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Observational and model evidence together support
wide-spread exposure to noncompensable heat under
continued global warming
Carter M. Powis1*, David Byrne2, Zachary Zobel2, Kelly N. Gassert2, A. C. Lute2,
Christopher R. Schwalm2

As our planet warms, a critical research question is when and where temperatures will exceed the limits of what
the human body can tolerate. Past modeling efforts have investigated the 35°C wet-bulb threshold, proposed as
a theoretical upper limit to survivability taking into account physiological and behavioral adaptation. Here, we
conduct an extreme value theory analysis of weather station observations and climate model projections to
investigate the emergence of an empirically supported heat compensability limit. We show that the hottest
parts of theworld already experience these heat extremes on a limited basis and that undermoderate continued
warming parts of every continent, except Antarctica, will see a rapid increase in their extent and frequency. To
conclude, we discuss the consequences of the emergence of this noncompensable heat and the need for incor-
porating different critical thermal limits into heat adaptation planning.
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INTRODUCTION
There is a limit to the thermal conditions the human body can
survive without cooling assistance (1). Given that we live on a
warming planet, it is critical to understand whether these limits
could be exceeded as a result of changing environmental conditions
and, if so, where and when. Sherwood and Huber (2) propose one of
the most-cited upper limits to survivable environmental conditions
for human beings: six hours of exposure to 35°C wet-bulb (not to be
confused with the more common wet-bulb globe temperature),
which is defined as the temperature to which a parcel of air can
be cooled by evaporation at standard atmospheric pressure. Their
research used a simplified general circulation model (GCM) with
a slab ocean to suggest that a global average temperature increase
of 5° to 7°C would be necessary for temperatures to exceed 35°C
wet-bulb on Earth on an annual basis (2). Later analysis using en-
sembles of fully dynamic coupled atmospheric-ocean GCMs
(AOGCMs) or Earth system models (ESMs) suggested that these
temperatures could occur with less-than-annual return periods
across some regions, specifically the Persian Gulf and South Asia,
given the global average temperature increases of 3° to 4°C, indicat-
ing that lethal heat could first emerge near the end of the century
under a pathway of substantial continued emissions or high climate
sensitivity (3–8). The application of statistical methods to observa-
tional reanalysis and weather station data has also been used to
provide a second line of evidence for the emergence of 35°C wet-
bulb heat extremes. Reanalysis-based studies demonstrated geo-
graphically limited observations already reaching, and even briefly
exceeding, the 35°C wet-bulb threshold in the Persian Gulf, with a
34.6°C observation made in July of 2015 and a 35.4°C observation in
2016 (9). Furthermore, HadISD weather station data demonstrate
that there are 21 weather stations across the globe that have observed
maximum wet-bulb temperatures at or above 35°C in the historical
record (10). Statistical extrapolation of trends in reanalysis data

suggests that 35°C wet-bulb temperatures will first emerge at a
grid-cell (reanalysis) level over land, given less than 2.5°C of
global warming (10).

Sherwood and Huber’s 35°C wet-bulb threshold was proposed as
a theoretical upper limit to survivable temperature taking into
account maximum physiological and behavioral adaptation.
Recent research has demonstrated that the use of a single wet-
bulb temperature to determine survivability is an overly simple ap-
proach (11) and that heat-driven morbidity and mortality outcomes
are a function of a number of variables including (i) a much wider
and less-extreme range of environmental exposure (12), (ii) the
physical health and level of heat acclimatization of the exposed pop-
ulation (13), and (iii) the availability and efficacy of heat adaptation
strategies and tools (14–15). Here, we make use of laboratory-
derived physiological data (Fig. 1) to examine the emergence of
an empirically supported heat compensability limit (“noncompen-
sable heat stress”) under various levels of global warming (12). Non-
compensable heat stress is defined as the set of environmental
conditions under which a healthy human being can no longer
maintain a stable core temperature without the assistance of exter-
nal cooling. All else held equal, exposure to 6 hours of noncompen-
sable heat could result in a lethal rise in core temperatures for a
healthy human being (see Materials and Methods for more
details) (16).

It is not possible to link noncompensable heat stress directly to
projections of morbidity or mortality due to the same confounding
variables discussed with reference to the 35°C wet-bulb survivability
threshold. However, it remains a policy-relevant metric because it
represents a possible inflection point in the historical relationship
between temperature and population morbidity and mortality.
Communities are often only prepared for extreme temperature
events within the bounds of past experience, and populations
only acclimatized to the present climate (17). As discussed else-
where, the likelihood of experiencing abrupt transient temperature
extremes well outside of the boundaries of historical experience is
increasing everywhere (17). Should a noncompensable heat extreme
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occur in a region where the local population is unprepared and not
sufficiently acclimatized, the number of excess deaths that result
could markedly exceed the impacts of past local extremes. To under-
stand where and when these noncompensable conditions could
occur, we conduct an extreme value analysis of both weather-
station observations and bias-corrected and downscaled projections
from CMIP6 (Coupled Model Intercomparison Project 6), the latest
ensemble of climate models.

RESULTS
To examine the incidence of noncompensable heat stress in the
global historical record, we used HadISD weather station data
(v3.3.0.2022f ) (18) (Fig. 2). There are limited incidences of non-
compensable heat stress in weather station records ranging back
to at least 1950. Between 1970 and 2020, there were 357 stations
across the globe (approximately 4% of total examined) that experi-
enced at least one 6-hour period of noncompensable heat stress.
These stations are broadly constrained either to high-heat, high-hu-
midity regions such as Persian Gulf, Red Sea, and the Indo-Gangetic
Plain or extreme dry-heat regions such as West Australia and the
Sonoran Desert.

The Persian Gulf and Red Sea regularly record the highest humid
heat extremes on the planet (2, 3). This region experiences regular
clear sky conditions owing to rising air over the monsoon region to
the east, causing subsidence and thus suppressing deep convection
(19). In addition, the region’s surface albedo is low and the major
bodies of water shallow, resulting in absorption of solar radiation
and increased water vapor and heat retention at the surface,
which is moved inland by air currents (3). The Indo-Gangetic
plain is another region known for its extreme humid heat, driven
by the Indian monsoon system transporting warm and humid air
masses inland from the Arabian Sea and Bay of Bengal and by sub-
stantial levels of local irrigation (4). El Niño years are particularly
correlated with abnormal heat waves in the region, given delays to
the onset of the summer monsoon that allow for a build-up of
extreme inland temperatures before the seasonal introduction of
moisture and humidity to the region (20–21). In these regions, non-
compensable heat stress is driven by a reduction of the human
body’s ability to exhaust heat through the evaporation of sweat,
given a reduced vapor pressure differential between the surface of
the skin and atmosphere (2, 12).

In contrast, hot-dry regions such as the Sonoran Desert can
produce noncompensable heat stress with extreme air temperatures
alone. With essentially free evaporation occurring in hot-dry

Fig. 1. Wet-bulb temperature isopleths and the human noncompensable heat threshold. Wet-bulb temperature isopleths in blue for 35° (bold), 30°, and 25°C
(dashed) at standard atmospheric pressure. 35°C wet-bulb is the survivability threshold proposed by Sherwood et al. (2). A quadratic function fit to empirical evidence
for conditions resulting in noncompensable heat stress is displayed in orange. Noncompensable heat stress occurs at points above the orange line and compensable
below. Empirical evidence is drawn from two sets of experiments conducted as part of Vecellio et al. (12): three high-humidity experiments and three high-heat. The
average environmental conditions at which heat stress became noncompensable for all participants in each experiment are plotted as points in black. Fit function and R2

value are in legend.
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regions, the human body does not increase its sweat rate to compen-
sate for the relatively higher dry heat gains compared to an environ-
ment with both extreme temperatures and humidity levels. Hence,
noncompensable heat stress tends to occur earlier in hot-dry envi-
ronments compared to those that are hot-humid (12). The Sonoran
Desert generates some of the world’s highest air temperatures given
its location in a low-elevation basin beneath a persistent subtropical
atmospheric ridge and rain shadow. The resulting aridity reduces
the region’s ability to exhaust heat in soil via evapotranspiration,

and surface heat imbalances are instead compensated for through
longwave radiation flux adjustments (22–23).

To understand how noncompensable heat stress has responded
to historical increases in global average temperature, we also exam-
ined change in the geographic extent and frequency of observations,
controlling for the increase in number of stations over time by re-
moving any station with a dataset beginning between 1970 and 2020
(Fig. 2B). There has been a substantial historical increase in fre-
quency of noncompensable heat as a function of increase in
global average temperature, with the annual number of observations

Fig. 2. Observations of noncompensable heat in weather station records. (A) Total number of 6-hour noncompensable heat observations by weather station
between 1970 and 2020. (B) Count of total number of weather stations with at least one noncompensable observation between 1970 and 2020 (blue) and count of
total number of observations across all stations (red) for the same time period. Data controlled for increase in number of reporting stations by removing all stations with a
dataset beginning between 1970 and 2020.
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increasing on average by about 110 per decade or roughly doubling
between 1970 and 2020. Local peaks in both number of stations ex-
periencing noncompensable heat and the frequency of these obser-
vations during the El Niño events of 1997, 2010, and 2016 are
notable. The number of stations recording at least one 6-hour
period of noncompensable heat stress has not yet demonstrated a
statistically significant trend over time. Hence, note that only
already heat-adapted populations have been exposed to noncom-
pensable heat extremes to date. Given continued increase in air tem-
peratures across the globe, humidity in specific regions, and in the
frequency of extreme El Niño events (24), we expect both the geo-
graphic range and frequency of noncompensable heat to increase
going forward, exposing additional populations to increased levels
of heat risk and further necessitating comprehensive heat adapta-
tion strategies.

Statistical extrapolation of weather station
observation trends
To understand how the incidence and range of noncompensable
heat extremes could increase under continued planetary warming,
we performed a statistical extrapolation of the temperature and hu-
midity trends contained in HadISD weather station data. We did so
by identifying the stations exhibiting annual block maxima that
could be appropriately described by a nonstationary generalized
extreme value (GEV) distribution, wherein the distribution location
is parameterized as a linear function of global average temperature
(full details in Materials and Methods). Nonstationary GEV distri-
butions have a long history of application to the projection of future
climate extremes from both observational and modeled data (25–
28), including the projection of lethal heat extremes (10). Estimated
return periods were then calculated from each station’s respective
GEV distribution for a year with at least 1 day of 6-hour exposure
to noncompensable heat stress under six different warming regimes:
global average temperatures at 0.5°C increments between 1° and
3.5°C warmer than the preindustrial average (Fig. 3).

Our results demonstrate that under a 1°C increase in global
average temperatures, an occurrence of at least 6 hours of noncom-
pensable heat stress is currently less than a once-in-a-century event
for the majority of the land surface of the planet or 82.5% of weather
stations examined. The exceptions to this rule are found in the
world’s most extreme hot-humid or hot-dry regions: the Persian
Gulf, the Indo-Gangetic Plain, parts of the Indonesian Archipelago
and the east coast of China, the Northern coast of Australia, and
parts of coastal Central America. There is also a small cluster of sta-
tions in the American Midwest where fitting a nonstationary GEV
distribution produces a return period larger than what might be in-
tuited from the number of historical observations alone. Extreme
value distributions can take three generalized forms, one of which
exhibits a steep right tail. When modeling humid heat extremes, it is
common to find that this distribution is the most appropriate fit,
given a convective instability threshold that makes loading the at-
mosphere with additional water impossible without inducing
storm activity (2). A corollary of this fact is that it takes only a
very small adjustment in the location of the mean of such a distri-
bution to drive large increases in return periods of heat extremes.
This is the case here, wherein using the GEV fit adds fidelity to a
return period calculation that otherwise would be based purely on
observations largely sampled outside the current climate state, given
the rapid rise in global average temperatures (26).

Given only a 2°C increase in global average temperatures, the
percentage of stations globally for which noncompensable heat
occurs less than once in a century will decline from 82.5 to 63.9%.
The percentage of stations for which these extremes become decadal
events will increase from 8.1 to 25.3% (note here that these percent-
ages are calculated relative to the subset of stations used for the GEV
analysis, not the total HadISD dataset: see Materials and Methods).
Outside of the general increase in frequency and geographic range
of noncompensable heat stress as the planet warms, two other note-
worthy phenomena are the rapid advances of noncompensable heat
exposure north within the East Coast and Midwest regions of the
United States and north from the Mediterranean into Europe
between 1° and 2°C.

Under 1°C warming, only 2.9% of stations in Europe exhibit a
return period for a noncompensable heat event more frequent
than 1-in-100 years. By 2°C, this has increased to 24.5% and by
3.5°C to 43.4%. Under 2°C, warming noncompensable heat events
become a decadal occurrence for 12.6% of European stations and
for 49.1% under 3.5°C (Fig. 4). The stations seeing the largest in-
creases in return-period frequency are located in the Balkan states
and central Europe, including Germany, Switzerland, and parts of
Italy. This marked increase in frequency and extent of noncompen-
sable heat events is in line with current understanding of the dy-
namics governing European temperature extremes and their
evolution under continued global warming. It is well understood,
for example, that the hottest European days are warming faster
than the mean summer day (29) and that extreme heat events in
this region are projected to increase disproportionately compared
to the global mean temperature in the future (30). It has also been
demonstrated that the observed magnitude of increases in heat ex-
tremes in Europe is not captured appropriately even by the most
contemporary ensemble of climate model projections (31–32).
While the exact mechanism for this rapid increase in heat extremes
is not yet well understood, several possible phenomena have been
proposed: (i) declining early-summer soil moisture (33), (ii) a weak-
ened poleward temperature gradient at mid to high latitudes caused
by shrinking Arctic sea ice and Eurasian snow cover (34), (iii) in-
creased frequency of high pressure over Europe due to a summer
slowdown of the Atlantic meridional overturning circulation (35),
and (iv) the stagnation of ridges and troughs in the mid-latitudes
linked to the increased formation of double jets in the troposphere
(32).

In the United States, under 1°C warming, 17.9% of stations
exhibit a noncompensable heat return period more frequent than
1-in-100 years (and 7% return periods more frequent than 1-in-
10 years). This percentage increases to 28.3% (20.9%) by 2°C and
44.7% (40.2%) by 3.5°C (Fig. 4). In the hottest locations, noncom-
pensable heat approaches an annual event. Drivers of increases in
heat extremes across the United States are highly regionally depen-
dent (36) and include changes in the frequency of large-scale anti-
cyclonic circulation patterns due to Arctic amplification (37) and
changes in land-atmosphere feedbacks including, for example, the
strongly negative correlation between atmospheric transient eddies
and surface temperature over the Western and Northeastern United
States (36). Our results suggest that the most marked increase in
noncompensable heat extreme frequency will occur across the
Great Plains region. Other work has identified a weakening and in-
crease in variability of the Great Plains low-level jet as a key driver of
future heat extreme behavior in this region (38–39). Note that, in the
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Southern High Plains, present-day rates of groundwater depletion
will necessitate a reduction in the scale of irrigation going forward
(40), which, in turn, could also have substantial impact on the sus-
ceptibility of the region to increasing heat extremes and may already
be reflected in weather station data (41).

Analysis of weather station data offers important benefits when
considering how future heat extremes may evolve under a warming
climate, the principal of which is their ability to precisely capture

local conditions. This offers an advantage over other resources, as
trends in temperature extremes are often heavily influenced by hy-
perlocal environmental factors including geography, vegetation, ir-
rigation, urban heat island/cool island effects, and aerosol
concentrations, which are not captured, or not accurately captured,
by coarser tools such as observational reanalysis (10, 42–46).
However, there are also weaknesses of observational data, including
the confoundment of long-term climatological trends by short-term

Fig. 3. Estimated return periods for at least 6 hours of continuous noncompensable heat stress in a given year. Panels contain results for climate regimes rep-
resenting 0.5°C increments between a 1° and 3.5°C increase in global average temperature above preindustrial baseline. Return periods estimated by nonstationary GEV
extrapolation of observed weather station data between 1970 and 2020. Density of results alone should not be considered a proxy for magnitude of exposure—the
density of results is primarily a function of the locations of high-quality weather station data.
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trends in the environmental factors, potential biases from observa-
tional procedures, instrumentation type, siting, and incomplete
spatial coverage, as well as the possibility that local climate will
exhibit a nonlinear response to global average change (10, 47).
While, here, we have taken efforts to only investigate observational
events that show a clear correlation with global average temperature,
it is still therefore important to test our station data–based projec-
tions with other complimentary lines of evidence. One such possi-
ble line of evidence is bias-corrected projections from an ensemble
of contemporary climate models, which have been widely and suc-
cessfully used for analyzing and projecting extreme temperatures
(3–5, 46, 48–49).

Climate model projections
To investigate whether using fully dynamic process–based models
would provide materially different answers to the question of how
the range and frequency of noncompensable heat evolve under a
warming climate, we examined projections of changing return
periods under different levels of global warming directly from 17
bias-corrected and statistically downscaled ESMs/AOGCMs from
the CMIP6 ensemble (Fig. 5). In addition to providing an opportu-
nity to compare our weather station–based results to a physical sim-
ulation, the other benefit of climate ensemble–derived projections is
the availability of 510 years of simulated observations for each
warming period, compared to 50 years of direct observation, pro-
viding roughly 10× the data from which to extract return period in-
formation. As a general rule, the fidelity of return period statistics
for extreme heat events increases with the sample size from which
they are derived (50).

Because climate models do not resolve all local processes that in-
fluence weather station–based observations and there are substan-
tial differences in scale between the two datasets (the model data
have a downscaled resolution of 0.5° by 0.5° or ~55 km by 55 km
at the equator), we expected a priori that return periods should
differ between the two projections. Hence, to compare the separate

lines of evidence, we investigated differences in the geographic dis-
tribution of return period thresholds, instead of the exact return
periods of individual stations. In the present-day climate, regions
estimated by the CMIP6 ensemble to experience noncompensable
heat more frequently than 1-in-100 years contain 86.9% of weather
stations with the same estimated return period. This excludes
Europe and Japan due to known or identified problems with the
model projections. Regions estimated to experience decadal
return periods contain 70.1% of weather stations with return
periods under the decadal threshold. Under increasing global
average temperatures, the overlap between the two sets of results in-
creases to 94.8 and 97.4% for the 1-in-100-year event and 87.8 and
96.9% for the 1-in-10-year event at 2° and 3.5°C respectively. We
suggest that the independent agreement in the broad geographic
distribution of high-frequency extremes across all six warming
regimes is a strong argument for the fidelity of both results. This
said, the two excluded regions are notable exceptions that must be
explored.

The European continent was excluded from the above compar-
ison because of the inability of the CMIP6 ensemble to capture the
marked increase in heat extremes suggested by observational trends
in that region. This is a known deficiency of global climate models
already discussed at length above. The second exception is the lack
of noncompensable heat exposure in Japan, which contains a large
number of weather stations exhibiting return periods more frequent
than 1-in-10 years given 2°C of global average temperature increase
but return periods less frequent than 1-in-100 years in the CMIP6
projections across all warming levels. The CMIP6 models have a
known low bias in specific humidity across the Japanese isles,
driven by the difficulty with which GCMs simulate meridional
moisture flux convergence in that region (51). This suggests that
the bias could exhibit nonstationary characteristics and therefore
may not be appropriately resolved via applied bias correction ap-
proaches; however, further investigation is needed to confirm the
precise driver.

Fig. 4. Estimated global and regional return periods for noncompensable heat extremes under different global warming regimes. Panels illustrate the percent-
age of weather stations exhibiting a given return period for noncompensable heat (A) globally, (B) in the continental United States, and (C) across the European continent,
under climate regimes representing 0.5°C increments between a 1° and 3.5°C increase in global average temperature above preindustrial baseline. Return periods es-
timated by nonstationary GEV extrapolation of a subset of observed weather station data between 1970 and 2020.
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Last, there are 17 weather stations across Central Asia that exhibit
more frequent than 1-in-100-year return periods not matched by
the CMIP6 ensemble. There are several possible reasons for this.
For example, poor data quality in the region (47), rapid urbaniza-
tion, and recent decreases in some types of aerosol concentration
(52) could be confounding the weather station results. There is
also evidence supporting substantial temperature biases across
Central Asia in both CMIP5 and CMIP6 (46, 53) and across reanal-
ysis products including European Centre for Medium-Range
Weather Forecasts Reanalysis v.5 (ERA5) due to sparseness of avail-
able observational data (54). Given the P value of 0.05 used in the
statistical analysis here, we expect roughly 5% of all stations to

exhibit spurious trends, which, given the small number of stations
in Central Asia, could also account for a proportion of the difference
in results in this case.

DISCUSSION
In this study, we investigate the global emergence of an empirically
supported noncompensable heat limit. We demonstrate that the
geographic range and frequency of noncompensable heat extremes
will increase rapidly, given only moderate continued increase in
global average temperatures. This implies that, in the near future,

Fig. 5. Estimated return periods for at least 6 hours of continuous noncompensable heat stress in a given year. Panels contain results for climate regimes rep-
resenting 0.5°C increments between a 1° and 3.5°C increase in global average temperature above preindustrial baseline. Return periods estimated using projections from
bias-corrected and downscaled CMIP6 ensemble of ESMs.
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a substantial portion of the world’s population will be exposed to
these noncompensable environmental conditions.

When considering the implications of these findings, we must
take into account the multiple observations of noncompensable
heat stress in the historical record, largely in high-population
areas with low air-conditioning penetration (4) and the limited cor-
responding record of mass-casualty heat events among healthy
human beings. Recent multicountry studies have demonstrated
only a small increase, and in some regions a decline, in heat-
related mortality (55–58) despite the well-established increase in
frequency and severity of heat extremes over the past several
decades discussed here and at length elsewhere (24). Behavioral
and physiological heat adaptations are a critical confounding vari-
able in interpreting the implications of projected future environ-
mental conditions (11). In particular, there are many available
forms of adaptation outside of air conditioning, including adjusting
behavior (such as slowing, stopping, and/or seeking refuge in shade,
water, or other naturally cooled environments) (14), electric fan use
(15), aerobic training, and acclimatization (13). In addition, there
are physiological factors that can decrease resiliency among specific
populations, including advanced age (59), preexisting illnesses that
result in compromised immune systems or reduced cardiovascular
function (60), and the detrimental mental health impacts of extreme
heat (61, 62).

Combinations of epidemiological data and future temperature
projections from climate models have been used elsewhere in an
attempt to implicitly incorporate the impact of these behavioral
and physiological adaptations into projections of future heat-
driven mortality and morbidity. This includes the estimation of
country-level temperature-related mortality damage functions
(63), of trade-offs between future economic growth and excess
heat-related mortality (64–65) and of subcountry-level heat-
related mortality risk under different warming scenarios, for
example, (66–68). However, these projections are predicated on
the assumption that the historical relationship between environ-
mental conditions and population vulnerability characteristics will
remain constant or evolve smoothly, an assumption, which we
know that a priori is not true as both behavioral and physiological
adaptation will change over time and exhibit limits in the level of
heat stress that they can mitigate (13). As a result of the changing
relationship between heat and mortality, translating exposure to
specific environmental conditions into precise mortality and mor-
bidity impacts is very difficult.

This does not, however, mean that projections of future environ-
mental conditions alone cannot be useful tools for understanding
the risks of mitigation failure or for planning necessary adaptation
efforts. In particular, even if the precise mortality and morbidity
impacts are not quantifiable a priori, understanding the emergence
of critical thermal limits can help policymakers inform their adap-
tation responses by identifying events that could substantively
change the nature of impacts on the populations they are responsi-
ble for. Noncompensable heat is one such critical threshold.

Given that the noncompensable heat limit was calculated from
experiments conducted on participants from a “warm-summer
humid continental” (Dfb) climate zone (12), the lack of correspond-
ing mortality or morbidity outcomes highlighted above is expected,
as, to date, these extremes have only occurred in the hottest regions
of the world, which are home to populations exhibiting substantial
physiological and behavioral heat adaptation to heat extremes.

However, climate change is driving the emergence of extreme
events far outside of the range of historical experience across the
world (17); in most locations, behavioral adaptation is tailored to
historical experience (17), and physiological heat adaptation is a
process that requires weeks of exposure to elevated temperatures
(13). Hence, the increase in the geographic range of noncompensa-
ble heat events described above could cause a discontinuity in the
historical relationship between heat and mortality for large parts of
the world in the near term. There is a real risk of hundreds of mil-
lions of people being exposed to noncompensable heat as part of an
extreme event before they are sufficiently physiologically and behav-
iorally heat-adapted to avoid attendant increases in mortality and
morbidity.

We stress that the single threshold investigated here is most rep-
resentative for mid-latitude populations and that further investiga-
tion will be necessary to better understand how the
noncompensable heat limit changes as a function of subject accli-
matization and as a result of the influence of other environmental
factors including radiative load (e.g., sunlight), forced convection
(e.g., wind speed), and duration of exposure (12). Nonetheless,
our findings contribute to a more robust understanding of when
and where differing critical thermal limits could be breached, so
that policymakers can ensure the near-term sufficiency of heat
action and adaptation plans based on the unique vulnerabilities of
the regions for which they are responsible. Assuming that temper-
ature-driven morbidity and mortality will continue to evolve follow-
ing historical patterns, even in the near term, or that critical thermal
limits will not be passed barring substantial increases in global
average temperature (as with the 35°C wet-bulb threshold) will
lead to myopic preparation for future heat risk, and so unnecessarily
increase, perhaps markedly, the impacts of near-term
climate change.

MATERIALS AND METHODS
For the purposes of this analysis, we defined noncompensable heat
stress as more than 6 hours of exposure to environmental condi-
tions exceeding the physiological limits established in laboratory ex-
periments conducted as part of the Pennsylvania State University
Human Environmental Age Thresholds (PSU HEAT) project de-
scribed in Vecellio et al. (12). The data provided by Vecellio et al.
were converted to a heat threshold by fitting a quadratic function to
the average noncompensable conditions observed across all partic-
ipants for each of the six individual experiments conducted as part
of their study (Fig. 1). The rationale behind the choice of a 6-hour
exposure time was as follows: A healthy human core temperature
ranges from 36° to 37°C. Death occurs given core temperatures
greater than 43°C (1). As measured in-laboratory, when exposed
to noncompensable heat, core temperature rises at an average of
about 1°C/hour (16). Given at least 6 hours of exposure to noncom-
pensable heat, therefore, a healthy, nonheat-adapted human being
could see their core temperature rise to lethal levels. To investigate
the sensitivity of our results to a changing duration of exposure, we
also calculated return periods for 9- and 12-hour periods of expo-
sure (see the Supplementary Materials).

To examine the emergence of this noncompensable heat stress
exposure in the future, we investigated statistical trends in weather
station observations and climate model projections of annual tem-
perature block maxima (the 6-hour period with the largest average

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Powis et al., Sci. Adv. 9, eadg9297 (2023) 8 September 2023 8 of 12

D
ow

nloaded from
 https://w

w
w

.science.org at T
ongji U

niversity on N
ovem

ber 06, 2023



noncompensable heat value for a given location and year). Weather
station data were taken from the HadISD v3.3.0.2022f database,
which is a quality-assured, global subdaily dataset based on the
ISD dataset from National Oceanic and Atmospheric Administra-
tion’s National Centers for Environmental Information (NCEI)
(18). Climate model data were taken from 17 members of the
CMIP6 ensemble of ESMs/AOGCMs (see Table 1 below). The fre-
quency with which meteorological observations are recorded varies
from station to station, and, in some cases, hourly data are not avail-
able. In addition, hourly CMIP6 data are not always available and
are computationally expensive to work with. To ensure a uniform
time frequency across all data sources, we used an extrapolatory
methodology to estimate hourly data from daily statistics—the
mean, maxima, and minima of temperature and relative humidity.
By assuming that temperature and relative humidity are sinusoidal
on the daily scale, we can estimate high-frequency time series for
each model point or observational station by fitting a sinusoid to
daily maxima, minima, and means. The fitting procedure is
straightforward as we only require the amplitude, assuming that
the frequency is 24 hours and the relative phase between the two
variables is 180° (Fig. 6). This method has been validated elsewhere
(69).

We then used hourly temperature and the respective relative hu-
midity values across both datasets to calculate a scalar distance from
the noncompensable heat function discussed above, such that a dis-
tance of 0 indicates a point on the function, negative values indicate
compensable heat, and positive values indicate noncompensable
heat. Last, scalar distances are normalized to a binary scale indicat-
ing noncompensable (1) or compensable (0) temperatures.

Weather station analysis
During the production of the HadISD dataset, strict station selec-
tion criteria are applied, and a suite of quality control tests are con-
ducted on major climatological variables (47). Nonetheless,
additional quality control measures were required to prepare the
data for analysis. We first removed all nonland-based stations, all
stations north of 60°N and south of 60°S, all stations missing
more than 50% of their data between 1970 and 2020, and, last,
any stations where the 6-hour period with the highest average non-
compensable heat value between 1950 and 1990 was larger than any
period after 2000 (10). This reduced the available number of stations
from 9555 to 4209. To account for erroneous data arising from in-
strumental or observer error that could otherwise bias the extraction
of long-term trends from station data, we also considered data ho-
mogeneity. The pairwise homogeneity of HadISD data has been as-
sessed elsewhere using the Menne-Williams algorithm (70).
Stations for which the pairwise homogenization algorithm could
not be run and, therefore, for which inhomogeneity values were
not available or for which temperature inhomogeneity values are
greater than 1°C were removed from the analysis, reducing available
stations from 4209 to 3724.

Of the remaining 3724 quality-assured station datasets, 2110
were missing less than five consecutive observations, and 1614
were missing more. For those missing less than five consecutive ob-
servations, missing data were filled using nonlinear regression of the
remaining station time series. For those missing five or more con-
secutive observations, the missing data were filled using a simplified
adaptation of the algorithm in Tarvido and Berti (71), wherein, for
each station, the three geographically closest stations with complete
datasets were identified, and the missing data were interpolated
using multivariate linear regression with the identified station
time series as predictors. Regression-based methods have been
demonstrated to produce more robust results compared to
within-station or between-station methods when backfilling tem-
perature observations (71). If there were not three stations with
complete time series within a 100-km radius of the station in ques-
tion, then that station was removed from the dataset. This process
produced a dataset of 2512 stations with complete annual block
maxima observations between 1970 and 2020, which was used as
the basis for our analysis. Annual block maxima were examined
for autocorrelation before analysis.

To extrapolate observed trends in the scalar value of annual non-
compensable heat maxima, we fit a stationary GEV distribution to
annual 6-hour block maxima extracted from each remaining
weather station using the Nelder-Mead algorithm for maximum
likelihood estimation and performed a Kolmogorov-Smirnov (KS)
test to ensure that the block maxima could be appropriately
modeled by such a distribution at a P = 0.05 significance level.
Both the GEV fit and the KS test were performed using a Python
package specifically developed for the analysis of climate extremes
(72). The cumulative probability density function for the GEV dis-
tribution can be given as follows:

Fðx; μ; σ; ξÞ ¼ exp � 1þ ξ
x � μ

σ

� �h i� 1=ξ
� �

ð1Þ

Only two stations failed the KS test and, hence, were removed.
Having identified the stations that can be modeled by GEV distri-
butions, we then fit both stationary and nonstationary GEV

Table 1. CMIP6 models used in analysis.

Model name Horizontal resolution

ACCESS-CM2 1.9 × 1.3

ACCESS-ESM1-5 1.9 × 1.3

CanESM5 2.8 × 2.8

CNRM-CM6-1 1.4 × 1.4

CNRM-CM6-1-HR 0.5 × 0.5

CNRM-ESM2-1 1.4 × 1.4

EC-Earth3-Veg-LR 1.1 × 1.1

FGOALS-g3 2.0 × 2.0

GFDL-CM4 1.3 × 1.0

INM-CM4-8 2.0 × 1.5

INM-CM5-0 2.0 × 1.5

IPSL-CM6A-LR 2.5 × 1.3

MIROC6 1.4 × 1.4

MIROC-ES2L 2.8 × 2.8

MPI-ESM1-2-HR 0.9 × 0.9

MPI-ESM1-2-LR 1.9 × 1.9

MRI-ESM2-0 1.1 × 1.1
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distributions to each. For the nonstationary distributions, the loca-
tion variable was parameterized as a linear function of global
average temperature increase

ξðTtÞ ¼ a1 þ a2ðTtÞ ð2Þ

A log-likelihood ratio test was then performed for each station to
test the goodness of fit of both distributions. Under this test, the dif-
ference of the log likelihoods of the data under the two models is
calculated to obtain the Log-Likelihood Ratio (LLR) statistic, Λ,
which is then compared to a chi-squared distribution with
degrees of freedom equal to the difference in the number of param-
eters between the two models. Weather stations where the nonsta-
tionary GEV fit results in a statistically significant improvement in
goodness of fit at the P = 0.05 level were retained

qPðΛ ¼ c jH0Þ þ PðΛ , c jH0Þ ¼ α ð3Þ

Having performed both KS tests and log-likelihood ratio tests,
the number of stations that can be acceptably modeled using a non-
stationary GEV distribution was reduced from 2512 to 1410. With
the remaining 1410 stations, the nonstationary GEV distributions
were used to calculate the return period for an event with a scalar
noncompensable heat magnitude greater than 0, indicating a non-
compensable event, under global average temperature increases of
0.5°C increments between 1° and 3.5°C.

Climate model analysis
There are some concerns related to the use of coarse-grain climate
models for conducting local heat extreme projections, particularly
when looking at changes in extremes relative to a reference period
against which you also bias-correct (73). To address these concerns,
we bias-corrected and statistically downscaled the raw CMIP6 data
following the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) framework and using the W5E5 reanalysis product, a
merged dataset combining WATCH Forcing Data Methodology
Applied to ERA5 Reanalysis (WFDE5) data over land with ERA5
data over the ocean (74–78). The ISIMIP framework is specifically
designed to downscale ESM ensembles to derive projections of the
impacts of climate change across multiple temporal and spatial
scales and has been applied widely and successfully to questions
of future temperatures and health (79–81). All models were down-
scaled to a resolution of 0.5° by 0.5°.

Note that systemic issues with cloud representation cause some
of the CMIP6 models to have unrealistically high climate sensitivi-
ties (82). We therefore structured our projections around common
levels of observed surface warming, instead of common time
periods along a forcing scenario—specifically, for each model,
data were extracted for the three-decade period where mean
global average temperatures first reach the indicated warming
level. Having followed the procedures above, return periods for
noncompensable heat stress were calculated directly from ensemble
observations, treating each ensemble member as an independent
sample of 30 years of observations from a given climate state. The
list of models can be found in Table 1.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
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