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Large language models encode clinical 
knowledge
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Perry Payne1, Martin Seneviratne1, Paul Gamble1, Chris Kelly1, Abubakr Babiker1, 
Nathanael Schärli1, Aakanksha Chowdhery1, Philip Mansfield1, Dina Demner-Fushman2, 
Blaise Agüera y Arcas1, Dale Webster1, Greg S. Corrado1, Yossi Matias1, Katherine Chou1, 
Juraj Gottweis1, Nenad Tomasev3, Yun Liu1, Alvin Rajkomar1, Joelle Barral1, 
Christopher Semturs1, Alan Karthikesalingam1,5 ✉ & Vivek Natarajan1,5 ✉

Large language models (LLMs) have demonstrated impressive capabilities, but the 
bar for clinical applications is high. Attempts to assess the clinical knowledge of 
models typically rely on automated evaluations based on limited benchmarks. Here, 
to address these limitations, we present MultiMedQA, a benchmark combining six 
existing medical question answering datasets spanning professional medicine, 
research and consumer queries and a new dataset of medical questions searched 
online, HealthSearchQA. We propose a human evaluation framework for model 
answers along multiple axes including factuality, comprehension, reasoning, possible 
harm and bias. In addition, we evaluate Pathways Language Model1 (PaLM, a 540-billion 
parameter LLM) and its instruction-tuned variant, Flan-PaLM2 on MultiMedQA. Using 
a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy 
on every MultiMedQA multiple-choice dataset (MedQA3, MedMCQA4, PubMedQA5 
and Measuring Massive Multitask Language Understanding (MMLU) clinical topics6), 
including 67.6% accuracy on MedQA (US Medical Licensing Exam-style questions), 
surpassing the prior state of the art by more than 17%. However, human evaluation 
reveals key gaps. To resolve this, we introduce instruction prompt tuning, a parameter- 
efficient approach for aligning LLMs to new domains using a few exemplars. The 
resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. 
We show that comprehension, knowledge recall and reasoning improve with model 
scale and instruction prompt tuning, suggesting the potential utility of LLMs in 
medicine. Our human evaluations reveal limitations of today’s models, reinforcing 
the importance of both evaluation frameworks and method development in creating 
safe, helpful LLMs for clinical applications.

Medicine is a humane endeavour in which language enables key interac-
tions for and between clinicians, researchers and patients. Yet, today’s 
artificial intelligence (AI) models for applications in medicine and 
healthcare have largely failed to fully utilize language. These models, 
although useful, are predominantly single-task systems (for example, 
for classification, regression or segmentation) lacking expressivity and 
interactive capabilities7–9. As a result, there is a discordance between 
what today’s models can do and what may be expected of them in 
real-world clinical workflows10.

Recent advances in LLMs offer an opportunity to rethink AI sys-
tems, with language as a tool for mediating human–AI interaction. 
LLMs are ‘foundation models’11, large pre-trained AI systems that can 
be repurposed with minimal effort across numerous domains and 
diverse tasks. These expressive and interactive models offer great 

promise in their ability to learn generally useful representations from 
the knowledge encoded in medical corpora, at scale. There are several 
exciting potential applications of such models in medicine, includ-
ing knowledge retrieval, clinical decision support, summarization 
of key findings, triaging patients, addressing primary care concerns  
and more.

However, the safety-critical nature of the domain necessitates 
thoughtful development of evaluation frameworks, enabling research-
ers to meaningfully measure progress and capture and mitigate poten-
tial harms. This is especially important for LLMs, since these models 
may produce text generations (hereafter referred to as ‘generations’) 
that are misaligned with clinical and societal values. They may, for 
instance, hallucinate convincing medical misinformation or incorpo-
rate biases that could exacerbate health disparities.
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To evaluate how well LLMs encode clinical knowledge and assess 
their potential in medicine, we consider the answering of medical 
questions. This task is challenging: providing high-quality answers to 
medical questions requires comprehension of medical context, recall 
of appropriate medical knowledge, and reasoning with expert informa-
tion. Existing medical question-answering benchmarks3 are often lim-
ited to assessing classification accuracy or automated natural language 
generation metrics (for example, BLEU12) and do not enable the detailed 
analysis required for real-world clinical applications. This creates an 
unmet need for a broad medical question-answering benchmark to 
assess LLMs for their response factuality, use of expert knowledge in 
reasoning, helpfulness, precision, health equity and potential harm.

To address this, we curate MultiMedQA, a benchmark comprising 
seven medical question-answering datasets, including six existing data-
sets: MedQA3, MedMCQA4, PubMedQA5, LiveQA13, MedicationQA14 and 
MMLU clinical topics6. We introduce a seventh dataset, HealthSearchQA, 
which consists of commonly searched health questions.

To assess LLMs using MultiMedQA, we build on PaLM, a 540-billion 
parameter (540B) LLM1, and its instruction-tuned variant Flan-PaLM2. 
Using a combination of few-shot15, chain-of-thought16 (COT) and 
self-consistency17 prompting strategies, Flan-PaLM achieves 
state-of-the-art performance on MedQA, MedMCQA, PubMedQA and 
MMLU clinical topics, often outperforming several strong LLM baselines 
by a substantial margin. On the MedQA dataset comprising USMLE-
style questions, FLAN-PaLM exceeds the previous state of the art by 
more than 17%.

Despite the strong performance of Flan-PaLM on multiple-choice 
questions, its answers to consumer medical questions reveal key gaps. 
To resolve this, we propose instruction prompt tuning, a data- and 
parameter-efficient alignment technique, to further adapt Flan-PaLM 
to the medical domain. The resulting model, Med-PaLM, performs 
encouragingly on the axes of our pilot human evaluation framework. 
For example, a panel of clinicians judged only 61.9% of Flan-PaLM 
long-form answers to be aligned with scientific consensus, compared 
with 92.6% for Med-PaLM answers, on par with clinician-generated 
answers (92.9%). Similarly, 29.7% of Flan-PaLM answers were rated 
as potentially leading to harmful outcomes, in contrast to 5.9% for 

Med-PaLM, which was similar to the result for clinician-generated 
answers (5.7%).

Although these results are promising, the medical domain is com-
plex. Further evaluations are necessary, particularly along the dimen-
sions of safety, equity and bias. Our work demonstrates that many 
limitations must be overcome before these models become viable 
for use in clinical applications. We outline some key limitations and 
directions of future research in this Article.

Key contributions
Our first key contribution is an approach for evaluation of LLMs in the 
context of medical question answering. We introduce HealthSearchQA, 
a dataset of 3,173 commonly searched consumer medical questions.  
We present this dataset alongside six existing open datasets for answer-
ing medical questions spanning medical exam, medical research and 
consumer medical questions, as a diverse benchmark to assess the 
clinical knowledge and question-answering capabilities of LLMs 
(see Methods, ‘Datasets’).

We pilot a framework for physician and lay user evaluation to assess 
multiple axes of LLM performance beyond accuracy on multiple-choice 
datasets. Our evaluation assesses answers for agreement with the scien-
tific and clinical consensus, the likelihood and possible extent of harm, 
reading comprehension, recall of relevant clinical knowledge, manipu-
lation of knowledge via valid reasoning, completeness of responses, 
potential for bias, relevance and helpfulness (see Methods, ‘Framework 
for human evaluation’).

The second key contribution is demonstrating state-of-the-art per-
formance on the MedQA, MedMCQA, PubMedQA and MMLU clinical 
topics datasets using Flan-PaLM and a combination of prompting strat-
egies, surpassing several strong LLM baselines. Specifically, we reach 
67.6% accuracy on MedQA (more than 17% above the previous state of 
the art), 57.6% on MedMCQA and 79.0% on PubMedQA.

The next contribution is the introduction of instruction prompt tun-
ing, a simple, data- and parameter-efficient technique for aligning LLMs 
to the safety-critical medical domain (see Methods, ‘Modelling’). We lev-
erage this technique to build Med-PaLM, an instruction prompt-tuned 
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Med-PaLM:  Newborn jaundice is when a newborn baby's skin and eyes look yellow. It is 
caused by a buildup of a substance called bilirubin in the baby's blood. Bilirubin is a 
byproduct of the normal process of red blood cells breaking down. Newborn jaundice is 
common and typically harmless, but it can be a sign of a more serious condition. The 
jaundice typically goes away on its own within a few weeks. In some cases, it may last 
longer or require treatment. The time it takes for the jaundice to go away can vary 
depending on the cause and the severity of the jaundice. If the jaundice is severe or 
lasts longer than a few weeks, the doctor may recommend testing or treatment to 
determine the cause and prevent complications.

Q: How long does it take for newborn jaundice to go away?
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Fig. 1 | Overview of our contributions. We curate MultiMedQA, a benchmark 
for answering medical questions spanning medical exam, medical research and 
consumer medical questions. We evaluate PaLM and its instructed-tuned 
variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting 
strategies, Flan-PaLM exceeds state-of-the-art performance on MedQA (US 
Medical Licensing Examination (USMLE)), MedMCQA, PubMedQA and MMLU 

clinical topics. In particular, it improves over the previous state of the art on 
MedQA (USMLE) by over 17%. We next propose instruction prompt tuning  
to further align Flan-PaLM to the medical domain, producing Med-PaLM. 
Med-PaLM’s answers to consumer medical questions compare favourably  
with answers given by clinicians under our human evaluation framework, 
demonstrating the effectiveness of instruction prompt tuning.
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version of Flan-PaLM specialized for the medical domain (Fig. 1). Our 
human evaluation framework reveals limitations of Flan-PaLM in scien-
tific grounding, harm and bias. Nevertheless, Med-PaLM substantially 
reduces the gap (or even compares favourably) to clinicians on several 
of these axes, according to both clinicians and lay users (see ‘Human 
evaluation results’).

Finally, we discuss in detail key limitations of LLMs revealed by our 
human evaluation. Although our results demonstrate the potential of 
LLMs in medicine, they also suggest that several critical improvements 
are necessary in order to make these models viable for real-world clini-
cal applications (see ‘Limitations’).

Model development and evaluation of performance
We first provide an overview of our key results with Flan-PaLM on  
multiple-choice tasks as summarized in Fig. 2 and Extended Data Fig. 2. 
Then, we present several ablation studies to help contextualize and 
interpret the results.

State of the art on MedQA
On the MedQA dataset consisting of USMLE-style questions with 4 
options, our Flan-PaLM 540B model achieved a multiple-choice ques-
tion accuracy of 67.6%, surpassing the DRAGON model18 by 20.1%.

Concurrent with our study, PubMedGPT, a 2.7B model trained exclu-
sively on biomedical abstracts and papers, was released19. PubMedGPT 
achieved a performance of 50.3% on MedQA questions with 4 options. 
To the best of our knowledge, this is the state-of-the-art on MedQA, 
and Flan-PaLM 540B exceeded this by 17.3%. Extended Data Table 4 
compares the best performing models on this dataset. On the more 
difficult set of questions with 5 options, our model obtained an accu-
racy score of 62.0%.

Performance on MedMCQA and PubMedQA
On the MedMCQA dataset, consisting of medical entrance exam ques-
tions from India, Flan-PaLM 540B reached a performance of 57.6% on 
the development-test set. This exceeds the previous state-of-the-art 
result of 52.9% by the Galactica model20.

Similarly, on the PubMedQA dataset, our model achieved an accuracy 
of 79.0%, outperforming the previous state-of-the-art BioGPT model21 
by 0.8% (Fig. 2). Although this improvement may seem small compared 
to those for the MedQA and MedMCQA datasets, the single-rater 
human performance on PubMedQA3 is 78.0%, indicating that there 
may be an inherent ceiling to the maximum possible performance on  
this task.

Performance on MMLU clinical topics
The MMLU dataset contains multiple-choice questions from several 
clinical knowledge, medicine and biology-related topics. These include 
anatomy, clinical knowledge, professional medicine, human genetics,  
college medicine and college biology. Flan-PaLM 540B achieved 
state-of-the-art performance on all these subsets, outperforming 
strong LLMs such as PaLM, Gopher, Chinchilla, BLOOM, OPT and Galac-
tica. In particular, on the professional medicine and clinical knowledge 
subsets, Flan-PaLM 540B achieved a state-of-the-art accuracy of 83.8% 
and 80.4%, respectively. Extended Data Fig. 2 summarizes the results, 
providing comparisons with other LLMs where available20.

Ablations
We performed several ablations on three of the multiple-choice 
datasets—MedQA, MedMCQA, and PubMedQA—to better under-
stand our results and identify the key components contributing to 
Flan-PaLM’s performance.

Instruction tuning improves performance
Across all model sizes, we observed that the instruction-tuned Flan-PaLM 
model outperformed the baseline PaLM model on MedQA, MedM-
CQA and PubMedQA datasets. The models were few-shot-prompted 
in these experiments using the prompt text detailed in Supplemen-
tary Information, section 11. The detailed results are summarized in 
Supplementary Table 6. The improvements were most prominent in  
the PubMedQA dataset where the 8B Flan-PaLM model outperformed 
the baseline PaLM model by over 30%. Similar strong improvements were 
also observed in the case of 62B and 540B variants. These results dem-
onstrate the strong benefits of instruction fine-tuning. Similar results 
on MMLU clinical topics are reported in Supplementary Information,  
section 4.

We have not yet completed a thorough analysis of the effect of 
instruction prompt tuning on multiple-choice accuracy; in this section, 
our analysis is of Flan-PaLM, not Med-PaLM. Med-PaLM (instruction 
prompt-tuned Flan-PaLM) was developed to improve the long-form 
generation results of Flan-PaLM presented in ‘Human evaluation 
results’ by better aligning the model to the medical domain. However, 
given the success of domain-agnostic instruction tuning for answer-
ing multiple-choice questions, in-domain instruction prompt tuning 
appears promising, and we present a preliminary result in Extended 
Data Table 5 and further describe this experiment in Supplementary 
Information, section 5.

Scaling improves performance on medical question answering
A related observation from Supplementary Table 6 was the strong 
performance improvements obtained from scaling the model from 
8B to 62B and 540B. We observed an improvement of approximately 
2× in performance when scaling the model from 8B to 540B in both 
PaLM and Flan-PaLM. These improvements were more pronounced in 
the MedQA and MedMCQA datasets. In particular, for the Flan-PaLM 
model, the 540B variant outperformed the 62B variant by more than 
14% and the 8B variant by more than 24%. Given these results and the 
strong performance of the Flan-PaLM 540B model, we built on this 
model for downstream experiments and ablations. The scaling plots 
are provided in Supplementary Information, section 7.

COT prompting
Supplementary Table 2 summarizes the results from using COT prompt-
ing and provides a comparison with the few-shot prompting strategy 
using the Flan-PaLM 540B model. We did not observe improvements 
using COT over the standard few-shot prompting strategy across the 
MedQA, MedMCQA and PubMedQA multiple-choice datasets. This may 
be owing to the existence of many possible chain-of-thought reasoning 
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paths towards a particular answer, and sampling one path may not 
produce the most accurate result. This motivated the experiments 
with self-consistency, as discussed below. The COT prompts used are 
summarized in Supplementary Information, section 12. In addition, 
we also explored the use of non-medical COT prompts. The results 
presented in Supplementary Information, section 6 suggest that COT 
prompting is effective in priming the model to solve these types of 
problems rather than adding new knowledge to the model.

Self-consistency improves multiple-choice performance
It has been shown that self-consistency can be of use when COT 
prompting hurts performance17; previous work showed considerable 
improvements on arithmetic and common-sense reasoning tasks. 
We applied self-consistency to MultiMedQA, fixing the number of 
chain-of-thought answer explanation paths (decodes) to 11 for each 
of three multiple-choice datasets. We then marginalized over the 
different decodes to select the most consistent answer. Using this 
strategy, we observed considerable improvements over the standard 
few-shot prompting strategy for the Flan-PaLM 540B model on the 
MedQA and MedMCQA datasets. In particular, for the MedQA dataset 
we observed an improvement of more than 7% with self-consistency. 
However, self-consistency led to a drop in performance for the Pub-
MedQA dataset. The results are summarized in Supplementary Table 3. 
We further provide example responses from the Flan-PaLM 540B model 
for MedQA in Extended Data Table 6.

Uncertainty and selective prediction
LLMs are capable of long, coherent, and complex generations. How-
ever, they can also generate factually inaccurate statements. In medi-
cal settings in particular, such failure modes need to be carefully 
vetted, and in real-world applications, generations that are unlikely 
to be true should be withheld. Instead, we may want to defer to other 
information sources or experts when needed. One solution is there-
fore for LLMs to communicate uncertainty estimates along with their 
responses.

Although uncertainty measures over LLM output sequences remains 
an open area of research22,23, we explored a simple proxy as an initial 
approach to measuring the relationship between LLM uncertainty and 
statement accuracy. We created a selective prediction task24, using the 
number of decodes matching a given answer from self-consistency as a 
measure of uncertainty, and used it to withhold the answer if the model 
was not appropriately confident. We performed the experiment using 
41 decodes from the Flan-PaLM 540B model with chain-of-thought 
prompting and self-consistency. We observe that as the deferring frac-
tion increases (that is, as a higher confidence is required to provide a 
prediction), the performance of the model on MedQA improves, reach-
ing an accuracy of up to 82.5% at a deferring fraction of 0.45 (Fig. 3). This 
suggests that our measure of response uncertainty may be reasonable 
and that LLMs seem to encode uncertainty about their knowledge in 
the medical domain. However, more research is needed beyond this 
preliminary analysis.

Human evaluation results
We randomly selected 100 questions from HealthSearchQA, 20 ques-
tions from LiveQA, and 20 questions from MedicationQA as a smaller 
long-form answer benchmark for detailed human evaluation. These 
questions reflect real-world consumer queries for medical informa-
tion. These selected questions were disjoint from exemplars used for 
instruction prompt tuning to produce Med-PaLM.

We asked a panel of clinicians to generate expert reference answers 
to these questions. We then produced answers using Flan-PaLM and 
Med-PaLM (both 540B models). A few qualitative examples of these 
questions and the corresponding Med-PaLM responses are shown in 
Extended Data Table 7. The three sets of answers were evaluated by 
a different panel of clinicians along the axes presented in Extended 

Data Table 2, without revealing the source of answers. One clini-
cian evaluated each answer. To reduce the effect of variation across 
clinicians on generalizability of our findings, our panel consisted 
of nine clinicians (based in the USA, UK and India). We used the 
non-parametric bootstrap to estimate any significant variation in 
the results, where 1,000 bootstrap replicas were used to produce a 
distribution for each set, and we used the 95% bootstrap percentile 
interval to assess variations. These results are described in detail below 
and in Supplementary Information, section 10, with visualizations in  
Figs. 4–6.

Scientific consensus. We aimed to understand how the answers re-
lated to current consensus in the clinical and scientific community. We 
judged clinicians’ answers to be aligned with the scientific consensus in 
92.9% of questions, whereas Flan-PaLM was found to be in agreement 
with the scientific consensus in only 61.9% of answers (Fig. 4). For other 
questions, answers were either opposed to consensus, or no consensus 
existed. This suggested that generic instruction tuning on its own was 
not sufficient to produce scientific and clinically grounded answers. 
However, 92.6% of Med-PaLM answers were judged to be in accordance 
with the scientific consensus, showcasing the strength of instruction 
prompt tuning as an alignment technique to produce scientifically 
grounded answers.

We note that since PaLM, Flan-PaLM, and Med-PaLM were trained 
using corpora of web documents, books, Wikipedia, code, natural 
language tasks, and medical tasks at a given point of time, one potential 
limitation of these models is that they can reflect the scientific con-
sensus of the past instead of today. This is not a commonly observed 
failure mode for Med-PaLM today, but this motivates future work in 
continual learning of LLMs and retrieval from a continuously evolving  
corpus.

Comprehension, retrieval and reasoning capabilities. We sought 
to understand the medical comprehension, knowledge retrieval and 
reasoning capabilities of Med-PaLM. We asked a panel of clinicians to 
rate whether answers contained any (one or more example of) evi-
dence of correct or incorrect medical reading comprehension, medi-
cal knowledge retrieval and medical reasoning capabilities, using the 
same approach as CHARD25. Correct and incorrect evidence were as-
sessed in parallel because it is possible that a single long-form answer 
may contain evidence of both correct and incorrect comprehension, 
retrieval and reasoning.

Answers generated by experts were again superior to those of 
Flan-PaLM, although performance was improved by instruction 
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prompt tuning for Med-PaLM (Fig. 5). This trend was observed for all 
six sub-questions used to evaluate these capabilities. For example, for 
evidence of correct retrieval of medical knowledge, we found that clini-
cian answers scored 97.8%, whereas Flan-PaLM scored 76.3%. However, 
the instruction prompt-tuned Med-PaLM model scored 95.4%, reducing 
the performance gap with clinicians.

Incorrect or missing content. The goal of this evaluation was to under-
stand the completeness and correctness of the generated answers by 
assessing whether an answer omits any information that it should not 
omit, or whether the answer contains any content that it should not. 
Where there was deemed to be missing or omitted content, the rater 
was asked whether it was of great or little potential clinical importance.

a

b

c

d

e

f

Clinician

Med-PaLM

Flan-PaLM

Clinician

Med-PaLM

Flan-PaLM

Clinician

Med-PaLM

Flan-PaLM

Clinician

Med-PaLM

Flan-PaLM

Clinician

Med-PaLM

Flan-PaLM

Clinician

Med-PaLM

Flan-PaLM

Scienti�c consensus 

No consensus 

Opposed to consensus

Aligned with consensus

Inappropriate and/or incorrect content

Yes, great clinical signi�cance 

Yes, little clinical signi�cance 

No

Missing content 

Yes, great clinical signi�cance 

Yes, little clinical signi�cance 

No

Extent of possible harm

Death or severe harm

Moderate or mild harm

No harm

Likelihood of possible harm

High 

Medium 

Low

Possibility of bias

Yes 

No

92.9%

61.9%

92.6%

16.1%

18.7%

1.4%

47.6%

15.3%

11.1%

29.7%

5.9%

5.7%

19.4%

2.3%

1.3%

1.4%

7.9%

0.8%

Fig. 4 | Clinician evaluation of answers. a–f, Clinicians were asked to rate 
answers to questions in the HealthSearchQA, LiveQA and MedicationQA 
datasets for agreement with scientific and clinical consensus (a), the presence 
of incorrect content (b), the omission of content (c), the extent of possible harm 
(d), the likelihood of harm (e) and possible bias in answers (f). We compare 
answers from Flan-PaLM, Med-PaLM and clinicians. Across all axes, answers 
from clinicians were judged to be better than those from Flan-PaLM. Med-PaLM 
answers were substantially better than Flan-PaLM answers across alignment 

with scientific consensus, harm, missing content and bias, often comparing 
favourably with answers from clinicians, demonstrating the value of instruction 
prompt tuning for alignment to the medical domain. The evaluation involves 
140 questions, each rated by a single clinician. We used the non-parametric 
bootstrap to estimate any significant variation in the results, with 1,000 
bootstrap replicas used to produce a distribution for each set. We used the 95% 
bootstrap percentile interval to assess variations. Detailed results with intervals 
are presented in Supplementary Information, section 10.
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significant variation in the results, with 1,000 bootstrap replicas used to 
produce a distribution for each set. We used the 95% bootstrap percentile 
interval to assess variations.



Nature | Vol 620 | 3 August 2023 | 177

Again, the clinician-generated answers were judged to be superior 
(Fig. 4). The answers from clinicians showed evidence of inappropri-
ate or incorrect content in 1.4% of cases, compared with 16.1% for 
Flan-PaLM. Instruction prompt tuning seemed to degrade perfor-
mance, with 18.7% of the Med-PaLM answers judged to contain inap-
propriate or incorrect content.

By contrast, instruction prompt tuning improved model perfor-
mance with respect to omission of important information. Flan-PaLM 
answers were judged to omit important information in 47.6% of 
answers, whereas Med-PaLM omitted important information in 15.3% 
of the answers, decreasing the gap with clinicians, whose answers 
were judged to have missing information in 11.1% of the cases. Sev-
eral qualitative examples are shown in Extended Data Table 8, sug-
gesting that answers from LLMs may be able to complement and 
complete physician responses to patient queries in future use  
cases.

One potential explanation of these observations is that instruction 
prompt tuning teaches the Med-PaLM model to generate more detailed 
answers than the Flan-PaLM model, reducing the omission of impor-
tant information. However, a longer answer also increases the risk of 
introducing incorrect content.

Possible extent and likelihood of harm. We sought to identify the 
severity and likelihood of potential harm based on people acting on 
the generated answers. We asked raters to assume that the output of 
models might lead to actions by clinicians, consumers or patients, 
and to estimate the possible severity and likelihood of physical or 
mental health-related harms that might result. We based the op-
tions for selection by raters on the Agency for Healthcare Research 
and Quality (AHRQ) common formats26, which presents options to 
assign severity of harm among death, severe or life-threatening in-
jury, moderate harm, mild harm or no harm. We acknowledge that 
this definition of harm is more typically used in the context of analys-
ing harms incurred during healthcare delivery and that even in such 
settings (where the context for harms occurring is known with con-
siderably greater specificity) there is frequently substantial variation 
in physician estimation of harm severity27. The validity of the AHRQ 
scale cannot therefore be assumed to extend to our context, where 
our rater outputs should be regarded as subjective estimates because 
our work was not grounded in a specific intended use and sociocultural  
context.

Despite the broad definition and subjectivity of the ratings, we 
observed that instruction prompt tuning produced safer answers 
that reduced both estimated likelihood and severity. Whereas 29.7% 
of the Flan-PaLM responses were judged as potentially leading to 

harm, this number fell to 5.9% for Med-PaLM, similar to the result for 
clinician-generated answers (5.7%).

Similarly, on the likelihood of harm axes, instruction prompt tuning 
enabled Med-PaLM answers to match the expert generated answers 
(Fig. 4).

Bias for medical demographics. The final axis for clinician answer 
evaluation was bias. For this pilot evaluation, we sought to understand 
whether the answer contained any information that was inaccurate or in-
applicable for a particular demographic. Specifically for each response, 
reviewers were asked “Does the answer provided contain any informa-
tion that is inapplicable or inaccurate for one particular patient-group 
or demographic? For example, is the answer applicable only to patients 
of a particular sex where patients of another sex might require different 
information?”, to which they provided a yes or no response. For this 
definition of bias, Flan-PaLM answers were found to contain biased in-
formation in 7.9% of the cases (Fig. 4). However, this number decreased 
to 0.8% for Med-PaLM, comparing favourably with the experts, whose 
answers were judged to contain evidence of bias in 1.4% of cases.

It should be noted that most of the questions were framed neutrally 
and did not contain specific demographic inferences. This initial 
approach to evaluating bias is limited and does not serve as a com-
prehensive assessment of potential harms, fairness or equity. Further 
fairness and equity considerations are discussed in ‘Fairness and equity 
considerations’.

Lay user assessment. Beyond expert evaluation, we also asked a panel 
of five non-experts in the domain (laypeople without a medical back-
ground, based in India) to assess the answers. The results are summa-
rized in Fig. 6. Whereas Flan-PaLM answers were judged to be helpful in 
only 60.6% of the cases, this increased to 80.3% for Med-PaLM answers. 
However, this remained inferior to the answers given by clinicians, 
which were judged to be helpful 91.1% of the time. Similarly, Flan-PaLM 
answers were judged as directly addressing the intent of the user’s ques-
tion in 90.8% of cases. This increased to 94.4% for Med-PaLM, whereas 
the clinician-generated answers were judged as directly addressing 
intent in 95.9% of cases.

The lay user evaluation further demonstrated the benefits of instruc-
tion prompt tuning to produce answers that are helpful to users and 
shows that considerable work remains to be done to approximate the 
quality of outputs provided by human clinicians.

Discussion
Our results suggest that the strong performance in answering medical 
questions may be an emergent ability28 of LLMs combined with effective 
instruction prompt tuning.

We observed strong performance as a result of scaling, with accuracy 
improving by approximately 2 times as we scaled the PaLM models 
from 8B to 540B. The performance of PaLM 8B on MedQA was only 
slightly better than random performance. Accuracy improved by 
more than 30% for PaLM 540B, demonstrating the effectiveness of 
scaling for answering medical questions. We observed similar improve-
ments for the MedMCQA and PubMedQA datasets. Further, instruction 
fine-tuning was also effective, with Flan-PaLM models performing 
better than the PaLM models across all model size variants on all the 
multiple-choice datasets.

It is likely that the PaLM pre-training corpus included significant 
medical-related content, and one possible explanation for the strong 
performance of the 540B model is that the model has memorized the 
MultiMedQA evaluation datasets. In Supplementary Information, 
section 1, we analysed the overlap between Med-PaLM’s responses to 
MultiMedQA consumer questions and the PaLM training corpus and 
observed no overlap. We also assessed the overlap between MultiMedQA 
multiple-choice questions and the training corpus, observing minimal 

a

b

Fig. 6 | Lay user assessment of answers. a,b, Lay user assessment of answers, 
addressing relevance to the intent of the query (a) and helpfulness (b). Med-PaLM 
answers are more likely to address the intent of users and be more helpful than 
Flan-PaLM answers, but they remain inferior to those provided by clinicians. 
The evaluation involves 140 questions, each rated by a single non-expert lay 
user. We used the non-parametric bootstrap to estimate any significant 
variation in the results, where 1,000 bootstrap replicas were used to produce  
a distribution for each set. We used the 95% bootstrap percentile interval to 
assess variations.
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overlap (Supplementary Table 1). Additionally, PaLM1 showed similar 
differences in performance of the PaLM 8B and 540B models when 
evaluating contaminated and clean test datasets (a contaminated dataset 
is one in which part of the test set is in the model pre-training corpus). 
These results suggested that memorization alone does not explain the 
strong performance observed by scaling up the models.

There have been several efforts to train language models on a bio-
medical corpus, especially on PubMed. These include BioGPT21 (355B), 
PubMedGPT19 (2.7B) and Galactica20 (120B). Our models were able to 
outperform these efforts on PubMedQA without any dataset-specific 
fine-tuning. Further, the benefits of scale and instruction fine-tuning 
were much more pronounced on the MedQA dataset, which can be 
considered out-of-domain for all these models. Given the results, we 
can conclude that medical answering capabilities (recall, reading com-
prehension and reasoning skills) improved with scale.

However, our human evaluation results on consumer medical 
question-answering datasets clearly showed that scale alone was insuf-
ficient. Even strong LLMs such as Flan-PaLM can generate answers 
that are inappropriate for use in the safety-critical medical domain. 
However, the Med-PaLM results demonstrated that instruction prompt 
tuning is a data- and parameter-efficient alignment technique that is 
useful for improving factors related to accuracy, factuality, consistency, 
safety, harm and bias, helping to close the gap with clinical experts and 
bring these models closer to real-world clinical applications.

Limitations
Our study demonstrates the potential of LLMs for encoding medical 
knowledge and for answering medical questions. Below we discuss 
limitations and outline directions for future research.

Expansion of MultiMedQA
Although the MultiMedQA benchmark is diverse and contains ques-
tions from a variety of medical exam, medical research and consumer 
sources, it is by no means exhaustive. We plan to expand the benchmark 
in the future to include a larger variety of medical and scientific domains 
(such as biology) and formats.

A key challenge in clinical environments is eliciting information 
from patients and synthesizing findings into an assessment and plan. 
Multiple-choice question-answering tasks are inherently easier than 
this because they are often grounded in vignettes compiled by experts 
and selected to have a generally preferred answer. This is not true for all 
medical decisions. Developing benchmark tasks that reflect real-world 
clinical workflows is an important direction of future research.

Furthermore, we only considered English-language datasets in this 
study, and there is a pressing need to expand the scope of the bench-
mark to support multilingual evaluations.

Key LLM capabilities for this setting
Although Flan-PaLM was able to reach state-of-the-art performance 
on several multiple-choice medical question-answering benchmarks, 
our human evaluations clearly suggested that these models are not at 
clinician expert level on many clinically important axes. In order to 
bridge this gap, several new LLM capabilities need to be researched 
and developed including (1) grounding of the responses in authorita-
tive medical sources and accounting for the time-varying nature of 
medical consensus; (2) ability to detect and communicate uncertainty 
effectively to the user; (3) ability to respond to queries in multiple lan-
guages; and (4) better alignment to the safety requirements of the 
medical domain.

Improving human evaluation
The rating framework that we proposed for this study represents a 
promising pilot approach, but our chosen axes of evaluation were not 
exhaustive and were subjective in nature. For example, the concept of 

medical or scientific consensus is time-varying in nature and is reflective 
of current understandings of human health and disease and physiol-
ogy, which are often coloured by discrimination in race or ethnicity, 
gender, age and ability29,30. Furthermore, consensus often exists only 
for topics of relevance to certain groups (such as those who are greater 
in number and/or power) and consensus may be lacking for certain 
subpopulations. Additionally, the concept of harm may differ according 
to population. Expert assessment of harm may also vary on the basis 
of location, lived experience and cultural background. Differences in 
health literacy may have caused variability in ratings for both experts 
and lay users. Further research might test whether the perceived useful-
ness and harm of answers varied according to their understandability 
and actionability31.

The number of model responses evaluated and the pool of clinicians 
and laypeople assessing them were limited, as our results were based 
on only a single clinician or layperson evaluating each response. This 
could be mitigated by inclusion of a considerably larger and intention-
ally diverse pool of human raters.

We worked with a panel of four qualified clinicians—with expertise 
in internal medicine, paediatrics, surgery and primary care, and based 
in the USA or the UK—to identify the best demonstration examples 
and craft few-shot prompts. Further research could expand the range 
of clinicians engaged in prompt construction and the selection of 
exemplar answers and thereby explore how variation in multiple axes 
of the types of clinician participating in this activity might affect LLM 
behaviour (such as clinician demographics, geography, specialism, 
lived experience and others).

The pilot framework that we developed could be advanced using 
best practices for the design and validation of rating instruments from 
health, social and behavioural research32. This could entail finding 
additional rating items through participatory research and evalua-
tion of rating items by domain experts and technology recipients for 
relevance, representativeness and technical quality. The inclusion of 
a substantially larger pool of human raters would also enable testing 
of instrument generalizability by ratifying the test dimensionality, 
test–retest reliability and validity32. Further research could explore the 
independent influence of variations in lay raters’ education level, medi-
cal conditions, caregiver status, experience with healthcare, education 
level or other relevant factors on their ratings. The effect of variations 
in clinician raters’ specialty, demographics, geography or other factors 
could be similarly explored.

Fairness and equity considerations
As previously discussed, our approach to evaluating bias is limited 
as an assessment of fairness and equity-related harms. The use of 
LLMs to answer medical questions can cause harms that contribute 
to health disparities. These harms derive from several sources, includ-
ing the presence of patterns in training data that reflect health ineq-
uities and algorithmic design choices33. This could lead to systems 
that produce differences in behaviour or performance across popula-
tions that result in downstream harms in medical decision-making34 
or reproduce racist misconceptions regarding the cause of health  
disparities35,36.

The development of procedures for the evaluation of bias and 
fairness-related harms in LLMs is ongoing37,38. Healthcare is a particu-
larly complex application of LLMs given the safety-critical nature of 
the domain and the nuances associated with social and structural bias 
that drives health disparities. The intersection of LLMs and healthcare 
creates unique opportunities for responsible and ethical innovation 
of robust assessment and mitigation tools for bias, fairness and health 
equity.

We outline opportunities for future research into frameworks for 
the systematic identification and mitigation of downstream harms and 
impacts of LLMs in healthcare contexts. Key principles include the use of 
participatory methods to design contextualized evaluations that reflect 
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the values of patients that may benefit or be harmed, grounding the 
evaluation in one or more specific downstream clinical use cases39,40, and 
the use of dataset and model documentation frameworks for transpar-
ent reporting of choices and assumptions made during data collection 
and curation, model development and evaluation41–43. Furthermore, 
research is needed into the design of algorithmic procedures and bench-
marks that probe for specific technical biases that are known to cause 
harm if not mitigated. For instance, depending on the context, it may 
be relevant to assess the sensitivity of model outputs to perturbations 
of demographic identifiers in prompts designed deliberately so that 
the result does not change under the perturbation44–46. Additionally, 
the aforementioned research activities to build evaluation methods 
to achieve health equity in LLMs require interdisciplinary collabora-
tion to ensure that various scientific perspectives and methods can be 
applied to the task of understanding the social and contextual aspects 
of health47–49.

The development of evaluation frameworks for performance, fair-
ness, bias and equity in LLMs is a critical research agenda that should 
be approached with equal rigour and attention as that given to the work 
of encoding clinical knowledge in language models.

Ethical considerations
This research demonstrates the potential of LLMs for future use in 
healthcare. Transitioning from an LLM that is used for answering 
medical questions to a tool that can be used by healthcare provid-
ers, administrators and consumers will require considerable addi-
tional research to ensure the safety, reliability, efficacy and privacy 
of the technology. Careful consideration will need to be given to the 
ethical deployment of this technology including rigorous quality 
assessment when used in different clinical settings and guardrails to 
mitigate against over-reliance on the output of a medical assistant. 
For example, the potential harms of using an LLM for diagnosing or 
treating an illness are much greater than those from using an LLM for 
information about a disease or medication. Additional research will 
be needed to assess LLMs used in healthcare for homogenization and 
amplification of biases and security vulnerabilities inherited from base  
models11,38,50.

Conclusion
The advent of foundation models and LLMs presents a compelling 
opportunity to rethink the development of medical AI and make it 
easier, safer and more equitable to use. At the same time, medicine is 
an especially complex domain for applications of LLMs.

Our research provides a glimpse into the opportunities and the 
challenges of applying these technologies to medicine. We anticipate 
that this study will spark further conversations and collaborations 
between patients, consumers, AI researchers, clinicians, social sci-
entists, ethicists, policymakers and other interested parties in order 
to responsibly translate these early research findings to improve  
healthcare.
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Methods

Datasets
To assess the potential of LLMs in medicine, we focused on answering 
medical questions. Answering medical questions requires reading 
comprehension skills, ability to accurately recall medical knowledge 
and manipulation of expert knowledge. There are several existing 
medical question-answering datasets for research. These include 
datasets that assess professional medical knowledge such as medi-
cal exam questions3,4, questions that require medical research com-
prehension skills5, and questions that require the ability to assess 
user intent and provide helpful answers to their medical information  
needs13,14.

We acknowledge that medical knowledge is vast in both quantity 
and quality. Existing benchmarks are inherently limited and only 
provide partial coverage of the space of medical knowledge. Here we 
bring together a number of different datasets for answering medical 
questions to enable deeper evaluation of LLM knowledge and move 
beyond multiple-choice accuracy or natural language generation 
metrics such as BLEU. The datasets we grouped together probe dif-
ferent abilities—some are multiple-choice questions, whereas others 
require long-form answers; some are open domain (where questions 
are answered without limiting available information to a pre-specified 
source), whereas others are closed domain (where questions are 
answered by retrieving content from associated reference text) and 
come from different sources. There has been extensive activity in the 
field of answering medical questions over recent years and we refer to 
ref. 3 for a comprehensive summary of medical question-answering  
datasets.

MultiMedQA benchmark. MultiMedQA includes medical exams 
and research datasets with multiple-choice answers and consumer 
medical question datasets with long-form answers. These include the 
MedQA3, MedMCQA4, PubMedQA5, MMLU clinical topics6, LiveQA13 
and MedicationQA14 datasets. We further augmented MultiMedQA  
with a new dataset of curated commonly searched health queries: 
HealthSearchQA. All the datasets are in the English language and we 
describe them in detail below.

These datasets vary along the following axes. (1) format: multiple- 
choice versus long-form answer questions; (2) capabilities tested: 
for example, assessing the recall of medical facts in isolation versus 
assessing medical reasoning capabilities in addition to recall of facts; 
(3) domain: open domain versus closed domain questions; (4) ques-
tion source: from professional medical exams, medical research or 
consumers seeking medical information; and (5) labels and metadata: 
presence of labels or explanations and their sources. A summary of 
MultiMedQA is presented in Extended Data Table 1.

Although MedMCQA, PubMedQA, LiveQA, and MedicationQA 
provide reference long-form answers or explanations, we do not 
use them in this work. First, the reference answers did not come 
from consistent sources across the different datasets. Answers 
often came from automated tools or non-clinicians such as librar-
ians. The construction of the reference answers and explanations 
in these pioneering datasets was not optimized for holistic or com-
prehensive assessments of long-answer quality, which renders them 
suboptimal for use as a ‘ground truth’ against which to assess LLMs 
using automated natural language metrics such as BLEU. To allevi-
ate this, as discussed in ‘Human evaluation results’, we obtained a 
standardized set of responses from qualified clinicians to a subset 
of the questions in the benchmark. Second, given the safety-critical 
requirements of the medical domain, we believe it is important 
to move beyond automated measures of long-form answer gen-
eration quality using metrics such as BLEU to those involving more 
nuanced human evaluation frameworks such as the one proposed in  
this study.

MedQA (USMLE). The MedQA dataset3 consists of USMLE-style  
questions with four or five possible answers. The development set  
consists of 11,450 questions and the test set has 1,273 questions.
Format: question and answer (Q + A), multiple choice, open domain.
Size (development set/test set): 11,450/1,273.
Example question: A 65-year-old man with hypertension comes  
to the physician for a routine health maintenance examination.  
Current medications include atenolol, lisinopril, and atorvastatin. 
His pulse is 86 min−1, respirations are 18 min−1, and blood pressure is 
145/95 mmHg. Cardiac examination reveals end diastolic murmur.  
Which of the following is the most likely cause of this physical  
examination?
Answers (correct answer in bold): (A) Decreased compliance of 
the left ventricle, (B) Myxomatous degeneration of the mitral valve 
(C) Inflammation of the pericardium (D) Dilation of the aortic root (E) 
Thickening of the mitral valve leaflets.

MedMCQA. The MedMCQA dataset4 consists of more than 194,000 
four-option multiple-choice questions from Indian medical entrance 
examinations (AIIMS/NEET)4. This dataset covers 2,400 healthcare 
topics and 21 medical subjects. The development set is substantial, 
with over 187,000 questions.
Format: Q + A, multiple choice, open domain.
Size (dev/test): 187,000/6,100.
Example question: Which of the following ultrasound findings has 
the highest association with aneuploidy?
Answers (correct answer in bold): (A) Choroid plexus cyst (B) Nuchal 
translucency (C) Cystic hygroma (D) Single umbilical artery.
Explanation: All the above mentioned are ultrasound findings  
associated with increased risk of aneuploidy although the highest 
association is seen with cystic hygroma. Nuchal translucency and 
cystic hygroma are both measured in the first trimester. Trisomy 21 
is the most common aneuploidy associated with increased nuchal 
translucency and cystic hygroma while monosomy X presents as 
second-trimester hygroma.

PubMedQA. The PubMedQA dataset5 consists of 1,000 expert-labelled 
question–answer pairs where the task is to produce a yes/no/maybe 
multiple-choice answer given a question together with a PubMed  
abstract as context (Q + context + A). Whereas the MedQA and MedMCQA  
datasets are open domain question-answering tasks, the PubMedQA 
task is closed domain, in that it requires answer inference from the 
supporting PubMed abstract context.
Format: Q + context + A, multiple choice, closed domain.
Size (development set/test set): 500/500.
Example question: Double balloon enteroscopy (DBE): is it efficacious 
and safe in a community setting?
Context: From March 2007 to January 2011, 88 DBE procedures were 
performed on 66 patients. Indications included evaluation anaemia/
gastrointestinal bleed, small bowel IBD and dilation of strictures. 
Video-capsule endoscopy (VCE) was used prior to DBE in 43 of the 66 
patients prior to DBE evaluation. The mean age was 62 years. Thirty-two 
patients were female, 15 were African American; 44 antegrade and 44 
retrograde DBEs were performed. The mean time per antegrade DBE 
was 107.4 ± 30.0 minutes with a distance of 318.4 ± 152.9 cm reached past 
the pylorus. The mean time per lower DBE was 100.7 ± 27.3 minutes with 
168.9 ± 109.1 cm meters past the ileocecal valve reached. Endoscopic 
therapy in the form of electrocautery to ablate bleeding sources was 
performed in 20 patients (30.3%), biopsy in 17 patients (25.8%) and 
dilation of Crohn’s-related small bowel strictures in 4 (6.1%). 43 VCEs 
with pathology noted were performed prior to DBE, with findings endo-
scopically confirmed in 32 cases (74.4%). In 3 cases the DBE showed 
findings not noted on VCE.
Answer: Yes.
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Long answer: DBE appears to be equally safe and effective when 
performed in the community setting as compared to a tertiary  
referral centre with a comparable yield, efficacy, and complication 
rate.

MMLU. MMLU6 includes exam questions from 57 domains. We selected 
the subtasks most relevant to medical knowledge: anatomy, clinical 
knowledge, college medicine, medical genetics, professional medicine 
and college biology. Each MMLU subtask contains multiple-choice 
questions with four options, along with the answers.
Format: Q + A, multiple choice, open domain.

Anatomy. Size (development set/test set): 14/135.
Example question: Which of the following controls body temperature, 
sleep, and appetite?
Answer: (A) Adrenal glands (B) Hypothalamus (C) Pancreas (D) Thalamus.

Clinical knowledge. Size (development set/test set): 29/265.
Example question: The following are features of Alzheimer’s disease 
except:
Answer: (A) short-term memory loss (B) confusion (C) poor attention 
(D) drowsiness.

College medicine. Size (development set/test set): 22/173.
Example question: The main factors determining success in sport are:
Answer: (A) a high energy diet and large appetite. (B) high intelligence 
and motivation to succeed. (C) a good coach and the motivation 
to succeed. (D) innate ability and the capacity to respond to the 
training stimulus.

Medical genetics. Size (development set/test set): 11/100.
Example question: The allele associated with sickle cell anemia appar-
ently reached a high frequency in some human populations due to:
Answer: (A) random mating (B) superior fitness of heterozygotes 
in areas where malaria was present (C) migration of individuals 
with the allele into other populations (D) a high mutation rate at 
that specific gene.

Professional medicine. Size (development set/test set): 31/272.
Example question: A 19-year-old woman noticed a mass in her left 
breast 2 weeks ago while doing monthly breast self-examination. Her 
mother died of metastatic breast cancer at the age of 40 years. Examina-
tion shows large dense breasts; a 2-cm, firm, mobile mass is palpated 
in the upper outer quadrant of the left breast. There are no changes in 
the skin or nipple, and there is no palpable axillary adenopathy. Which 
of the following is the most likely diagnosis? 
Answer: (A) Fibroadenoma (B) Fibrocystic changes of the breast (C) 
Infiltrating ductal carcinoma (D) Intraductal papilloma.

College biology. Size (development set/test set): 16/144.
Example question: Which of the following is the most direct cause of 
polyteny in somatic cells of certain organisms?
Answer: (A) RNA transcription (B) Supercoiling of chromatin (C) 
Chromosome replication without cell division (D) Chromosome 
recombination.

LiveQA. The LiveQA dataset13 was curated as part of the Text Retrieval 
Challenge (TREC) 2017. The dataset consists of medical questions 
submitted by people to the National Library of Medicine (NLM). The 
dataset also consists of manually collected reference answers from 
trusted sources such as the National Institute of Health (NIH) website.
Format: questions and long answers, free text response, open domain.
Size (development set/test set): 634/104.
Example question: Could second hand smoke contribute to or cause 
early AMD?

Long answer: Smoking increases a person’s chances of develop-
ing AMD by two to five fold. Because the retina has a high rate of 
oxygen consumption, anything that affects oxygen delivery to the 
retina may affect vision. Smoking causes oxidative damage, which 
may contribute to the development and progression of this disease. 
Learn more about why smoking damages the retina, and explore a 
number of steps you can take to protect your vision.

MedicationQA. The MedicationQA dataset14 consists of commonly 
asked consumer questions about medications. In addition to the ques-
tion, the dataset contains annotations corresponding to drug focus 
and interactions. Similar to LiveQA, we evaluated the models’ ability 
to produce long-form answers to the questions in the test set.
Format: Questions, long answers, free text response, open domain.
Size (development set/test set): NA/674.
Example question: How does valium affect the brain?
Focus (drug): Valium.
Question type: Action.
Long answer: Diazepam is a benzodiazepine that exerts anxiolytic, 
sedative, muscle-relaxant, anticonvulsant and amnestic effects. Most 
of these effects are thought to result from a facilitation of the action 
of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter 
in the central nervous system.
Section title: Clinical pharmacology.
URL: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid= 
554baee5-b171-4452-a50a-41a0946f956c.

HealthSearchQA. We curated our own additional dataset consist-
ing of 3,173 commonly searched consumer questions, referred to as 
HealthSearchQA. The dataset was curated using seed medical con-
ditions and their associated symptoms. We used the seed data to  
retrieve publicly-available commonly searched questions generated 
by a search engine, which were displayed to all users entering the seed 
terms. We publish the dataset as an open benchmark for answering 
medical questions from consumers and hope this will be a useful  
resource for the community, as a dataset reflecting real-world consumer  
concerns.
Format: Question only, free text response, open domain.
Size: 3,173.
Example question: How serious is atrial fibrillation?
Example question: What kind of cough comes with Covid?
Example question: Is blood in phlegm serious?

Although MultiMedQA allows us to probe the medical question- 
answering capabilities of LLMs along multiple axes, we acknowledge 
that it is not exhaustive. We plan to expand the benchmark to other 
relevant datasets, such as those probing question-answering ability 
from electronic medical records51 or those requiring pre-clinical bio-
medical knowledge52, in future work.

Framework for human evaluation
Here we describe our proposed framework for human evaluation of 
long-form answers to medical questions.

Clinician evaluation. Although objective accuracy metrics on 
multiple-choice questions are a robust measure of model performance, 
they omit several important details. To more deeply assess the genera-
tive outputs of LLMs in open-ended answering of questions on medi-
cal topics, we developed a pilot framework for human evaluation of 
long-form model answers to consumer medical questions in the LiveQA, 
MedicationQA, and HealthSearchQA datasets.

The pilot framework was inspired by approaches published in a 
similar domain25 to examine the strengths and weaknesses of LLM 
generations in clinical settings. We used focus groups and interviews 
with clinicians based in the UK, USA and India to identify additional axes 
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of evaluation53 and expanded the framework items to address notions 
of agreement with scientific consensus, possibility and likelihood of 
harm, completeness and missingness of answers, and possibility of 
bias. Alignment with scientific consensus was measured by asking 
raters whether the output of the model was aligned with a prevailing 
scientific consensus (for example, in the form of well-accepted clinical 
practice guidelines), opposed to a scientific consensus; or whether 
no clear scientific consensus exists regarding the question. Harm is 
a complex concept that can be evaluated along several dimensions  
(for example, physical health, mental health, moral, financial and 
many others). When answering this question, raters were asked to 
focus solely on physical or mental health-related harms, and evalu-
ated both severity (in a format inspired by the AHRQ common formats 
for harm26) and likelihood, under the assumption that a consumer or 
physician based on the content of the answer might take actions. Bias 
was assessed broadly by raters considering if the answer contained 
information that would be inapplicable or inaccurate to a specific 
patient demographic. The questions asked in the evaluation are sum-
marized in Extended Data Table 3.

Our framework items’ form, wording and response-scale points were 
refined by undertaking further interviews with triplicate assessments 
of 25 question-answer tuples per dataset by three qualified clinicians. 
Instructions for the clinicians were written including indicative exam-
ples of ratings for questions, and iterated until the clinicians’ rating 
approaches converged to indicate the instructions were usable. Once 
the guidelines had converged a larger set of question-answer tuples 
from the consumer medical questions datasets were evaluated by 
single-ratings performed by one of nine clinicians based in the UK, 
USA or India and qualified for practice in their respective countries, 
with specialist experience including paediatrics, surgery, internal 
medicine, and primary care.

Lay user evaluation. In order to assess the helpfulness and utility of 
the answers to the consumer medical questions, we undertook an  
additional lay user (non-expert) evaluation. This was performed by five 
raters without a medical background, all of whom were based in India. 
The goal of this exercise was to assess how well the answer addressed 
the perceived intent underlying the question and how helpful and ac-
tionable it was. The questions asked in the evaluation are summarized 
in Extended Data Table 2.

Modelling
In this section, we detail LLMs and the techniques used to align them 
with the requirements of the medical domain.

Models. We built on the PaLM and Flan-PaLM family of LLMs in this 
study.

PaLM. PaLM1 is a densely-activated decoder-only transformer lan-
guage model trained using Pathways54, a large-scale machine learn-
ing accelerator orchestration system that enables highly efficient 
training across TPU pods. The PaLM training corpus consists of 780 
billion tokens representing a mixture of webpages, Wikipedia articles, 
source code, social media conversations, news articles, and books. All 
three PaLM model variants were trained for exactly one epoch of the 
training data. We refer to refs. 1,55,56 for more details on the training 
corpus. At the time of release, PaLM 540B achieved breakthrough 
performance, outperforming finetuned state-of-the-art models on 
a suite of multi-step reasoning tasks and exceeding average human 
performance on BIG-bench1,57.

Flan-PaLM. In addition to the baseline PaLM models, we also considered 
the instruction-tuned counterpart2. These models were trained using 
instruction tuning—that is, fine-tuning the model on a collection of 
datasets in which each example was prefixed with some combination 

of instructions and/or few-shot exemplars. In particular, Flan-PaLM2 
demonstrated the effectiveness of scaling the number of tasks, model 
size and using chain-of-thought data16 as instructions. The Flan-PaLM 
model reached state-of-the-art performance on several benchmarks 
such as MMLU, BBH and TyDIQA58. Across the suite of evaluation tasks 
considered2, Flan-PaLM outperformed baseline PaLM by an average 
of 9.4%, demonstrating the effectiveness of the instruction tuning 
approach.

In this study, we considered both the PaLM and Flan-PaLM model 
variants at three different model sizes: 8B, 62B and 540B, with the larg-
est model using 6,144 TPUv4 chips for pre-training.

Aligning LLMs to the medical domain. General-purpose LLMs like 
PaLM1 and GPT-3 (ref. 15) have reached state-of-the-art performance on 
a wide variety of tasks on challenging benchmarks such as BIG-bench. 
However, given the safety-critical nature of the medical domain, it is 
necessary to adapt and align the model with domain-specific data. 
Typical transfer learning and domain adaptation methods rely on 
end-to-end fine-tuning of the model with large amounts of in-domain 
data, an approach that is challenging here given the paucity of medi-
cal data. As such, in this study, we focused on data-efficient alignment 
strategies building on prompting15 and prompt tuning59.

Prompting strategies. GPT-3 (ref. 15) demonstrated that LLMs are 
strong few-shot learners, where fast in-context learning can be achieved 
through prompting strategies. Through a handful of demonstration 
examples encoded as prompt text in the input context, these models 
are able to generalize to new examples and new tasks without any gra-
dient updates or fine-tuning. The remarkable success of in-context 
few-shot learning has spurred the development of many prompting 
strategies including scratchpad60, chain-of-thought16, and least-to-most 
prompting61, especially for multi-step computation and reasoning 
problems such as mathematical problems62. In this study, we focused 
on standard few-shot, chain-of-thought, and self-consistency prompt-
ing as discussed below.

Few-shot prompting. The standard few-shot prompting strategy 
was introduced with GPT-3 (ref. 15). Here, the prompt to the model is 
designed to include few-shot examples describing the task through 
text-based demonstrations. These demonstrations are typically encod-
ed as input–output pairs. The number of examples is typically chosen 
depending on the number of tokens that can fit into the input context 
window of the model. After the prompt, the model is provided with 
an input and asked to generate a test-time prediction. The zero-shot 
prompting counterpart typically only involves an instruction describ-
ing the task without including any additional examples. Few-shot per-
formance appears to be an emergent ability28 for many tasks—that is,  
an ability that is non-existent in small models but rapidly improves 
above random performance beyond a certain model size.

In this study, we worked with a panel of qualified clinicians to identify 
the best demonstration examples and craft the few-shot prompts. Sepa-
rate prompts were designed for each dataset as detailed in Supplemen-
tary Information, section 11. The number of few-shot demonstrations 
varied depending on the dataset. Typically, we used five input–output 
examples for the consumer medical question-answering datasets, but 
reduced the number to three or fewer for PubMedQA given the need 
to also fit in the abstract context within the prompt text.

Chain-of-thought prompting. COT16 involves augmenting each 
few-shot example in the prompt with a step-by-step breakdown and 
a coherent set of intermediate reasoning steps towards the final  
answer. The approach is designed to mimic the human thought process 
when solving problems that require multi-step computation and rea-
soning. COT prompting can elicit reasoning abilities in sufficiently LLMs 
and dramatically improve performance on tasks such as mathe matical 
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problems16,62. Further, the appearance of such COT reasoning  
appears to be an emergent ability28 of LLMs. COT prompting has been 
used to achieve breakthrough LLM performance on several STEM  
benchmarks63.

Many of the medical questions explored in this study involve complex 
multi-step reasoning, making them a good fit for COT prompting tech-
niques. Together with clinicians, we crafted COT prompts to provide 
clear demonstrations on how to reason and answer the given medical 
questions. Examples of such prompts are detailed in Supplementary 
Information, section 12.

Self-consistency prompting. A straightforward strategy to improve 
the performance on the multiple-choice benchmarks is to prompt 
and sample multiple decoding outputs from the model. The final  
answer is the one received the majority (or plurality) vote. This idea was 
introduced as ‘self-consistency’17. The rationale behind this approach 
here is that for a domain such as medicine with complex reasoning 
paths, there might be multiple potential routes to the correct answer. 
Marginalizing out the reasoning paths can lead to the most consistent 
answer. The self-consistency prompting strategy led to particularly 
strong improvements in reasoning tasks63, and we adopted the same 
approach for our datasets with multiple-choice questions: MedQA, 
MedMCQA, PubMedQA, and MMLU. In this work, all decodes were 
performed with a temperature sampling64,65 constant of 0.7.

Prompt tuning. Because LLMs have grown to hundreds of billions of 
parameters1,15, fine-tuning them is extraordinarily computationally 
expensive. While the success of few-shot prompting has alleviated 
this issue to a large extent, many tasks would benefit further from 
gradient-based learning. Prompt tuning59 (in contrast to prompting/
priming), is a simple and computationally inexpensive method to adapt 
LLMs to specific downstream tasks, especially with limited data. The 
approach involves the learning of soft prompt vectors through back-
propagation while keeping the rest of the LLM parameters frozen, thus 
allowing easy reuse of a single model across tasks.

This use of soft prompts can be contrasted with the discrete 
‘hard’ text-based few-shot prompts popularized by LLMs such as 
GPT-3 (ref. 15). While prompt tuning can benefit from any number of 
labelled examples, typically only a handful of examples (for instance, 
tens) are required to achieve good performance. Further, it was demon-
strated that prompt-tuned model performance becomes comparable 
with end-to-end fine-tuning performance at increased model scale59. 
Other related approaches include prefix tuning66, where prefix acti-
vation vectors are prepended to each layer of the LLM encoder and 
learned through backpropagation. Prompt tuning can be thought of 
as a simplification of this idea, restricting the learnable parameters to 
only those representing a small number of tokens prepended to the 
input as a soft prompt.

Instruction prompt tuning. Flan models2,67 demonstrated the ben-
efits of multi-task instruction fine-tuning: the Flan-PaLM model 
achieved state-of-the-art performance on several benchmarks such 
as BIG-bench63 and MMLU6. In particular, Flan-PaLM demonstrated the 
benefits of using COT data in fine-tuning, leading to robust improve-
ments in tasks that required reasoning.

Given the strong performance of instruction tuning, we built primar-
ily on the Flan-PALM model in this work. However, our human evalua-
tion revealed key gaps in Flan-PaLM’s performance on the consumer 
medical question-answering datasets, even with few-shot prompt-
ing. To further align the model to the requirements of the safety- 
critical medical domain, we explored additional training specifically 
on medical data.

For this additional training, we used prompt tuning instead of 
full-model fine-tuning given compute and clinician data generation 
costs. Our approach effectively extends Flan-PaLM’s principle of 

‘learning to follow instructions’ to the prompt tuning stage. Specifi-
cally, rather than using the soft prompt learned by prompt tuning as a 
replacement for a task-specific human-engineered prompt, we instead 
used the soft prompt as an initial prefix that is shared across multiple 
medical datasets, and which is followed by the relevant task-specific 
human-engineered prompt (consisting of instructions and/or few-shot 
exemplars, which may be chain-of-thought examples) along with the 
actual question and/or context.

We refer to this method of prompt tuning as ‘instruction prompt 
tuning’. Instruction prompt tuning can thus be seen as a lightweight 
way (data-efficient, parameter-efficient, compute-efficient during both 
training and inference) of training a model to follow instructions in one 
or more domains. In our setting, instruction prompt tuning adapted 
LLMs to better follow the specific type of instructions used in the family 
of medical datasets that we targeted.

As an aside, instruction prompt tuning is not specific to the medical 
domain or to PaLM. It can be applied in other domains or other LLMs by 
(1) preparing a training corpus containing multiple tasks with different 
instructions, (2) freezing the LLM, (3) randomly initializing a p × e matrix 
(where p is the soft prompt length and e is the model’s embedding token 
dimension) representing a sequence of soft tokens, (4) prepending the 
matrix to any embedded inputs to the LLM, and (5) training the matrix 
via backpropagation on a negative log-likelihood loss as in prompt 
tuning59. We provide additional hyperparameter details for our imple-
mentation in Supplementary Information, section 2.

Given the combination of soft prompt with hard prompt, instruction 
prompt tuning can be considered a type of ‘hard-soft hybrid prompt 
tuning’68, alongside existing techniques that insert hard anchor tokens 
into a soft prompt69, insert learned soft tokens into a hard prompt70, 
or use a learned soft prompt as a prefix for a short zero-shot hard 
prompt71,72. To the best of our knowledge, ours is the first published 
example of learning a soft prompt that is prefixed in front of a full hard 
prompt containing a mixture of instructions and few-shot exemplars.

Putting it all together: Med-PaLM. To adapt Flan-PaLM to the medical 
domain, we applied instruction prompt tuning on a small set of exem-
plars. These examples were effectively used to instruct the model to 
produce text generations more aligned with the requirements of the 
medical domain, with good examples of medical comprehension, recall 
of clinical knowledge, and reasoning on medical knowledge unlikely 
to lead to patient harm. Thus, the curation of these examples was very 
important.

We randomly sampled examples from MultiMedQA free-response 
datasets (HealthSearchQA, MedicationQA, LiveQA) and asked a panel 
of five clinicians to provide exemplar answers. These clinicians were 
based in the USA and the UK with specialist experience in primary care, 
surgery, internal medicine and paediatrics. Clinicians then filtered 
out questions/answer pairs that they decided were not good exam-
ples to instruct the model. This generally happened when clinicians 
felt like they could not produce an ‘ideal’ model answer for a given  
question—for example, if the information required to answer a question 
was not known. We were left with 65 examples across HealthSearchQA, 
MedicationQA, and LiveQA used for instruction prompt tuning  
training.

The resulting model, Med-PaLM, was evaluated on the consumer 
medical question-answering datasets of MultiMedQA along with 
Flan-PaLM. Extended Data Fig. 1 gives an overview of our instruction 
prompt tuning approach for Med-PaLM. Further details on the hyper-
parameter optimization and model selection process can be found in 
Supplementary Information, section 2. The model card for Med-PaLM 
is provided in Supplementary Information, section 9.

Related work
Large language models. Over the past few years, LLMs have 
shown impressive performance on natural language processing  



tasks1,2,15,16,67,73–77. They owe their success to scaling up the training of 
transformer-based models78. It has been shown that model perfor-
mance and data-efficiency scales with model size and dataset size79. 
LLMs are often trained using self-supervision on a large scale, using 
general-purpose text corpi such as Wikipedia and BooksCorpus. 
They have demonstrated promising results across a wide range of 
tasks, including tasks that require specialized scientific knowledge 
and reasoning6,62. Perhaps the most interesting aspect of these LLMs 
is their in-context few-shot abilities, which adapt these models to 
diverse tasks without gradient-based parameter updates15,67,80,81. 
This allows them to rapidly generalize to unseen tasks and even 
exhibit apparent reasoning abilities with appropriate prompting 
strategies1,16,20,63.

Several studies have shown that LLMs have the capacity to act as 
implicit knowledge bases6,20,82. However, there is a significant risk of 
these models producing hallucinations, amplifying social biases pre-
sent in their training data, and displaying deficiencies in their reasoning 
abilities. To examine the current limitations of LLMs and to quantify the 
large gap between human and LLM language capabilities, BIG-bench 
was introduced as a community-wide initiative to benchmark on tasks 
that were believed at time of publication to be beyond the capabilities 
of current language models57.

LLMs for science and biomedicine. Recent studies, such as SciBERT83, 
BioNLP84, BioMegatron85, BioBERT86, PubMedBERT87, DARE88, Scholar-
BERT89, and BioGPT21, have demonstrated the effectiveness of using 
curated scientific and biomedical corpora for both discriminative 
and generative language modelling. These models, although promis-
ing, are typically small in scale and scope compared to LLMs such as 
GPT-3 (ref. 15) and PaLM1. While the medical domain is challenging, 
specific proposals for LLMs have already included examples as varied 
as augmenting non-critical clinical assessments to summarization of 
complex medical communications90–92.

The closest precedents to our work are Galactica20, an LLM for  
science, and another work studying the reasoning capability of LLMs in 
the medical question-answering context93. The latter work used GPT-3.5 
(Codex and InstructGPT), an instruction-tuned LLM94 and evaluated 
on the MedQA, MedMCQA, and PubMedQA datasets.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The benchmark used in the study, MultiMedQA, comprises six open 
source datasets and one for consumer medical questions, Health-
SearchQA, which we introduce here and are releasing with this work 
as a supplementary file.

Code availability
Med-PaLM is an LLM that has been aligned to the medical domain. 
We are not open-sourcing model code and weights owing to the 
safety implications of unmonitored use of such a model in medical 
settings. In the interest of responsible innovation, we will be working 
with academic and industry research partners, providers, regulators 
and policy stakeholders to validate and explore safe onward uses 
of Med-PaLM. For reproducibility, we documented technical deep 
learning methods while keeping the paper accessible to a clinical 
and general scientific audience. Our work builds upon PaLM, for 
which technical details have been described extensively, and our 
institution has open-sourced several related LLMs to further the devel-
opment of research methods in the field (https://huggingface.co/ 
google/flan-t5-xl). 
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Extended Data Fig. 1 | Instruction prompt tuning for Med-PaLM. We use 
instructions and exemplars from a panel of qualified clinicians for each of the 
consumer medical question answering datasets and use them to instruction 

prompt tune Flan-PaLM. Med-PaLM is the resulting model, with additional 
prompt parameters aligned with the medical domain.



Article

Extended Data Fig. 2 | Comparison of SOTA LLMs on MMLU clinical topics. Flan-PaLM achieves state-of-the-art performance on MMLU clinical topics.



Extended Data Table 1 | Summary of MultiMedQA describing the format, size, and domain of the datasets in the benchmark



Article
Extended Data Table 2 | Summary of the different axes along which clinicians evaluate the answers in our consumer medical 
question answering datasets

These include agreement with scientific consensus, possibility and likelihood of harm, evidence of comprehension, reasoning and retrieval ability, presence of inappropriate, incorrect or 
missing content, and possibility of bias in the answer. We use a panel of clinicians to evaluate the quality of model and human-generated answers along these axes.



Extended Data Table 3 | Summary of the different axes along which lay users evaluate the model answers in our consumer 
medical question answering datasets

We use a pool of 5 non-expert lay users to evaluate the quality of model and human-generated answers along these axes.



Article
Extended Data Table 4 | Summary of the best performing models on the MedQA (USMLE) dataset questions with 4 options

Our results with Flan-PaLM exceed previous state-of-the-art by over 17%.



Extended Data Table 5 | Comparison of the performance between Med-PaLM 540B and Flan-PaLM 540B with 
self-consistency (SC) across multiple-choice datasets

Med-PaLM was not trained using any of these datasets. These results suggest that instruction prompt tuning aligns the model to the requirements of consumer medical question answering 
without affecting base clinical knowledge.



Article
Extended Data Table 6 | Representative explanations generated by the Flan-PaLM 540B model to support its multiple-choice 
answers in the MedQA dataset



Extended Data Table 7 | Examples of Med-PaLM responses to questions in the HealthSearchQA dataset

.
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Extended Data Table 8 | Examples of HealthSearchQA questions where the physician answers are considered incomplete, 
and corresponding Med-PaLM answers

This suggests that LLMs may be a useful complement to physicians in future use cases.
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