.441e–11 68.438 1.005e–11 188.760 1.484e–36
9 69.035 2.353e–11 68.961 2.433e–11 189.553 5.107e–36
10 69.097 6.622e–11 70.490 3.565e–11 191.219 1.090e–35
11 69.979 1.233e–10 80.266 1.311e–12 195.603 6.070e–36
12 73.528 6.966e–11 81.427 2.204e–12 197.542 1.048e–35

Table 2
Ultimate optimal model for the three frequency domain signals.

p q d Result

Low-frequency signal 4 3 0 ARMA(4,3)
Medium-frequency signal 5 0 0 ARMA(5,0)
High-frequency signal 3 2 0 ARMA(3,2)

Fig. 15. ACF and PACF plots of the residuals after fitting. We can observe that the models are truncated in the first order. Because of the smooth time series with short-term
correlation, it can be concluded that the residuals are white noise sequences, and the model extracts sufficient information.
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olds are set depending on the pipe type to indicate whether the
medium in the pipe is in a normal state or not. By reading the dial
indicator, sensor fault and thermodynamic fault can be detected.
For example, the temperature dial on the chilled water pipeline
shows 30�C three times in a row(15 min interval).

3.7. Equipment temperature monitoring

During the robot inspection in the chiller room, the temperature
reading of the infrared image of the pump(2.2.6 Infrared Image
Recognition) is achieved with the help of Python’s pytesseract
15
and skimage. The actual image processing flow and results are
shown in Fig. 20. The proposed algorithm can accurately read the
temperature on an infrared image. It is determined whether the
pump is in an overheated state based on the identified maximum
temperature of the pump, thus achieving the purpose of fault diag-
nosis. The alternating current windings of the water pump motors
in chiller rooms are heat exchanged with air, and their temperature
limit is 110�C[41]. The proposed non-intrusive approach cannot
measure the maximum temperature of the internal part of a motor.
The temperatures of the water pumps in the experimental chiller
room are not more than 65�C. In order to reduce false alarm, the
temperature threshold in the room is set to 70�C.

4. Discussion and conclusion

This study developed an integrated audio and image-based
non-intrusive fault detection and diagnosis algorithm and per-



Table 3
LB statistic and p-value for the residuals of the model.

Low frequency Medium frequency High frequency

LB-value p-value LB-value p-value LB-value p-value

1 0.133 0.715 0.005 0.941 0.039 0.844
2 0.700 0.704 0.161 0.922 0.040 0.980
3 0.707 0.872 0.374 0.946 1.120 0.772
4 1.791 0.774 0.423 0.980 1.788 0.774
5 5.231 0.388 0.423 0.995 2.397 0.792
6 5.618 0.467 1891 0.929 2.409 0.878
7 8.397 0.299 7.204 0.408 2.502 0.927
8 8.625 0.375 7.208 0.514 4.180 0.840
9 8.880 0.448 9.331 0.407 4.364 0.886
10 11.454 0.323 12.000 0.285 4.786 0.905
11 12.264 0.344 20.952 0.034 4.793 0.940
12 12.732 0.389 21.040 0.050 5.633 0.933

Table 4
Statistical results of the ARMA model for three different frequency domains.

Low-frequency ARMA (4,3) Medium-frequency ARMA (5,0) High-frequency ARMA (3,2)

Parameter P > |t| parameter P > |t| parameter P > |t|

ar.L1.y 0.0072 ar.L1.y 0.1535 ar.L1.y 0.0000
ar.L2.y 0.0000 ar.L2.y 0.0000 ar.L2.y 0.0445
ar.L3.y 0.0000 ar.L3.y 0.1032 ar.L3.y 0.0000
ar.L4.y 0.0000 ar.L4.y 0.0007 ma.L1.y 0.0000
ma.L1.y 0.0671 ar.L5.y 0.0000 ma.L2.y 0.0002
ma.L2.y 0.0000
ma.L3.y 0.0000
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formed experiments in a LANDSEA chiller room to verify the valid-
ity of the proposed algorithm. Based on the proposed non-intrusive
method, it is possible to verify the real-time pressure and temper-
ature of pipelines to prevent accidents, and verify whether the
working temperatures of chillers, pumps, and other equipment
are normal and whether the sound emitted from pumps is abnor-
mal. This makes it possible to schedule reasonably the working
hours of operation and maintenance personnel.

In this study, based on audio, the ARIMA model and threshold
method are used to determine whether the pump is in normal
operation. When the abnormal audio is characterized by particu-
larly small amplitudes in certain frequency bands, the proposed
approach is difficult to detect the fault. Audio signals acquired by
non-intrusive methods had complex frequency domain character-
istics and indicated that they were smooth signals with strong
uncertainty when pump is operating normally. In the future, we
plan to collect more audio signals of pumps and using NN or other
methods to analyze the audio signals in order to improve the cur-
rent audio-based diagnostic algorithm.

Based on image, AlexNet and migration learning ideas are used
to make a classifier of equipment images in the chiller room. The
dial indication is read with the help of morphological methods
and ideas, and OCR helps read indications in infrared images. The
experiments show that the results are ideal. However, the mount-
ing angle of some dials might have some deviation, which may
cause the result to be inaccurate. There are certain requirements
for the input dial image: 1) the images need to be clear to the
naked eyes. 2) the dial image need to have an almost completely
dark background. Moreover, the parameters in Dial Indicator Read-
ing need to be adjusted for dials with different ranges beforehand,
16
and the current reading algorithm is not flexible enough. Continue
to improve this algorithm in the future so that it can be self-
adaptive to dials of different ranges and pictures of dials with dif-
ferent backgrounds.

The proposed FDD approach mainly detects the mechanical
faults in equipment and thermodynamic faults in pipelines. If the
sensors (camera modules or microphone) do not work well, the
proposed approach will not applicable.
5. Prospects

The methods proposed in this study were mainly designed for
pumps and dials in chiller rooms, and audio and image-based
FDD approaches for chiller compressors are to be further devel-
oped. Currently the approach is completely independent of the
existing BASs, we will later consider combining the unstructured
data(images and audio signals) with the structured data collected
by the existing BASs.

In the future, we plan to fuse the proposed algorithms with the
inspection robot to form an automated detection and diagnosis
framework. As shown in Fig. 21, we intend to embed the non-
intrusive algorithm into the inspection robot, with the sound and
image sensors installed on the robot. Thus, when the robot inspects
a chiller room, it can cooperate with the image sensor and the
equipment image classification to identify the type of equipment
in the pre-set location. Then, it can call different sensors according
to the type of equipment to collect data, detect the operation of the
equipment, and report to the inspection personnel if there are any
abnormalities.



Fig. 16. Results of ARMA fitting of signals in three frequency domains. The final fit showed that the fitted trend is weaker than the residuals, and in combination with the fact
that the residuals have been confirmed to be white noise sequences, this indicates a strong uncertainty in the three signal components.
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Fig. 17. Prediction for three frequency domain signals. We set the upper and lower thresholds to limit the range of normal signal fluctuations. If the sound made by the pump
falls in the confidence interval, that is the sound made by the pump during the normal operation. If the sound emitted by the pump is out of the threshold, the pump is
whistling and not operating properly.

Fig. 18. Trained model classification results.
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Fig. 19. Process of reading the dial indication.

Fig. 20. Actual image processing flow and results.
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Fig. 21. Detection and diagnosis framework based on robotic inspections.
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