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A B S T R A C T   

One of the main challenges of automated compliance checking systems is aligning the semantics of the building 
information models (BIMs), in Industry Foundation Classes (IFC) format, and the semantics of the regulations, in 
natural language, to allow for checking the compliance of the BIM with the regulations. Existing information 
alignment methods typically require intensive manual effort and their ability to deal with the complex regulatory 
concepts in the regulations is limited. To address this gap, this paper proposes a deep learning method for IFC- 
regulation semantic information alignment. The proposed method uses a relation classification model to relate 
and align the IFC and regulatory concepts. The method uses a transformer-based model and leverages the def-
initions of the concepts and an IFC knowledge graph to provide additional contextual information and knowledge 
for improved classification and alignment. The proposed method was evaluated on IFC concepts from IFC 4 and 
regulatory concepts from different building codes and standards. The experimental results showed good infor-
mation alignment performance.   

1. Introduction 

Building designs are governed by a wide range of regulations and 
requirements in the architecture, engineering, and construction (AEC) 
domain, such as building codes, standards, and specifications. To 
improve regulatory and contract compliance, as well as project effi-
ciency, various automated compliance checking (ACC) systems have 
been developed with the aim of automating – fully or partially – the 
process of checking the compliance of building designs, captured in 
building information models (BIMs), with applicable regulations and 
requirements. However, a bottleneck in the ACC process is bridging the 
semantic gap between the BIM [commonly represented using the In-
dustry Foundation Classes (IFC) schema] and the regulations (expressed 
in natural language such as English) [1–3]. Before conducting the 
compliance checking, it is essential to align the semantic representations 
and terminology of the IFC to that of the natural-language regulations. 

In most of the existing ACC systems, such information alignment is 
conducted in a highly manual way, through hardcoding (e.g., using 
modeling or query languages), ontology- or dictionary-based matching, 
or searching methods. For example, the buildingSMART Data Dictionary 
(bSDD) [4], an online service that provides access to classifications (e.g., 

Uniclass) related to the AEC domain, can be used to facilitate the 
matching of regulatory concepts to their corresponding IFC concepts (e. 
g., IFC entities, properties, or enumerated property values). These 
methods require intensive manual effort and are by nature rigid and 
difficult to generalize [3,5,6]. Also, they are less capable to deal with 
semantically or syntactically complex regulatory concepts. For example, 
many single-word regulatory concepts can be directly matched to IFC 
concepts (e.g., match “beam” to “IfcBeam” or “IfcBeamTypeEnum – 
Beam”); however, it is difficult to match multi-word, phrasal, or clausal 
regulatory concepts directly to any of the IFC concepts [e.g., “mem-
brane-covered frame structure” and “intended to be occupied as a resi-
dence” in the International Building Code (IBC) [7]]. There is, thus, a 
need for an automated, and meanwhile flexible and generalizable, 
method for IFC-regulation semantic information alignment for sup-
porting fully automated ACC. 

Towards addressing this need, the most recent efforts that focused on 
IFC-regulation semantic information alignment have explored the use of 
machine learning to facilitate such automation. Instead of relying on 
hardcoding or handcrafted rules, these efforts use machine learning 
models to automatically learn the underlying semantic and syntactic 
patterns of the regulatory text and IFC data to help in the alignment. 
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Many of these efforts focused on augmenting the BIMs with additional 
attributes and relationships to support the alignment for ACC (e.g., 
[9–11]), while other efforts focused on directly aligning the regulatory 
and IFC concepts (e.g., [8]). For example, Wang et al. [11] modeled IFC- 
based building designs as graphs and used graph neural networks (GNN) 
to classify the rooms in the IFC models into nine predefined types based 
on manually constructed node and edge features and augment the 
models with the classified types. Zhou and El-Gohary [8] leveraged 
word and concept semantic representations learned using the word2vec 
algorithm and the graph structures of the IFC-based building designs to 
align concepts from the International Energy Conservation Code (IECC) 
and energy specifications to their corresponding IFC concepts. However, 
despite their importance, both groups of efforts still lack in flexibility 
and adaptability and might not allow successful implementation across 
different BIMs and different types of regulatory documents (e.g., 
building code versus energy code) due to two reasons. First, they rely on 
contextless features (e.g., the word2vec representations), which have 
limited ability to capture the semantic and syntactic dependencies of IFC 
and text data. Second, they have not exploited the contextual informa-
tion and knowledge in both the IFC schema and the regulatory docu-
ments, which can potentially provide additional semantic information 
for aligning IFC and regulatory concepts. 

To address this need, this paper proposes a transformer-based 
method to align regulatory concepts in the requirements with the IFC 
concepts in the IFC schema for supporting downstream ACC information 
matching and compliance reasoning processes. The proposed method 
uses a relation classification model to classify each pair of IFC-regulatory 
concepts as semantically related or not. The method utilizes the natural- 
language definitions of the concepts and an IFC knowledge graph to 
provide additional contextual information and knowledge for the clas-
sification. It also leverages semantic and syntactic patterns learned in 
pretrained transformer-based language models, as well as domain- 
specific semantic and syntactic patterns learned using transfer 
learning strategies. The proposed method was tested on IFC concepts 
and definitions from IFC Version 4, and regulatory concepts and defi-
nitions from three different types of regulatory documents including 
IBC, IECC, and Americans with Disabilities Act Standards for Accessible 
Design (ADA Standards), and an average precision of 84.3%, recall of 
83.3%, and F1 measure of 83.8% in alignment was achieved. 

2. Background 

2.1. Deep learning in text and knowledge analytics 

Deep learning methods use deep neural networks to capture multiple 
levels of information representations from large-scale data [12]. Deep 
learning methods have been used in solving various text analytics tasks, 
such as information extraction [e.g., bidirectional long short-term memory 
(LSTM) and conditional random fields for extracting named entities [13]], 
semantic and syntactic analysis (e.g., bidirectional LSTM for dependency 
parsing and part-of-speech tagging [14]), and machine translation 
[e.g., sequence-to-sequence recurrent neural network (RNN) model for 
machine translation [15]]. Deep learning methods have also been used in 
solving various knowledge analytics tasks (especially the ones related to 
knowledge graphs), such as relation analysis (e.g., relation adversarial 
network [16], relation attention network [17]), knowledge graph 
embedding learning (e.g., GNN and negative sampling [18], GNN with 
contrastive learning [19]), and knowledge graph-based question 
answering and recommendation (e.g., LSTM- and attention-based method 
[20] and GNN- and attention-based method [21]). 

A number of research efforts have focused on deep learning-based 
methods to solve text or knowledge analytics problems in the AEC 
domain. For example, Pan and Zhang [22] developed RNN-based models 
to mine information from building information modeling (BIM) log data 
to support BIM-based building design decisions. Zhang and El-Gohary 
[23] proposed a bidirectional LSTM-based method with transfer 

learning strategies to extract semantic and syntactic information ele-
ments from building-code requirements. Zhong et al. [24] used a bidi-
rectional LSTM-based model with conditional random fields to extract 
procedural constraints from construction regulations. Amer et al. [25] 
used a transformer-based method to predict the relationship between 
look-ahead planning tasks to master-schedule activities. Li et al. [26] 
used hierarchical attention networks to map bridge inspection de-
scriptions to bridge condition ratings. 

2.2. Transformers and pretrained transformer-based models 

A transformer is a deep learning model structure that consists of an 
encoder and a decoder and uses multi-head attention mechanisms [27] 
within the encoder or decoder (i.e., self-attention) or between them (i.e., 
encoder-decoder attention) to capture the dependencies between 
different data points. Transformer-based models consist of multiple 
layers of transformers to allow for learning the contextual representa-
tions of input data. Example transformer-based models include genera-
tive pretrained transformer (GPT) models (e.g., GPT-2 [28]) by OpenAI, 
bidirectional encoder representations from transformers (BERT) models 
[29] by Google and variants of BERT [e.g., a lite BERT for self-supervised 
learning of language representations (ALBERT) [30] and a robustly 
optimized BERT pretraining approach (RoBERTa) [31]], and the vision 
transformer (ViT) [32]. Compared to other deep learning models (e.g., 
RNN-based models) that were predominately used for natural language 
processing (NLP) tasks, transformer-based models have improved both 
the language modeling performance, especially in dealing with long- 
term dependencies in the text, and the computational efficiency in 
model training. These improvements result from (1) the use of multi- 
head attention mechanisms in the transformer layers in place of 
sequential model structures such as RNN [27]; and (2) the incorporation 
of a deep model structure (e.g., the BERT base model that consists of 12 
layers of transformers and 110 million parameters [29]). Transformer- 
based models can be pretrained on large general-domain corpora [e.g., 
BooksCorpus (800 M words) and English Wikipedia (2500 M words)] 
through unsupervised or self-supervised learning tasks, such as masked 
language modeling and next sentence prediction [29]. The pretrained 
transformer-based language models can then be finetuned on smaller, 
domain- or task-specific text data for downstream NLP tasks, such as 
sequence labeling, machine translation, and question answering (e.g., 
[27–29]). 

Recent efforts in the construction domain have applied transformer- 
based models in solving problems including defect detection (e.g., 
[33–35]) and information extraction (e.g., [25,36,37]). For example, 
Zhou et al. [35] used transformer-based models to extract features for 
point cloud classification to support sewer defect detection. Kim et al. 
[36] used transformer-based models to learn representations for 
extracting infrastructure damage information from textual data. How-
ever, to the best of the authors’ knowledge, no efforts focused on using 
transformer-based models for supporting ACC. 

3. State of the art and knowledge gaps in IFC-regulation 
semantic information alignment 

The IFC schema is used to represent and share information in the AEC 
domain, and is the most commonly adopted format for BIM [38]. It 
defines an object-based information model consisting of entities, 
including objects (“IfcObject”), relations (“IfcRelationship”), and prop-
erties (“IfcPropertyDefinition”). To support BIM interoperability across 
different applications and levels of development, a model view defini-
tion (MVD), which is a selection of IFC for a specific use or workflow (e. 
g., [39–41]), is further established based on the overall IFC schema. 
However, the IFC concepts in the IFC schema or MVDs do not naturally 
correspond to regulatory concepts and require additional efforts for 
aligning or mapping the concepts, which creates a major barrier for ACC 
[1]. 
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IFC-regulation semantic information alignment aims to align or link 
the regulatory concepts in natural language to their corresponding or 
related IFC concepts (e.g., IFC entities, properties, enumerated property 
values) by mapping or transforming one or both types of concepts. 
Existing research efforts for IFC-regulation semantic information align-
ment predominately focus on predefined rule-based or hardcoding- 
based methods. They can be classified into three main groups based 
on how the two types of information are changed during the alignment: 
regulation-to-IFC translation, regulation-to-IFC mapping, and IFC-to- 
regulation adaptation. In regulation-to-IFC translation, the building- 
code requirements are hardcoded into computer-processable represen-
tations that allow information representation or retrieval with the IFC 
schema using modeling languages such as SPARQL protocol and 
Resource Description Framework (RDF) query language [42], building 
environment rule and analysis language [43], regulatory knowledge 
query language [6], visual code checking language [44], and language- 
integrated query [45]. In regulation-to-IFC mapping, the regulatory 
concepts are mapped to those in the IFC schema either fully manually or 
using dictionaries (e.g., bSDD [4]), rules (e.g., [2,46]), ontologies (e.g., 
[42,47,48]), procedural algorithms and functions (e.g., [49]), meta- 
databases and applications (e.g., [50]), or black-box mechanisms (e.g., 
[51–53]). In IFC-to-regulation adaptation, the IFC schema or BIM file is 
adapted or modified to support direct alignment to building-code re-
quirements by adding concepts from the requirements to the IFC schema 
[54] or by modifying existing properties in specific BIM files [55]. 

Despite the state-of-the-art performance achieved by the predefined 
rule-based and hardcoding-based IFC-regulation semantic information 
alignment methods, they typically require significant manual effort. Also, 
many of these methods lack flexibility and adaptability (e.g., due to the use 
of predefined mapping rules or hardcoded computer-processable re-
quirements) and might not allow successful implementation across 
different MVDs, BIMs, and different types of regulatory documents (e.g., 
building code versus energy code). They also require updates when the IFC 
schema or the regulatory documents are updated [5,6]. To overcome these 
limitations, recent research efforts have explored the use of machine 
learning to facilitate IFC-regulation semantic information alignment. 
Many of these efforts focused on augmenting the BIMs with additional 
attributes and relationships for facilitating compliance checking, using 
classification or other approaches, to support the alignment (e.g., [9–11]). 
For example, Wu et al. [10] extracted invariant signatures, which uniquely 
define each AEC object and capture their intrinsic properties, to classify 
IFC objects and augment the models with the predicted/classified types. 
Another smaller number of efforts focused on directly aligning the regu-
latory concepts to the IFC concepts using machine learning approaches. 
For example, Zhang and El-Gohary [54] developed a semiautomated 
machine learning-based method to extend the IFC schema with regulatory 
concepts, which consists of three main steps: rule-based regulatory concept 
extraction, similarity-based term matching, and supervised learning-based 
relation classification. Zhou and El-Gohary [8] proposed a deep learning- 
based method for learning semantic representations of building-code and 
IFC concepts for information alignment of BIMs to building-code re-
quirements, which uses semantic similarity analysis, searching, and 
network construction. However, the aforementioned machine learning- 
based approaches share three common limitations. First, despite 
achieving higher levels of automation and generalizability (than rule- 
based and hardcoding-based methods), they still require significant 
manual effort. For example, the semiautomated approach in [54] requires 
interim checking, and possibly fixing, of intermediate results by the users. 
Second, they mostly rely on traditional, contextless semantic representa-
tions (e.g., word embeddings such as word2vec [56] and global vectors for 
word representations [57]) and manually engineered features such as the 
part-of-speech patterns of the concepts, number of words in the concepts, 
and first or last term in the concepts. These features are less effective in 
capturing the domain-specific semantics (compared to the contextual 

representations learned by transformer-based models, for example), which 
are essential for determining the relations between concepts in semantic 
information alignment. Third, they do not leverage the important 
contextual information and knowledge contained in the IFC schema and 
the regulatory documents, such as the natural-language definitions of the 
concepts and the IFC knowledge graph, which could provide additional 
semantic information for interpreting and aligning semantically or syn-
tactically complex regulatory concepts. 

4. Proposed transformer-based method for automated context- 
aware IFC-regulation semantic information alignment 

A transformer-based method for automated context-aware IFC- 
regulation semantic information alignment for supporting ACC is pro-
posed. First, the proposed method uses a relation classification model to 
align regulatory concepts extracted from building codes and standards 
with the concepts in the IFC schema (i.e., the IFC objects and their 
predefined types). The model classifies each pair of IFC-regulatory 
concepts as semantically related or not. For the purpose of ACC, an 
IFC concept is aligned/related to a regulatory concept if they are 
equivalent (e.g., “IfcRamp” and “ramp”) or if the IFC concept is a 
supertype of the regulatory concept (e.g., “IfcDoor” and “revolving 
door”). Aligning to superclasses is adopted for IFC-regulation alignment 
in ACC applications because the regulatory documents typically have 
more specific concept descriptions than those in the IFC. Second, the 
proposed method is context-aware because it (1) learns contextual 
representations of words using pretrained transformer-based models; 
and (2) leverages the natural-language definitions of the regulatory and 
IFC concepts and an IFC knowledge graph to provide supplemental 
contextual information and knowledge for finetuning pretrained 
transformer-based models using transfer learning. 

The method is composed of five main steps, as per Fig. 1: (1) IFC 
knowledge graph development based on the IFC schema and the IFC 
ontology, (2) concept pair development based on the IFC knowledge 
graph, (3) transformer-based concept relation classification, (4) model 
training/finetuning with transfer learning strategies, and (5) post- 
classification concept pair pruning. 

4.1. Concept data preparation 

4.1.1. IFC concept data preparation 
The IFC concept data were prepared to develop the concept pairs for 

training (for finetuning the pretrained models with domain-specific data 
using transfer learning) and testing the proposed method. The data were 
automatically prepared based on the buildingSMART International 
standards and supporting documentation on IFC4 using four steps: (1) 
collecting the .htm files of the IFC entities and property sets, (2) parsing 
the files, (3) extracting the natural-language canonical forms and defi-
nitions from the files, and (4) uncasing and cleaning the natural- 
language canonical forms and definitions of the IFC concept instances. 
As a result, each IFC concept data instance consists of three parts: the IFC 
concept name, the natural-language canonical form, and the natural- 
language definition. The IFC concept name is the name of the entity in 
the IFC schema. The natural-language canonical form is the name of the 
entity in a natural language (e.g., English), which is uncased and sin-
gular. The definition is the natural-language definition of the entity in 
the IFC schema. For example, the canonical form of “IfcDoor” is “door”, 
and its natural-language definition is “The door is a building element 
that is predominately used to provide controlled access for people and 
goods. It includes constructions with hinged, pivoted, sliding, and 
additionally revolving and folding operations. A door consists of a lining 
and one or several panels” [38]. Table 1 shows examples of two different 
types of IFC concepts (i.e., entity and enumerated value) in the IFC 
schema Version 4 and the associated data used in this study. A total of 
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about 2000 IFC concept instances and their data were prepared. 

4.1.2. Regulatory concept data preparation 
The regulatory concept data were prepared to develop the concept 

pairs for testing the transformer-based relation classification model. A 
regulatory concept data instance is defined as a sequence of words 
consisting of the canonical form and the definition of a regulatory 
concept, both of which are in the form of natural language and are 
directly extracted from the regulatory documents. For example, the data 
instance of the concept “fire-rated glazing” is the concatenation of “fire- 
rated glazing” and its definition “glazing with either a fire protection 
rating or a fire-resistance rating” [7]. The regulatory concept data were 
developed based on the concepts and definitions from the following 
chapters and sections in three different types of regulatory documents: 
(1) Section 202 Definitions of IBC, (2) Section C202 General Definitions 
and Section R202 General Definitions of IECC, and (3) 106.5 Defined 
Terms of ADA Standards. The natural-language canonical forms and 
definitions were uncased and cleaned. A total of 220 regulatory concept 
data instances were prepared. Table 2 shows examples of regulatory 
concept data from different sources [7,58,59]. 

4.2. IFC knowledge graph development 

For determining the relations between the IFC concepts and 
accordingly developing the concept pairs (see Section 4.3), a simple IFC 

knowledge graph was developed based on the IFC schema and the IFC 
ontology [60]. The knowledge graph is a directed graph that consists of 
IFC concepts as nodes and the relations between pairs of concepts (e.g., 
“is subclass of”) as edges between the nodes. Fig. 2 shows two example 
subgraphs induced from the IFC knowledge graph. The subgraphs 
consist of the neighbors that are centered at the nodes representing the 
IFC concepts “IfcBuildingElement” and “IfcWindow” within a radius of 
one. 

The knowledge graph was constructed following two steps. First, a 
knowledge graph was automatically constructed based on the ifcOWL 
(Web Ontology Language representation of the ifc schema) [60], which 
is an RDF graph of the IFC ontology, using a rule-based method. For 
example, the blank nodes in the ifcOWL were removed and the edges 
that link the blank nodes with the uniform resource identifier (URI) 
reference nodes were redirected accordingly. Second, the predefined 
types of the IFC concepts (e.g., “triple_panel_left” as a predefined type of 
“IfcWindow” in Fig. 2) were added to the knowledge graph as subclasses 
of these IFC concepts. 

4.3. Concept pair development for training and testing 

Two concept pair datasets were developed for training and testing. 
Fig. 3 and Table 3 show example concept pairs developed based on the 
IFC knowledge graph. For training, a dataset of concept pairs was 
developed for finetuning the pretrained model with domain-specific 

Fig. 1. Proposed transformer-based method for automated context-aware IFC-regulation semantic information alignment.  

Table 1 
Example IFC concept data instances in training and testing data.  

IFC concept Type of IFC 
concept 

Natural-language 
canonical form 

Natural-language definition from IFC schema 

IfcAlarm Entity Alarm An alarm is a device that signals the existence of a condition or situation that is outside the 
boundaries of normal expectation or that activates such a device. 

IfcSpatialZone Entity Area, space, zone 
A spatial zone is a non-hierarchical and potentially overlapping decomposition of the project 
under some functional consideration. A spatial zone might be used to represent a thermal 
zone, a construction zone, a lighting zone, a usable area zone. 

IfcElectricApplianceTypeEnum - 
REFRIGERATOR 

Enumerated 
value 

Refrigerator An electrical appliance that has the primary function of storing food at low temperature but 
above the freezing point of water. 

IfcDistributionSystemEnum - 
FIREPROTECTION 

Enumerated 
value 

Fire protection Fire protection sprinkler system.  

Table 2 
Example regulatory concept data instances in testing data.  

Regulatory concept 
canonical form 

Source regulatory document Natural-language definition 

Membrane-covered 
cable structure 

International Building Code (IBC) A nonpressurized structure in which a mast and cable system provides support and tension to the 
membrane weather barrier and the membrane imparts stability to the structure. 

Circulating hot water 
system 

International Energy Conservation Code (IECC) 
A specifically designed water distribution system where one or more pumps are operated in the 
service hot water piping to circulate heated water from the water-heating equipment to the fixture 
supply and back to the water-heating equipment. 

Qualified historic 
building or facility 

Americans with Disabilities Act Standards for 
Accessible Design (ADA Standards) 

A building or facility that is listed in or eligible for listing in the National Register of Historic Places, or 
designated as historic under an appropriate State or local law.  
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data using transfer learning strategies). The pairs were developed using 
the IFC concept data (Section 4.1.1), with the support of the developed 
IFC knowledge graph (Section 4.2). Each concept pair that serves as a 
positive training instance consists of two semantically related IFC con-
cepts that are directly linked by one edge in the IFC knowledge graph. 
Each concept pair that serves as a negative training instance consists of 
two IFC concepts that are not directly linked by an edge. For example, 
the concept pair of the IFC concepts “IfcDoor” and “IfcBuildingElement” 
is related; and the concept pair of “IfcDoor” and “IfcWindow” is not 
related. A total of about 20,000 training concept pairs were developed. 

For testing, a dataset of concept pairs was developed for serving as 
the gold standard to evaluate the proposed method. Each concept pair 
consists of one IFC concept and one regulatory concept, and the pairs 
were developed using the prepared concept data (Section 4.1). For 
preparing the positive testing instances, for each regulatory concept, the 
semantically related IFC concept(s) was manually selected by a group of 
three experts, one from industry and two from academia. The authors 
adopted a purposive sampling strategy, which aims to select a specific 
type of experts according to predefined criteria [61]. Two criteria were 

defined: (1) familiarity with building codes and compliance checking 
processes, and (2) familiarity with the IFC schema. The authors used 
purposive sampling because (1) it is suitable for small, specialized 
populations; and (2) it helps obtain information from a concentrated, 
carefully selected sample [61,62]. Each expert independently selected 
and paired the concepts, with an initial inter-annotator agreement of 
80% in F1 measure, which indicates good consistency, reliability, and 
reproducibility of the process of manually aligning the regulatory and 
IFC concepts and thus high quality of the manual alignment for pre-
paring the testing dataset [63,64]. The discrepancies among the anno-
tated pairs were then resolved by the experts to reach full agreement on 
the final gold standard. For preparing the negative testing instances, for 
each regulatory concept, the IFC concepts in all ACC-relevant domains 
(e.g., IFC architecture domain, IFC building controls domain, and IFC 
structural elements domain) were enumerated and paired with the 
regulatory concept, except for the semantically related IFC concept(s). 
For example, the pair of “exit access ramp” (regulatory concept) and 
“IfcRamp” (IFC concept) was included as a positive instance, while the 
pair of “fire door” (regulatory concept) and “IfcRamp” (IFC concept) was 

Fig. 2. Example subgraphs centered at the IFC concepts “IfcBuildingElement” (left) and “IfcWindow” (right) induced from the IFC knowledge graph.  

Fig. 3. Example related and not related concept pairs based on IFC knowledge graph.  
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included as a negative one. A total of 42,180 testing concept pairs, with 
their relations and concept definitions, were developed. 

4.4. Transformer-based concept relation classification model development 

The semantic information alignment of regulatory concepts with the 
IFC schema is formulated as a binary relation classification problem, 
where given a concept pair of an IFC and a regulatory concept, a relation 
classification model predicts the relation between the two concepts 
(semantically related or not). The relation classification model consists 
of two main components: the pretrained transformer-based model, and a 
relation classification layer, which further consists of an activation 
function [e.g., rectified linear unit (ReLU)], a feedforward neural net-
works (FFNN) layer, and a softmax function, as shown in Fig. 4. 

The relation classification step further consists of three substeps: 
definition tokenization, input sequence construction, and relation pre-
diction. First, the natural-language definitions for the concept pairs are 
tokenized using the tokenizer corresponding to the pretrained 
transformer-based model. Second, the input to the model, which is a 
sequence of tokens (e.g., words and numbers), is constructed by 
concatenating the two tokenized definitions for each pair. The two 
definitions are separated by a [SEP] token, which indicates the boundary 
between the two definitions. The entire sequence is started with a [CLS] 
token, which captures the definition-level information of the relation 
between the two concepts through model training/finetuning with 
transfer learning strategies. Third, the tokens in the input sequence are 
embedded and loaded into the pretrained transformer-based model, 
which generates the output embeddings. The relation classification layer 
then computes the distribution over both classes, given the output 
embedding of the [CLS] token. The final relation predicted by the 
classification model is the one with the highest probability. 

4.5. Model training with transfer learning strategies 

The concept relation classification model was trained (finetuning the 
pretrained model with domain-specific data using transfer learning 
strategies) to minimize the objective function – multiclass cross entropy, 
L, as per Eq. (1). Cross entropy describes the difference between the 
labels in the training data, denoted as y, and the labels predicted by the 
model θ, denoted as c, based on the input natural-language definitions x, 
as shown in Eq. (1), where D is a batch of the training data, C is the set of 
labels, pθ(c|xi) is the conditional probability of c given the input sen-
tence x generated by the relation classification layer in the model with 
parameters θ, and 1y=c is the indicator function, which returns 1 when y 
and c are equal, and returns 0 when y and c are not equal. 

L(θ) =
1
|D|

∑

x,y∈D

∑

c∈C
1y=clogpθ(c|xi) (1) 

Two transfer learning strategies to train the relation classification 
model were adopted for comparative evaluation: (1) the pretrained 
transformer-based model is not trainable, and only the relation classi-
fication layer is trainable; and (2) specific transformer layers (e.g., all 
the 12 layers in BERT or ALBERT base model) in the pretrained model 
are trainable, together with the relation classification layer. The first 
strategy preserves more of the semantic and syntactic information 
learned by the pretrained models from the general-domain text data, 
while the second strategy encourages learning domain- and task-specific 
semantic and syntactic information during the training of the model 
with concept pairs. 

Two training practices were adopted for more stable and efficient 
training: (1) early stopping: the training process was stopped when the 
loss change is smaller than 0.1; and (2) learning rate scheduling: the 
learning rate was initialized small and increased as the training 
progresses. 

4.6. Post-classification concept pair pruning 

The post-classification concept pair pruning aims to select the most 
lexically and semantically similar IFC-regulatory concept pairs among 
those classified as semantically related by the relation classification 
model (Section 4.5) – acting like a filtering layer. The pruning consists of 
three main steps. First, the concept pairs were ranked according to the 
relation classification probabilities, which are obtained from the rela-
tion classification model. Concept pairs that are not within the top k of 
the ranking are pruned (i.e., considered not related). Second, for each 
classified concept pair, the word-level semantic similarity was defined as 
the cosine similarity between the corresponding pair of semantic 
concept representations of their natural-language canonical forms, as 
per Eq. (2), where Sc is the semantic representation of the canonical form 

Table 3 
Example training concept pairs.  

Concept pair (in canonical form) Binary relation between 
concepts 1 and 2 

Concept 1 Concept 2 

Building element Curtain wall Related 
Distribution control 

element 
Flow instrument Related 

Curtain wall Flow instrument Not related 

Building element 
Distribution control 
element Not related 

Electric appliance Refrigerator Related 
Refrigerator Fire protection Not related  

Fig. 4. Pretrained transformer-based concept relation classification model for IFC-regulation semantic information alignment.  
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of an IFC concept c and Sr is the semantic representation of the regula-
tory concept r. Concept pairs with similarities lower than a pre-
determined threshold (e.g., 0.9) are pruned. Third, if a regulatory 
concept is related to both an IFC concept and its subconcept, only the IFC 
subconcept is selected (to avoid redundancy, since an IFC subconcept is 
already related to its superconcept based on the IFC schema). 

Similarity (c, r) =
Sc • Sr

‖Sc‖‖Sr‖
(2)  

4.7. Evaluation 

For evaluating the relation classification-based semantic alignment 
method, three metrics were calculated for each label (semantically 
related or not related): precision, recall, and F1 measure, as shown in 
Eqs. (3) to (5), where for each label R, TP is the number of true positives 
(i.e., number of concept pairs correctly labeled with R), FP is the number 
of false positives (i.e., number of concept pairs incorrectly labeled with 
R), and FN is the number of false negatives (i.e., number of concept pairs 
not labeled with R but should have been) [65]. The overall performance 
of the proposed method was obtained by further calculating the average 
precision, recall, and F1 measure for both labels. 

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

F1 = 2×
Precision × Recall
Precision + Recall

(5)  

5. Experiments, results, and discussion 

5.1. Training and model hyperparameters 

The proposed transformer-based IFC-regulation semantic informa-
tion alignment method was deployed and trained using PyTorch built in 
Python 3 and run using the Tesla K80 GPU provided in Google Cola-
boratory. A five-fold cross validation was conducted for optimizing the 
hyperparameters of the classification model. For the cross validation, 
the training data (i.e., the IFC concept pairs) were further split into two 
subsets – one for model training and the other for model validation. The 
values of other hyperparameters were determined based on the char-
acteristics of the training and testing data used in the experiments (e.g., 
the maximum sentence length is 128), or the parameters of the pre-
trained transformer-based models (e.g., the dimension of the FFNN layer 
is 768 when the ALBERT base model is adopted, whose transformer 
layer has a dimension of 768). The values of the final training and model 
hyperparameters are shown in Table 4. 

5.2. Application of proposed method 

Fig. 5 illustrates the application of the proposed relation 
classification-based semantic alignment method, with an example. 
Given a pair of regulatory and IFC concepts and their definitions, first, 
the trained transformer-based concept relation classification model 
predicts the relation between concepts, generating candidate related 
regulatory and IFC concept pairs with their relation probabilities. Sec-
ond, all candidate related concept pairs are ranked based on the relation 
probabilities. Third, given the representations of the concepts, the 
concept similarities are assessed by computing the cosine similarities 
between the representations. Fourth, the final related concept pairs are 
determined based on rules (e.g., the top k candidate pairs are retained as 
final pairs). The final related concept pairs are further used in down-
stream ACC tasks, such as compliance reasoning. 

Fig. 6 provides an example to further illustrate the use of the 

proposed method within an ACC system. The ACC system consists of four 
main modules: (1) information extraction (regulatory information [23] 
and design/BIM information [66]), (2) requirement transformation 
[67], (3) BIM-regulation alignment, and (4) compliance reasoning [66]. 
The proposed method can be used within the BIM-regulation alignment 
module to align the regulatory concepts in the extracted and trans-
formed requirements (output of module 2) to the IFC concepts in the IFC 
instances (output of module 1). The aligned requirements and IFC in-
stances (output of module 3) are the input to the final rule-based 
compliance reasoning module (module 4), where the information (e. 
g., compliance checking attributes such as area and width) in the re-
quirements are compared to the information in the IFC instances to 
determine the compliance results. For the details of modules 1, 2, and 4, 
the readers are referred to [23,66,67]. 

5.3. Evaluation of information alignment performance 

The testing data (see Section 4.3) were used to evaluate the perfor-
mance of the proposed method. Four sets of ablation experiments 
(Sections 5.3.1 to 5.3.4) were conducted to better understand the impact 
of four important aspects on the performance of the proposed method: 
(1) the different types of pretrained transformer-based models, (2) the 
process of training/finetuning the relation classification model using 
transfer learning strategies, (3) the incorporation of natural-language 
definitions as contextual information for training the classification 
model, and (4) the post-classification concept pair pruning. A fifth set of 
experiments (Section 5.3.5) was conducted to assess the performance of 
the proposed method across different types of regulatory documents. 
The final selected model uses the ALBERT base pretrained model with 12 
trainable transformer layers, natural-language definitions of IFC and 
regulatory concepts, and a threshold of 5 for top-k in post-classification 
pruning. It achieved average precision, recall, and F1 measure of 84.3%, 
83.3%, and 83.8%, respectively. 

5.3.1. Impact of different types of pretrained transformer-based models 
The proposed method was tested with different types of pretrained 

transformer-based models (i.e., BERT and ALBERT) and models of 
different sizes. Four different pretrained transformer-based models were 
tested: ALBERT base (12 transformer layers, 768-layer size, and 11 
million parameters), ALBERT large (24 transformer layers, 1024-layer 
size, and 17 million parameters), ALBERT xlarge (24 transformer 
layers, 2048-layer size, and 58 million parameters), and BERT base (12 
transformer layers, 768-layer size, and 110 million parameters) models. 

As shown in Table 5, the proposed method with the ALBERT base 
model performed the best in terms of average precision, recall, and F1 
measure, outperforming the proposed method with other pretrained 
models, by an average of 14.4% in precision, 20.8% in recall, and 18.5% 
in F1 measure. The experimental results indicate that for the specific 

Table 4 
Training and model hyperparameters for proposed classification model.  

Hyperparameter Value 

Training 
Batch size of training data 32 
Maximum length of tokenized 

definition pair 256 

Initial learning rate 1e-5 
Dropout rate 0.1 
Model 

Dimension of the output layer Same as transformer layer size (e.g., 768 for 
ALBERT base model) 

Number of attention heads 
Depending on pretrained transformer-based 
model (e.g., 12 for ALBERT base model) 

Number of hidden layers 
Depending on pretrained transformer-based 
model (e.g., 12 for ALBERT base model) 

Hidden layer size 
Depending on pretrained transformer-based 
model (e.g., 768 for ALBERT base model)  
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training data used and the specific relation prediction task, the ALBERT 
base model is of the most suitable size, while larger models might start to 
overfit or underfit. A large model (i.e., the ALBERT large model) ach-
ieved lower performance, especially lower recall, compared to the base 
model, and thus was not selected because few false negatives and a high 

recall are required for ACC tasks. 

5.3.2. Impact of different transfer learning strategies for pretrained 
transformer-based relation classification 

The proposed method was tested with different transfer learning 

Fig. 5. Proposed semantic information alignment method.  

Fig. 6. Example to illustrate use of proposed method for BIM-regulation alignment within an automated compliance checking (ACC) system.  

R. Zhang and N. El-Gohary                                                                                                                                                                                                                   



Automation in Construction 145 (2023) 104540

9

strategies for training/finetuning the pretrained transformer-based 
relation classification model for assessing the impact of balancing 
general-domain and domain-specific semantic and syntactic information 
on performance. Two different transfer learning strategies were tested: 
fixing or training the pretrained transformer-based model in the relation 
classification model. For the second strategy, different numbers of 
trainable transformer layers were also tested for comparative evalua-
tion. The ALBERT base model was used in this set of experiments. 

As shown in Table 6, the proposed method with the trainable pre-
trained transformer-based model, and with 12 trainable transformer 
layers, showed the best performance in terms of average precision, 
recall, and F1 measure, outperforming the proposed method when the 
other strategies were adopted, by an average of 12.8% in precision, 
18.2% in recall, and 16.5% in F1 measure. The experimental results 
indicate that the general-domain semantic and syntactic information 
transferred by the pretrained models is not sufficient for relation clas-
sification with complex regulatory concepts, and that part of the pre-
trained models (e.g., the last transformer layers) need to be trainable to 
adapt itself to domain- and task-specific data. The model with less 
trainable layers achieved lower performance, especially lower recall, 
compared to the one with 12 trainable layers. The latter model was, 
thus, selected because of the higher priority need for recall. The exper-
imental results also indicate that the representations learned through 
training/finetuning pretrained transformer-based models could serve as 
an important source of contextual information that could contribute to 
an increase of around 30% in relation classification performance. 

5.3.3. Impact of contextual text data 
The proposed method was tested with different IFC and regulatory 

concept data to assess the impact of utilizing the natural-language def-
initions in the proposed method. Four different types of data were tested: 
(1) only canonical forms for both IFC and regulatory concepts, (2) ca-
nonical forms and definitions for both IFC and regulatory concepts (the 
proposed types of concept data), (3) canonical forms and definitions for 
regulatory concepts, and only canonical forms for IFC concepts, and (4) 
canonical forms and definitions for IFC concepts, and only canonical 
forms for regulatory concepts. 

As shown in Table 7, the proposed method with the proposed form of 
concept data (i.e., concept data with both natural-language canonical 
forms and definitions for both IFC and regulatory concepts) showed the 
best performance in terms of average precision, recall, and F1 measure, 
outperforming the proposed method when other types of concept data 
were used, by an average of 29.5% in precision, 29.6% in recall, and 
29.9% in F1 measure. The experimental results indicate that the defi-
nitions could serve as an important source of contextual information 
that could be captured and leveraged by the transformer-based models 
through transfer learning and could contribute to an increase of over 
30% in relation classification performance. 

5.3.4. Impact of post-classification pruning 
The proposed method was tested with different post-classification 

pruning thresholds for assessing the impact of pruning on perfor-
mance. Five different thresholds for top-k pruning using both the 

relation classification probability-based ranking and the word-level se-
mantic similarity-based ranking were tested: one, three, five, seven, and 
nine. 

As shown in Table 8, the proposed method with a threshold of 5 for 
top-k pruning showed the best performance in terms of average preci-
sion, recall, and F1 measure, outperforming the proposed method with 
other thresholds, by an average of 5.4% in precision, 4.8% in recall, and 
5.1% in F1 measure. The experimental results indicate that a threshold 
of 5 was optimal in this case, because it retained more true positives 
compared to smaller thresholds and excluded more false positives 
compared to larger thresholds. 

5.3.5. Performance of the proposed method across different types of 
documents 

The proposed method was tested on regulatory concepts extracted 
from three different types of documents for assessing its performance 
across different codes and standards: IBC, IECC, and ADA Standards. As 
shown in Table 9, the proposed method achieved good performance 
across the three documents, in terms of average precision, recall, and F1 
measure. A relatively lower performance (about 8–9% in F1 measure) 
was shown for IBC and IECC, compared to ADA Standards, which is 
likely due to the relatively high complexity (e.g., complex noun phrases 
and verb phrases) of some of the regulatory concepts contained in the 
two documents. 

5.4. Error analysis 

Three main sources of errors were identified based on the experi-
mental results. First, the proposed method had errors when dealing with 
regulatory concepts whose corresponding canonical forms are less 
frequent in the regulatory document, such as “sallyport”, which appears 

Table 5 
Performance of proposed method with different pretrained transformer-based 
models.  

Pretrained transformer-based models Precision Recall F1 measure 

ALBERT base model 84.3% 83.3% 83.8% 
ALBERT large model 81.5% 70.2% 74.6% 
ALBERT xlarge model 76.7% 65.7% 69.8% 
BERT base model 51.5% 51.5% 51.5% 

Note: Bolded font indicates highest performance; 12 trainable transformer 
layers, natural-language definitions of IFC and regulatory concepts, and a 
threshold of 5 for top-k in post-classification pruning were used. 

Table 6 
Performance of proposed method with different finetuning strategies with pre-
trained transformer-based models.  

Transfer learning 
strategies for training the 
relation classification 
model 

Number of 
trainable 
transformer 
layers 

Precision Recall F1 
measure 

Fixed pretrained 
transformer-based 
model 

0 58.7% 52.0% 53.2% 

Trainable pretrained 
transformer-based 
model 

4 77.7% 73.3% 75.3% 
8 78.0% 70.0% 73.3% 
12 84.3% 83.3% 83.8% 

Note: Bolded font indicates highest performance; the pretrained ALBERT base 
model, natural-language definitions of IFC and regulatory concepts, and a 
threshold of 5 for top-k in post-classification pruning were used. 

Table 7 
Performance of proposed method with different types of concept data.  

Contextual information included in concept 
data 

Precision Recall F1 
measure 

Natural-language canonical forms for IFC and 
regulatory concepts 53.3% 50.8% 51.3% 

Natural-language canonical forms and 
definitions for IFC and regulatory 
concepts 

84.3% 83.3% 83.8% 

Natural-language canonical forms and 
definitions for IFC concepts and only natural- 
language canonical forms for regulatory 
concepts 

60.2% 60.2% 60.2% 

Only natural-language canonical forms for IFC 
concepts and natural-language canonical 
forms and definitions for regulatory concepts 

50.9% 50.2% 50.2% 

Note: Bolded font indicates highest performance; the pretrained ALBERT base 
model with 12 trainable transformer layers and a threshold of 5 for top-k in post- 
classification pruning were used. 
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less than ten times in only one section of the IBC. The low performance is 
likely because the transformer-based models were pretrained on 
general-domain text data where such words rarely appear and thus the 
models are less capable to capture their semantic information. Second, 
the proposed method showed relatively lower performance for regula-
tory concepts that have definitions that are semantically or syntactically 
very complex (e.g., long, complex definition with multiple or recursive 
conditions) or very simple (e.g., simple definition consisting of only a 
few words). The lower performance is due to the high syntactic 
complexity (e.g., complex noun phrases, verb phrases, and preposition 
phrases, and clauses of different types) and high semantic complexity (e. 
g., having multiple references and restrictions) of the complex defini-
tions, or the lack of sufficient semantic information provided in the 
simple definitions. Third, the proposed method showed relatively lower 
performance for concepts from IBC and IECC compared to those from the 
ADA Standards. The lower performance is due to (1) the relatively low 
lexical and semantic similarity between the IBC and IECC concept data 
and the training data developed based on the IFC knowledge graph; and 
(2) the relatively high complexity (e.g., complex noun phrases and verb 
phrases) of some of the IBC and IECC concepts. 

5.5. Limitations 

Three limitations of the work are acknowledged. First, the proposed 
method successfully leveraged contextual information, including 
concept definitions and existing relations between IFC concepts, for 
improved information alignment; however, it did not consider cases 
where concepts might have different definitions/meanings across 
different regulations or subdomains of knowledge. Additional evalua-
tion efforts are needed to test the proposed method on other types of 
regulatory documents (e.g., International Fire Code) and domains (e.g., 
fire safety). The experimental results are expected to show similar per-
formance; however, the performance level may vary due to possible 
differences in the syntactic and semantic characteristics of the concepts 
in those documents or domains. Second, the proposed method was 
tested on IFC and regulatory concepts with natural-language definitions 
but not on those without explicit definitions. Future efforts are needed to 
deal with concepts that lack such explicit definitions. This could be 
possibly through integrating additional external knowledge as contex-
tual information, such as ontological and relational knowledge from 
other types of classification systems (e.g., Uniclass and Omniclass), 

natural-language descriptions or definitions of concepts from data dic-
tionaries, encyclopedias, and specifications (e.g., bsDD). Third, the 
scope of the work was limited to IFC objects (e.g., IfcBuildingElement, 
IfcDistributionElement, IfcSpace). In future work, the proposed method 
could be extended to include the attributes and properties of the IFC 
objects (e.g., OverallHeight and OverallWidth for IfcDoor) and the IFC 
relations (e.g., IfcRelAggregates, IfcRelContained, IfcRelVoidsElement). 
For attributes and properties, a similar transformer-based context-aware 
approach could be used, although additional external knowledge may be 
needed (as contextual information) because many of the attributes and 
properties lack explicit natural-language definitions. For relation 
alignment, given the large difference in the representation/terminology 
of relations across the natural-language text and the IFC schema, more 
advanced machine learning and/or network modeling approaches could 
be explored. 

6. Contribution to the body of knowledge 

This paper offers a new method for IFC-regulation semantic infor-
mation alignment. The proposed method uses a relation classification 
model to relate and align the IFC and regulatory concepts, which utilizes 
deep learning and transfer learning techniques. The proposed method 
showed good performance across regulatory concepts from different 
types of codes and standards, including IBC, IECC, and ADA Standards. 
The proposed method contributes to the body of knowledge in four main 
ways. First, it is the first effort to use pretrained transformer-based 
models in text and knowledge analytics for supporting ACC. It lever-
ages these models in both predicting relations between concepts and 
generating concept semantic similarities for pruning candidate concept 
pairs. These models are able to learn contextual representations that 
have superior ability in capturing semantic and syntactic dependencies 
from text data compared to traditional contextless and/or manually 
engineered features. Second, the research makes use of both general- 
domain and domain-specific semantic and syntactic information by 
training/finetuning the relation classification model with transfer 
learning strategies. Incorporating both types of information enhances 
the relation classification performance and increases the scalability and 
flexibility of the model. Third, it innovatively leverages the natural- 
language definitions of the concepts for information alignment of IFC 
and regulatory concepts. The definitions provide contextual lexical, 
syntactic, and semantic information for improved relation classification 
and thus improved information alignment. Fourth, it also leverages the 
IFC knowledge graph to develop training concept pairs, which in-
corporates the ontological contextual knowledge. The use of knowledge 
graph not only reduces the manual effort in preparing the training data 
and thus facilitates the automation of the information alignment pro-
cess, but also enables leveraging the knowledge within the IFC schema 
to link the IFC-regulation concept pairs for improved relation classifi-
cation and thus improved information alignment. 

7. Conclusions and future work 

In this paper, a transformer-based method for automated context- 
aware IFC-regulation semantic information alignment was proposed. 
The proposed method uses a relation classification model to relate and 
align the regulatory concepts extracted from building codes and stan-
dards with the concepts in the IFC schema, where the natural-language 
definitions of the two sets of concepts and an IFC knowledge graph are 
used to provide supplemental contextual information and knowledge for 
finetuning a pretrained transformer-based model using transfer 
learning. The relation classification model was trained on IFC concept 
pairs consisting of natural-language canonical forms and definitions that 
were constructed automatically based on an IFC knowledge graph. The 
proposed method was tested using a developed gold-standard dataset 
that consists of 42,180 IFC-regulatory concept pairs. An average preci-
sion of 84.3%, recall of 83.3%, and F1 measure of 83.8% in alignment 

Table 8 
Performance of proposed method with different post-classification concept pair 
pruning thresholds.  

Threshold for top-k pruning Precision Recall F1 measure 

1 78.0% 77.6% 77.8% 
3 80.0% 79.6% 79.8% 
5 84.3% 83.3% 83.8% 
7 79.1% 78.7% 78.9% 
9 78.4% 78.0% 78.2% 

Note: Bolded font indicates highest performance; the pretrained ALBERT base 
model with 12 trainable transformer layers and natural-language definitions of 
IFC and regulatory concepts were used. 

Table 9 
Performance of proposed method on different types of regulatory documents.  

Type of regulatory document Precision Recall F1 
measure 

International Building Code (IBC) 82.7% 81.3% 81.9% 
International Energy Conservation Code (IECC) 82.5% 82.5% 82.5% 
Americans with Disabilities Act Standards 

(ADA Standards) 
91.4% 90.4% 90.9% 

Note: The pretrained ALBERT base model with 12 trainable transformer layers, 
natural-language definitions of IFC and regulatory concepts, and a threshold of 5 
for top-k in post-classification pruning were used. 
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was achieved. 
The analysis of the experimental results indicates that (1) it is 

important to adapt existing pretrained transformer-based models using 
domain- and task-specific data to capture the semantic and syntactic 
information that is specific to the data at hand for improved perfor-
mance; (2) the natural-language definitions and the IFC knowledge 
graph provided important sources of contextual information that could 
be leveraged by the transformer-based models for improved classifica-
tion; and (3) the proposed relation classification method showed good 
performance across different types of regulatory documents (IBC, IECC, 
and ADA Standards). 

In the future, the authors plan to focus on improving the proposed 
method in four directions. First, the relation classification could be 
improved by (1) injecting more contextual information or knowledge by 
refining the IFC knowledge graph and incorporating more concept def-
initions; (2) creating more training concept pairs from both IFC schema 
and other resources such as bSDD; and (3) increasing the scale and di-
versity of the testing IFC-regulatory concept pairs. Such improvements 
could greatly increase the model’s ability to deal with complex or rare 
concepts. Second, the post-classification pruning could be improved by 
(1) incorporating additional types of representations for computing 
word representations, such as the representations generated by trans-
former layers other than the final layer; (2) exploring different weight-
ing strategies for computing concept representations based on word 
representations; and (3) exploring different ranking strategies for 
pruning. This could help better leverage the semantic information 
learned by the pretrained transformer-based models with general- 
domain text data. Third, the information alignment process could be 
improved by exploring other more fine-grained classification systems, 
such as Omniclass and Uniclass, to facilitate bridging the gap between 
the natural-language regulatory concepts and the computer-processable 
building designs. Fourth, and most importantly, the authors plan to 
integrate the proposed method with other ACC methods, such as 
methods for regulatory text analytics (e.g., regulatory text classification, 
information extraction, and transformation), BIM information analytics, 
and compliance reasoning, in an integrated ACC platform. The planned 
ACC platform will consist of four modules to: (1) fully automatically 
process, interpret, and understand building-code requirements that are 
in the form of natural language, (2) transform the requirements into 
computer-processable forms, (3) align the representations of the re-
quirements with the representations of the IFC-based building designs 
(using the proposed method), and (4) perform compliance reasoning to 
determine whether the building designs comply with the requirements. 
Our ultimate goal is to leverage deep learning, text and knowledge an-
alytics, and other artificial intelligence approaches to reach a level 
where we can fully automatically process, represent, and understand the 
entire regulatory documents in the AEC domain and align and integrate 
them with the BIM-based designs for fully ACC. 
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