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A B S T R A C T

Implementing an efficient control strategy for heating, ventilation, and air conditioning (HVAC) systems can
lead to improvements in both energy efficiency and thermal performance in buildings. As HVAC systems and
buildings are complicated dynamic systems, the effectiveness of both data-driven and model-based control
methods has been widely investigated by researchers. However, the main challenges that impede the practical
application of model-based methods in real buildings are their reliance on the precision of control-oriented
models and the dependence of data-based systems on the quantity and quality of input–output data. The
objectives of this study are: (1) To present an overview of the prevalent thermal modelling strategies used as
control-oriented models or virtual environments in model-based and data-based control methods, addressing
the main requirements of thermal models; (2) the state-of-the-art of MPC and RL control techniques; (3) the
data requirements for thermal models. The findings emphasise the need for unified guidelines to validate
and verify the proposed control methods, ensuring their practical implementation in real buildings. Moreover,
the inclusion of occupancy forecasts in models presents challenges due to the intricate nature of accurately
predicting human behaviour, occupancy patterns, and their effects on thermal dynamics. Balancing thermal
comfort and energy efficiency in HVAC systems with a supervisory controller remains a difficult task, but
combining data-driven and physics-based models can help overcome challenges. Further research is needed
to compare the effectiveness of MPC and RL approaches, and accurately measuring the impact of human
behaviour and occupancy remains a significant obstacle.
1. Introduction

Heating, ventilation, and air conditioning (HVAC) systems used
in commercial buildings are designed to provide comfortable indoor
conditions for the occupants. This is done via the regulation of multiple
indoor control variables, while considering energy efficiency simulta-
neously. Buildings thermal satisfaction depends on both environmental
and occupancy factors [1]. Examples of the former are indoor tem-
perature, humidity [2], thermal radiation, and airflow patterns [3,4].
The latter refers to behaviour, clothing level, and the number of occu-
pants. Consequently, indoor air quality, occupant comfort, and systems
parameters are used in the calculation of temperature set points [5].
Furthermore, thermal comfort standards such as the American society
of heating, refrigerating and air conditioning engineers (ASHRAE) sum-
marise the requirements for adjusting set points of control variables [5],
while their values might be kept constant to reduce the complexity of
control problems. In parallel, minimisation of energy usage is impor-
tant. HVAC systems, mainly their compressors and air handling units
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(AHU), contribute to more than half of the energy consumption in
commercial buildings [6–8]. Heat transfer from internal and external
loads caused by environmental factors affects HVAC energy usage [4,9].
For instance, outdoor temperature and solar radiation cause heat losses
or gains related to the opaqueness/transparency of windows and slab
floor of the building structure [10]. These loads influence the HVAC
dynamics indirectly as external disturbances [11].

Efficient control of HVAC systems can lead to effective indoor air
regulation [12,13], reducing building energy demands and improv-
ing occupants’ comfort levels [14]. Different factors, such as outdoor
weather conditions, building geometry, seasonal variation in indoor
thermal variables, thermal properties of materials, and occupancy,
complicate the deployment of accurate thermal energy models [15,16].
As a result, approximations and estimations are considered in the de-
ployment of models to reduce the model complexity [17]. The existing
implemented control techniques in the building management system
(BMS) for supervisory control of building HVAC system are mainly
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Nomenclature

Abbreviations

AHU Air Handling Unit
ANN Artificial Neural Network
ASHRAE American Society of Heating, Refrigerating,

and Air Conditioning Engineers
BDQ Branching Duelling Q-network
BEM Building Energy Modelling
BMS Building Management System
C Capacitance
CO2 Carbon Dioxide
CFD Computational Fluid Dynamic
CNN Convolutional Neural Network
CRI Contribution of Indoor Climate
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q-Network
DNN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
HVAC Heating, Ventilation, and Air Conditioning
MPC Model Predictive Control
MRE Mean Relative Error
NARX Nonlinear Autoregressive Network with Ex-

ogenous Inputs
PID Proportional Integral Derivative
PIR Passive Infrared
PPO Proximal Policy Optimisation
R Resistance
RBC Rule-Based Controller
RC Resistance-Capacitance
RL Reinforcement Learning
RT Regression Tree
SVM Support Vector Machine
TDNN Time Delay Neural Network
VAV Variable Air Volume
XML Extensible Mark-up Language

traditional controllers such as rule-based controllers (RBC) [18,19]
following control rules of set point boundaries without applying any
optimisation algorithms.

Model predictive control (MPC) is a dominant alternative control
scheme implemented for supervisory control of building HVAC sys-
tems. The key requirements of MPC are desired models of a complex
nonlinear system as a representation of a real system, prediction of
disturbances, and an optimisation algorithm [20,21] (for theoretical
explanations see [22]). Difficulties in modelling both accurate and
efficient dynamic models, uncertain system parameters, and multiple
operational constraints are the challenges that needs to be overcome
in MPC solutions. Another theoretical effort involved in model iden-
tification is the calibration of parameters to improve the prediction
results [23]. Despite the theoretical and experimental explorations
on MPC formulation confirming its potential, there are still limita-
tions including difficulties in the identification of minimum required
data, generalisation of standards for validation and verification, under-
standing essential level of detail for model development, and model
2

calibration. Lower dependency of the control strategy performance on
the accuracy of system parameters and dynamic behaviour is a benefit
as exact parameters estimation is difficult [24]. In learning-based con-
trol methods like reinforcement learning (RL), optimal control policies
are learned without explicit dynamic models [25–27]. The existence of
sensing infrastructure in buildings, involving sensors and actuators [9,
28] facilitates the monitoring of thermal variables and the regulation
of their set points [29,30]. Accordingly, without detailed mathematical
models and with simulated or real data, learning control agents can
be trained [26,31]. Therefore, both MPC and RL strategies have been
investigated and proven with potential for supervisory control in this
topic with their limitations.

1.1. Previous reviews on building thermal energy modelling and control

Model development is integral to both mentioned advanced control
methods, even a more generalised model is applied for learning-based
methods. Different modelling methods for building thermal energy
modelling and HVAC systems are addressed by [32–35], while [32]
stressed the shortcomings and potentials of models in a more compar-
ative way. Basic theories and frameworks of energy modelling with
data-driven strategies for predicting and classifying building energy
usage are reviewed in [36]. They indicated that developed data-driven
models should not be limited to energy consumption and HVAC load
predictions, but should also evaluate indoor air quality and occupancy-
related factors. A paper by [18] has provided a comparison of data-
driven methods based on the lifetime adaptability, safety, complexity
of objectives, and numerical scalability. Recent improvements in eight
frequently selected data-driven techniques for building energy con-
sumption modelling and prediction are highlighted in [37] listing
selected input variables for modelling. They recommend further study
on combining data-driven methods with physical models to evalu-
ate feasible improvements and the influence of including accurate
occupancy behaviour, number, and activity data on building energy
studies. The theory of grey-box modelling for building thermal energy
is explained in [38], pointing to a lack of comprehensible guidelines on
theoretical model order selection and essential theoretical assumptions
based on the applications, unified software for model creation, and
more precise guidelines on grey-box models applications. Furthermore,
the role of model calibration, which defines the tuning of numeri-
cal/physical parameters/variables of the model to reduce the mismatch
between the real values and observed ones, for the simulation outcomes
is covered in [23]. This paper pointed out the common input–output
variables and parameters of the model that are selected for calibration
in building simulation models.

After the selection and development of the model, the model is used
as a test-bed for control systems. The principles of learning control
systems are explained in [39], discussing the required information and
differences in the theoretical computations. More recently, a review of
building control strategies is provided in [40] concluding that appro-
priate control solutions can deal with uncertainties, are adaptive, and
include optimisation techniques. In terms of the MPC framework for
building control, the authors in [41] looked into possible opportunities
and potentials. MPC for commercial buildings is reviewed in [42,43].
To make MPC a financially feasible control method for non-domestic
buildings, there is a pressing need for research on automating the
creation and updating of predictive models, and testing it on full-scale
buildings to demonstrate its viability [43]. To improve the effectiveness
of MPC in building control, future research should focus on comparing
optimisation algorithms and parameters, as well as exploring the sensi-
tivity of timestep and horizon to minimise uncertainties, particularly
related to climate forecast accuracy [42]. An in-depth summary of
MPC formulation is presented in [19], including both theoretical and
practical features that should be considered in real applications. Hard-
ware and communication barriers of the MPC framework are studied
in [44]. Analyses of MPC by answering ten common concerns in MPC

implementation for buildings control studies are carried out in [45].
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Difficulties in MPC modelling and parameterisation and the absence of
commercial tools to formulate MPC are the underlined issues limiting
MPC adoption as the supervisory controller for real buildings. The
authors in [21] identified a lack of quantitative comparison between
nominated modelling methods for MPC strategies, guidelines on mini-
mum performance requirements of control-oriented models, and study
on minimum data requirements based on model objectives. A level of
details framework is defined to compare the data requirements for a
different levels of building modelling stages. A review of district heat-
ing and cooling was presented in [46], and the theory and application
of HVAC systems with MPC models were reviewed in [47]. Combining
the model based on the artificial neural network (ANN) with MPC
control for HVAC systems is carried out in [48]. The paper stresses the
importance of setting reductions in the operating cost of HVAC systems
as an objective rather than energy consumption minimisation. It also
showed that enhancements in measurements of occupant activities and
behaviour lower the level of uncertainty related to occupancy data.
The overall methodologies for occupancy prediction are highlighted
in [49,50], stating the importance of occupant behaviour modelling
for building energy modelling and HVAC control [50]. The highlighted
challenges are obtaining accurate valid data, the inclusion of physical
occupancy routines with historical data and contextual information,
lack of larger spatial resolutions for evaluations, and deficiency in the
real case study implementations [49]. The use of MPC for occupancy
behaviour is outlined in [51,52], highlighting the application of oc-
cupant behaviour modelling in building energy modelling and HVAC
controls.

A review of deep reinforcement learning (DRL) application in build-
ing energy management including HVAC system is presented in [26,53,
54]. In comparison with model-free DRL methods, model-based ones
are founded more practical solutions, as abundant training data is avail-
able from the modelled environment [26]. Moreover, they mentioned
low data resolution and the difficulties faces for multiple objective
situations are the current difficulties limiting DRL applications. Eval-
uating the potential of RL algorithms in comparison with other control
methods in experiments is suggested as future research direction in
Ref. [53]. They also noted that the effectiveness of RL strategies during
abnormal weather conditions has not been well-studied. The computer
science related challenges of RL methods are covered in [54] for
building energy control applications. Data sample efficiency is the
prerequisite of model-based RL approaches, while further theoretical
analyse is suggested to find minimum required data [54,55]. Different
RL algorithms and modelling techniques that are tested for demand
response consisting building energy and HVAC control are presented
in [56], suggesting study of multi-agent systems to a greater extent.
Control occupant comfort with RL algorithms is conducted in [57].
The need for inclusion of occupancy patterns/feedback and study of
model-based RL controllers are some of the mentioned gaps. Building
energy and HVAC system become a complex problem for system per-
formance level analyses. There is a need for multi-agent DRL systems
in these situations. The possible aspects, barriers, and applications of
DRL in for multi-agent scenarios are explained in [58]. They presented
ideal solutions for non-stationary problems caused by interaction of
multiple agents, incomplete observable information of interacting envi-
ronment accessible for agents, agents training, and application of DRL
in continuous domain.

1.2. Statement of contribution

Motivated by recent surveys on the topic, consideration of multi-
ple objectives integrating multiple control variables has increasingly
become the research focus, as there are multiple interacting systems
variables for multi-zones building HVAC system situations. Dealing
with multiple objectives by applying advanced control strategies in-
stead of conventional reactive RBC methods, specially for these com-
3

plex nonlinear dynamical systems, is still difficult and not competitive e
in terms of simplicity. Despite the existence of numerous studies on
thermal energy modelling and control strategies buildings, most stud-
ies focused to provide comprehensive overview of them separately.
However, a study integrating them with the aim of providing the
overview of requirements for thermal energy performance is missing.
This manuscript aims to fill the existing gap in the literature by in-
tegrating thermal energy modelling and control strategies to provide
a comprehensive overview of the requirements for thermal energy
performance in buildings. Specifically, the contribution of this study
includes:

(1) Discussion of thermal modelling strategies: The manuscript
iscuss different thermal modelling strategies employed for prediction
nd control of building heating and cooling research problem, high-
ighting how they meet the primary requirements of thermal models
or effective control methods;

(2) Overview of advancements in Model Predictive Control
MPC) and Reinforcement Learning (RL): The study provides an
verview of the latest advancements in MPC and RL control techniques,
mphasising their potential for addressing the challenges of multiple
bjectives and complex nonlinear dynamical systems in building HVAC
ontrol;

(3) Comparative analysis of data requirements for thermal
odels: The manuscript conducts a comparative analysis of the data

equirements as variables and/or parameters of thermal models, aid-
ng researchers and practitioners in selecting appropriate data-driven
pproaches for building thermal energy modelling.

To achieve these objectives, the up to date research simulations and
xperiments are reviewed to notify the potential of different applied
ethodologies, possible research directions, and practicable industrial

onsiderations. The paper is structured as follows. Section 2, provides
he research methodology of this paper. Section 3 gives an overview
bout idea of building control for thermal energy modelling. Section 4
escribes the state-of-the-art thermal modelling approaches compatible
ith control strategies representing the system model. In Section 5,

he integration of thermal energy models with MPC and RL controllers
s leading methods is discussed. Then, Section 6 comparatively point
o data requirements as variables and/or parameters of the thermal
odels. Section 7 presents noteworthy findings and outlines potential

esearch avenues. Lastly, Section 8 concludes the paper.

. Methodology

The critical review was employed to present an impartial and
omprehensives overview of available literature on thermal energy
odelling, supervisory level control, and data requirements in model
evelopment used for building energy performance. Through a contin-
al process of review, a set of related keywords was identified and
sed to conduct a literature search. Multiple keywords and phrases
ere combined with ‘‘OR’’ and ‘‘AND’’ to maximise the coverage of the

earch results. The keywords were initially categorised based on ‘‘Ther-
al energy modelling strategies in building-HVAC problems’’, ‘‘Super-

isory control methods for control-oriented building energy models’’,
nd ‘‘Data requirements for model developments’’. Additional generic
eywords, including indoor air quality, HVAC system control, Indoor
hermal variables prediction, were incorporated into the search list for
ach category to expand the search terms. Subsequently, more specific
erms related to each category (such as RC models and specific machine
earning algorithms, MPC, and RL) were added to the search list to
nhance the comprehensiveness of the search. Further improvements
o the search criteria were carried out by eliminating any unrelated
r extraneous topics (battery energy modelling, thermal energy storage
ystems modellings, local control level of HVAC system parts).

IEEE Xplore, Google scholar, Griffith University library, and Scopus
ere the main databases used to find top peer-reviewed journals,

echnical engineering reports, and books in English. To determine the
ocus of this review paper, the authors examined the most current peer-
eviewed literature. The review process was ongoing throughout the

ntire manuscript preparation phase.
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Fig. 1. Control framework of building indoor thermal energy modelling at supervisory
control level.

3. Building modelling control problem

Dynamic behaviour of buildings [17] and non-linearity of HVAC
systems creates challenges in the development of controllers [59] for
the thermal energy of these systems. The operation of a zone in a real
building is represented in Fig. 1.

The building zone is affected by disturbances related to outside
weather conditions, which are time-varying and there is uncertainty
in their prediction. It is also subject to HVAC actuators, responsible
for adjusting the devices in the HVAC to regulate the variables of its
components. Environmental variables including temperature, humidity,
occupancy, and lighting data also contribute to the thermal energy of
building zones. There is an influence of the thermal energy of neigh-
bouring zones on a single zone as well. The HVAC system is the main
system in building zones that affect indoor thermal performance as it is
responsible to regulate indoor variables like temperature and humidity
related to thermal energy. As the physical characteristics of the systems
(e.g. HVAC systems) used for indoor thermal regulations are different
based on their type, universal control models cannot be proposed [18,
60]. Control of the HVAC system requires system identification [20]
as its dynamic behaviour is represented by differential equations. Bi-
linear interactions of variables, including temperature rates, airflow
rates, and heat transfer during the temperature adjustments confirm
non-linearity in HVAC models [61,62]. The control of the HVAC system
can be divided into local and supervisory levels, which are connected
via communication protocols. The former refers to the control of HVAC
system elements and building internal dynamics [63]. The latter is
an additional control layer that aims to supervise and manage the
HVAC system and other influencing factors such as weather data,
occupancy data, and HVAC operating schedule. Although conventional
proportional integral derivative (PID) and RBC are unappealing control
algorithms for high-level prediction accuracy [11,64,65], indoor ther-
mal energy is still controlled by RBC techniques at the supervisory level
and PID ones at the local level in most buildings [66]. Moreover, there
is a time response delay in PID control systems compared to strategies
with adaptive and predictive control potential [67]. RBC techniques
also lack continuous adaptation with condition changes [18]. These
limitations highlight the need for intensive research into the devel-
opment of advanced control strategies specially for the supervisory
control level. The designed control system can be model-free or model-
based. In the model-free method, the control laws of the implemented
controller are defined based on the behaviour of the collected input–
output data from the plant with an online estimation of unknown
4

parameters [68]. However, a little information about the system or
a generic model of the system might be used for offline training or
tuning of the controller. Model-free controller is different from black-
box identification (see [69]). In the model-based method, the dynamic
models of the plant are used to design the controller [68]. Based on the
controller predictions for the future behaviour of variables, the required
actuation will be sent to the corresponding system components. The
main features that need to be considered in the development of control-
oriented building indoor thermal energy models are summarised in
Table 1.

There is no exact model of the system and all of the models are
uncertain. However, depending on the models objective(s), they can
be useful for implementing the controller. The main thermal modelling
methods that can be used for the control of indoor thermal energy are
provided in the next section.

4. Modelling strategies for buildings

White-box/physics-based, black-box/data-driven-based, and grey-
box/hybrid-based models are used to develop building energy and
thermal models [72]. An overview of these models, with their main
comparative features in Figs. 2, 3, and 4, is delivered below.

(1) White-box models: The thermal modelling of buildings can
be developed based on the physical properties of the materials in the
buildings by using thermal dynamic equations or resistance-capacitance
(RC) modelling [73]. However, physics-based models require detailed
knowledge about the physical properties of buildings and HVAC sys-
tems [74–76], including geometry, building materials, and heat con-
duction. The inaccessibility of this information makes these approaches
less practical solutions.

(2) Black-box models: Mathematical relationships between input
and output variables can be developed by considering system perfor-
mance measuring data requirements beside accuracy and complexity
level [32]. The real-time data for training the model consists of time se-
ries components, such as seasonal data and set points of variables [74].
It also considers the periodic behaviours of the building components.
The accuracy of this strategy depends on the availability of sufficient
data [32,77].

(3) Grey-box models: In these models, a combination of white-box
and black-box models [78] are used when there is insufficient mea-
sured data and physical information of the system physical characteris-
tics [32]. Although less information about physical systems is needed,
parameter estimations for the models can be based on stochastic dif-
ferential equations derived from dynamical information of the system
and system identification. If the formation of the thermal model of the
whole building is the objective and the complexity of building systems
is high, these models are not suitable [79]. Model order reduction is an
ideal solution for reducing the complexity of the models [80].

Co-simulation of software for building modellings: In cases
where an individual software tool lacks libraries for simulating the
whole building and HVAC system or different applications have been
used for simulations, co-simulation of software is a solution [81].
This refers to the integration of simulated sub-models to exchange/run
simulations in different software simultaneously [82]. A comparative
survey on software limitations is presented in [81]. The models can be
computed parallel and/or distributed in the co-simulation server [83].
The installation of all coupling software is required when a virtual
server (as an interface) is used for the integration, while the simulation
models are running individually in their software [84]. An example
interface for co-simulation is a functional mock-up interface (FMI) that
runs by the functional mock-up unit (FMU) [83,85]. The FMI contains
an extensible mark-up language (XML) model description file of vari-
ables [86]. Model exchange co-simulation interfaces have an individual
solver, as a simulated model can be exported to an FMU format and
imported to a host platform, including the other models [84].
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Fig. 2. Main features for white-box models (Reliability and Accuracy-system information [32], Practicality-detailed information [18], Practicality-transferability [19].).

Fig. 3. Main features for black-box models (Reliability, Accuracy, Practicality-Prediction performance [32], Practicality-Simpler to model small datasets and Physical knowledge [18],
Practicality-transferability [19].).
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Table 1
Main features for the development of control-oriented building indoor thermal energy models.

Data Model Validation

Variables selection:
• Reduce model complexity by selecting input variables [32].
• Consider extra variables may not improve controller
predictions [32].
• Include adequate data for each climate condition [32].

Model complexity:
• Consider model complexity reduction for controllers
[32].
• Evaluate model complexity and controller
performance.

Model Validation:.
• For building envelope, mechanical equipment
and energy generation equipment conduct [70],
• Comparative tests
• Analytical verification
• Empirical validation

Location and number of Sensors:
• Evaluate the effect of sensor location on measurement
accuracy [71].
• Consider the effect of sensors numbers on model accuracy
[71].

Effect of Input–output arrays:
• Examine the influence of multiple variables on the
model performance [32].

Quality of measured data:
• Consider data quality depends on sensor accuracy.
• Calibrate inaccurate data [18].

Number of Zones to model
• Investigate model compatibility for multiple zones.

Control system validation:
• Validate control performance versus model
accuracy.
• Assess predictions accuracy over a lengthy
horizon [32].

Sampling periods:
• Recognise variable sampling periods may differ [18].
Size of training data:
• Minimise training time by selecting adequate training data.
• Consider impact of training data size on model accuracy.
Fig. 4. Main features for grey-box models (Reliability, Accuracy, Practicality [32], Accuracy-RC [19].).
4.1. Computational fluid dynamic thermal modelling strategy

Computational fluid dynamic (CFD) simulations are white-box mod-
els. These models are derived from coupled Navier–Stokes equations
[80], which are partial differential equations of viscous fluid substances
motion, and energy balance equations. They are mainly used for air
movement and distribution simulations in the building zones. In order
to efficiently use natural ventilation from airflow through the building,
a building geometry, façade, and floor plan are required to be optimised
with thermal efficiency methods such as energy and CFD [87]. Based
6

on the simulation results, an appropriate U-Value is selected for the
building façade (windows, walls, and roofs). However, adopting a high-
resolution CFD model for large datasets leads to a long computing
simulation time [88], which reduces its adoption for building thermal
modelling as the primary selection [89]. Especially when the simulated
data in the CFD application has nonlinear and transient behaviour,
limited simulations are insufficient to predict parameter patterns [90].
Although the CFD simulation strategy can be used to model indoor
air quality, energy usage [91], and pollution distribution [92], it lacks
the real-time monitoring functionality and exact information on air
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quality outcomes [93]. The use of ANN and the contribution of indoor
climate (CRI) methods with CFD could solve this issue [94]. As a result,
CFD incorporated with a linear ventilation model based on an ANN
was created to forecast indoor air quality, and CFD combined with a
linear temperature model based on CRI was used for indoor thermal
performance analyses [94]. Air change rates per hour and supply air
temperatures were taken as input layers for an ANN model and CRI
models respectively in [94], with the conversion of high-resolution
data to a low dimensional model to predict carbon dioxide (CO2)
oncentration in an indoor environment. As occupants and equipment
n the zone contribute to the CO2 concentration level, CO2 measure-
ents can be used to evaluate the accuracy of heat gain calculations

elated to these internal loads [95]. They concluded that the error
f the proposed models separately was under 10 percent, while the
elationship between the models was not considered. A division of
he database into smaller regions for CFD simulation can reduce the
naccuracy occurring in data dimension reduction, in particular for
arge-scale building analyses [96].

CFD simulation can be also used for the deployment of sensor loca-
ions for thermal energy analyses in buildings. The location of installed
ensors in systems or buildings is an influential factor in the result of the
easured data, which needs to be decided based on the measurements

f the variables [97]. For instance, CFD and building energy simulations
ere conducted [98] to find out indoor temperature distribution for
ariable air volume (VAV) control (local control level). They concluded
hat installing an indoor temperature sensor near a return air inlet
r locations with a high number of occupants and equipment (where
he temperature is higher) increases the supply airflow rate [98]. In
ontrast, placing the indoor temperature sensor closer to the supply
ir diffuser (where the air temperature is lower) decreases the supply
irflow rate [98]. Another study [99] implemented a low-dimensional
inear ventilation model based on ANN for simulating a CFD low-
esolution dataset, the HVAC control strategy has the potential to
orecast indoor air quality with the use of data from air velocity meters
nd CO2 sensors [99]. The optimised location of sensors was close to the
utlet region of the examined area. Furthermore, the sensors with the
ame functionality, which were installed in parallel or the same stream
irections, predicted similar results [99]. However, their investigation
as limited to a small indoor environment. In order to identify the
umber of required sensors and their optimised locations, a Fuzzy C-
ean unsupervised clustering algorithm can be used to classify the

ample data into different groups of clustering datasets [71]. As a result,
he centre of each cluster can be used to distribute the corresponding
ensor type effectively [71]. This method was adopted in [71] to find
n optimal solution for sensor deployment in a control model, while
he CFD model and a low-dimensional linear ventilation model based
n ANN were simulated for indoor pollution control of the HVAC.
oreover, it is important to place thermostats close to occupied zones

or both thermal comfort and ventilation. Conducting CFD simulations
ased on sensor installation may not always be the simplest approach,
s the cost of indoor environmental sensors is reasonable and exper-
mental tests may also provide appropriate solutions. Unless the main
bjective of the study requires CFD simulation analyses, The complexity
f the CFD model and the high computational cost of these simulations
ake them inappropriate solutions for building controls.

.2. Black-box/data-driven models for thermal modelling

Different data-driven (machine and deep learning) techniques are
mployed to develop energy models for building and predict the in-
oor/outdoor thermal energy variables, which impact building en-
rgy consumption and performance. Building energy models with data-
riven models are developed through training, validating, and testing
he dataset of input/output variables. Various classifications of data-
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riven methods are explained for building energy predictions [100] a
nd modelling [37]. Based on the modelling objectives and data fea-
ures (e.g type, quantity, and accuracy) the capable techniques can
e applied, as a standardised protocol meeting the objectives of dis-
imilar problems is missing [37]. There is still a lack of guidelines
or data-driven method selection based on the case study [100]. Also,
heir potential for control-oriented models including MPC is rarely
tudied [100].

Based on review study [37], ANN and support vector machine
SVM) techniques are expensively implemented for building energy
redictions, most noticeably in cases where a single method was used.
egardless of accurate prediction fulfilment with SVM, parameter cal-

bration is challenging [37]. ANN methods are capable to be used
or combined methods including ensemble models and improved ones
integrating both a single model and optimisation techniques). As
nergy modelling of buildings involves different data types, the adapt-
bility of these models with the combination of data types makes
hese approaches an alternative solution for building energy problems.
urthermore, they can be used for both supervised (for classifica-
ion and regression) and unsupervised (for clustering) learning [101].
on-linear ANN modelling can deal with complex prediction models
onsidering uncertainties, non-linearity, and different forecasting hori-
ons. ANN approaches are modelled by receiving the input variables
nformation, processing the information based on a mathematical calcu-
ation, and transmitting the calculated values as output variables [102].
n ANN model consists of input, hidden, and output layers with interre-

ated neurons, which create a nonlinear machine learning model [103–
05]. A zero value for a weight between two neurons/nodes cancels the
nteraction between these nodes [106]. Furthermore, the initial values
f weights and biases for the neural network are randomly selected,
hich can have a significant deviation from optimised values [106].
s a result, with the use of optimisation algorithms, a higher accuracy
ate in the prediction of variables, optimal values for weights/biases,
nd an adequate number of hidden layers can be identified [106]. The
nterconnection of input and output layers can be distinguished by the
orresponding data related to each layer [107]. The distribution of the
nput datasets is an unrelated factor in determining interconnections
etween input variables [108]. The hidden layer can be divided into
ulti-layers, while an over-fitting modelling error can occur in the
ataset [104]. Datasets of variables including training and valida-
ion real-time data are adopted to test the potential of the proposed
NN-based model in prediction accuracy [102]. The combination of
NN with computational processing elements, and adaptive neuro-

uzzy inference systems can be used for the information modelling
f systems [109]. Data from a simulated HVAC system in TRNSYS
oftware and sensor measurements were collected in [110] to propose
n auto-associative neural network in MATLAB software for the data
alidation and fault diagnosis of the HVAC system in a small building.
he input data dimension is increased through a nonlinear mapping
lgorithm to simplify the analyses [110]. Transferred data then creates
lower number of output units to be used as inputs for a de-mapping

ayer, which remaps the compressed data to its actual dimension for the
utput layer [110]. HVAC mathematical specifications are not included
n data-driven strategies for sensor data validation and fault detec-
ion [110]. An evaluation of roof heat flux based on the ANN model
sing a heat flux sensor, which was located inside the cell consisting
f a constant temperature zone and zone temperature measurements
s conducted in [111]. They concluded that the value of heat flux
ecreases with increases in ambient temperature, while a higher solar
rradiance and internal surface temperature resulted in a greater values
or heat flux [111]. A nonlinear autoregressive network with exogenous
nputs (NARX) model was developed in MATLAB software [112] for the
eal-time indoor temperature prediction of a library building in Mur-
och University in Australia, without inclusion of occupancy patterns.
ARX neural network methodology can predict future patterns of real-

ime parameters using the previously collected data [113]. Relevant

ffecting features on indoor temperatures, including a number of input
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parameters, size of the training data and NARX network, the effect
of seasonal weather conditions, and prediction accuracy over a time
are the main factors to be considered [112]. As ANN models are
trained and tested based on the specific dataset, they are not completely
transferable for another set of dataset [37].

Deep learning techniques are developed based on neural networks
with more flexibility in data types, while they are less applied for
building energy modelling and predictions [114]. Applications of deep
learning in building energy performance, HVAC system, thermal com-
fort, and occupancy are discussed in [101]. It is highlighted that
deep learning is mostly applied for occupancy (sensing and tracking,
pattern recognition, behaviour prediction, and quantitative prediction)
and then thermal comfort evaluation (temperature forecasting, ther-
mal comfort management, and thermal comfort with energy demand).
The HVAC system studies with deep learning are mainly focused on
minimisation of energy demand with real-time occupancy detection
including their rate and activities through image/video data [115]. In
another study [116], different machine learning forecasting techniques,
including deep neural network (DNN), SVM, and ANN, are employed
for energy consumption prediction in a real case study building. ANN
techniques with reasonable complexity and lower mean relative error
(MRE) had higher performance, even if the predictions with DNN were
close to other methods. In [117], the potential of deep-learning models
for building heating and cooling energy demand prediction is studied.
For their test data, deep learning had higher prediction accuracy than
simple ANN technique. However, they concluded that the feasibility of
these methods for energy prediction needs to be tested on more case
studies.

4.3. Resistance-capacitance modelling

In the RC approach, thermal circuits model the heat transfer dy-
namics of systems [118]. Thermal resistance (R) and capacitance (C)
are the parameters of the model with physical meaning [119–121].
The estimated values of R and C parameters are inserted into the
model [122]. This is obtained via physics-based modelling [123] (when
all building property information is available) or data-driven strate-
gies [124] such as least-square regression [125,126] (its barriers [127])
or system identification [128–130]. A combination of dynamics char-
acteristics of the system and real-time measured data [131] are needed
when the physics-based model is not selected. R represents the thermal
resistance of building materials (e.g. walls, floors, and ceilings) that
separate zones with different temperatures on each of their sides [122].
C represents the capacity of each zone or material regarding thermal
energy storage. Windows and glass materials are modelled with only
thermal resistance due to the low level of heat storage for these building
components [80]. In a single-zone model, the RC network model is
based on the floor plan of each zone to estimate the zone temperature
using mathematical equations by considering the thermal heat from
the HVAC system, solar radiation, internal heat sources [121], and
external structure [75]. The single-zone model is repeated to develop
the multiple-zone model, and example studies are [132–134]. An RC
network model for a multi-zone building requires separate models
considering different parameters and conditions in each zone, based on
its floor plan [121], while model order reduction is vital for simplifica-
tion [124,135–137]. The main steps for RC modelling and estimation
of its parameters are represented in Fig. 5.

The model is not completely transferable to another system [73],
but the model structures are similar [138]. The equations that explain
the physics of the zones are easier to use in MPC formulation compared
to other models [19]. Although the amount of data required by this
model is lower than that of data-driven models [139], the impact of
data quality is still more important than the precision of RC analogy
in the modelling [140]. The estimated values of the parameters change
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by retrofitting structural materials in zones [141].
5. Building energy and HVAC system control

5.1. MPC approach for building control

MPC is an optimisation-based control strategy that uses the model
of the system and tries to approximate the infinite time optimal control
problem with a sequence of the finite prediction horizons [19]. It
requires the dynamic modelling of a system to predict the states of
the set variables in the model [142] over a specific prediction time
horizon, while optimising the performance of the model [143]. An MPC
model is a combination of state, control, and disturbance variables.
States hold the current status of selected variables to be connected to
the control variables, and the disturbances are the external variables
influencing the status of the state variables [144]. These disturbances
can be controllable or uncontrollable variables.

An integration of disturbances in MPC modelling, which controls
and eliminates the mismatches between the actual values of the vari-
ables and the recorded values due to inaccuracy or insufficiency of
variables measurements, reduces uncertainties in the proposed MPC
model [143]. Knowledge of disturbances or uncertain variables as
well as mathematical descriptions/probability distributions of these
parameters are required [145]. The fault signals among the recorded
values, which can be caused by failures of the sensors and/or actuators,
failures of the operating HVAC system, or an unpredictable alterna-
tion in the internal and/or external variables, can be detected and
solved by optimisation controlling approaches [146]. The estimated
values of both prediction and control horizons as well as sampling
time influence the computation time of the model and its potential to
control the disturbances, which can be adjusted based on the prediction
time intervals of the disturbances [143]. The inclusion of disturbances,
which can be humidity ratio, solar irradiation, occupancy rate, ambient
temperature, and wind speed [80], can increase prediction accuracy in
the developed controlling approach [143]. The other possible factors
influencing uncertain disturbances can be slab floor area and sensible
heat gains ascribed to the thermal loads of occupants/lights/electrical
equipment, as well as infiltration/ventilation [147]. The main solar
radiation variables are direct and/or diffusive solar radiation on walls
and windows [80].

Sensible and latent heat transfers corresponding to cooling and
dehumidifying coils can be included in MPC thermal modelling with
humidity evaluations, as the temperature and humidity variables de-
pend on inlet cooling and dehumidifying coil conditions [148]. An
adequate time prediction for identifying disturbances increases the
accuracy of the control model in thermal and energy consumption
prediction, so 24 h was selected in the MPC thermal model [148].
Limitations in the accessibility of measurement data from the required
variables, including the time-varying uncertainties, dynamic parame-
ters, and disturbances, lead to accuracy reduction in the prediction
of controlling variables [149]. The optimisation approaches are devel-
oped based on the predicted disturbances, and the building modelling
responses are based on the control rules built in the optimisation
method [150]. As all the states defined in the MPC model have physical
definitions in the building, the simulated model is both accurate and
reliable [151]. The model is developed based on the control rules that
were calculated at the beginning of the simulated time-steps for the
states measured values, and the variables subsequent values are con-
secutively predicted in each time-step [150]. The differences between
the set and actual values of the variables should be minimised using
the selected optimisation method [76].

5.1.1. Centralised and decentralised MPC method
A centralised MPC has high computational costs compared to de-

centralised control strategy, while it offers higher performance [152,
153]. A failure in a centralised MPC controller impacts the control
performance of the whole building [154]. Parallelisation and subdivi-

sion of an optimisation model can reduce the computational costs in
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Fig. 5. Steps for RC model development.
Source: Created from [38].
MPC strategies [155]. Compared to centralised MPC algorithms, the
reduction of computational complexity in distributed MPC systems is
due to the modelling of an individual MPC for each zone as a subsystem
in a building that requires the inclusion of interrelated parameters
between interacting zones [154]. In cases that the system is uncertain,
the robust nonlinear-MPC strategy can solve parametric optimisation
problems by using initial states of inputs to calculate the optimal values
of the variables [156]. The development of a decentralised control
strategy for building zones, and including thermal interactions among
zones, is more efficient in regards to fault isolation of a zone and
mitigating its impact on the performance of other zones, compared
to centralised approaches [157]. Moreover, simpler computational and
communicational analyses are required for the decentralised control
model of the HVAC system [158].

5.1.2. MPC application for building control
A distributed adaptive temperature regulation control method for

HVAC systems, considering heat transmission among connected zones,
implemented in MATLAB combined with EnergyPlus building mod-
elling software, is proposed in [24]. The performance of the developed
control system is evaluated based on the weather conditions of each
month over a year [24]. Zone temperature is directly impacted by tem-
peratures related to supply air, surfaces included in each building zone,
outside weather conditions, and open surfaces of connecting zones
that transfer heat [24,159]. In addition, the existence of occupants
and equipment creates internal heat gains, while outside weather heat
gains, which influence zone temperatures, are considered in the cal-
culation [24]. However, adaptive control approaches that are feasible
strategies for systems with linear parameters lack high accuracy for
nonlinear systems such as HVAC systems [142].

An autonomous hierarchical control system has been developed
in [160] for an HVAC system with central AHU and VAV units in zones
that use a closed-loop MPC controller to control the temperature in six
rooms. The autonomous hierarchical controller has been introduced to
simplify the computational requirements rather than adopt the MPC
approach individually by combining open-loop and closed-loop MPC-
based control methods [160]. Moreover, it is considered that chilled
water temperature related to coils impacts supply air temperature,
while the supply air temperature constantly varies [160]. MPC control
model for a single-zone commercial building using an RC thermal
model for temperature prediction was proposed, while EnergyPlus
was used to simulate cooling and dehumidifying coils [148]. Due to
the potential of EnergyPlus software to upload custom weather data,
adding unmixed air to the simulation leads to complete control of the
temperature and humidity ratio [161].
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A high-resolution MPC controller, which includes each zones tem-
perature, specifications, and control commands, requires high computa-
tional calculations, especially for multi-zone buildings [162]. A multi-
zone hierarchical MPC-based controller that combined two-controller
levels for a multi-zone building with 33 zones in the University of
Florida was developed considering different weather conditions and
humidity in the controlling model [162]. Compared to their previ-
ous work [148], this approach considered solar irradiation and out-
door air temperature in addition to other inputs. Linear approximation
and one-time calibration of the developed model cause inaccuracy in
the building prediction models, as buildings are dynamic and time-
dependent [163]. A combination of the MPC model with an adaptive
model that re-calibrates the building model frequently and a robust
control strategy to reduce uncertainties can increase the prediction
accuracy of building thermal models [163]. An MPC thermal model that
adapted the EnergyPlus software and bi-linear RC modelling resulted in
higher accuracy than the MPC combined with modified random forest
algorithms [122]. The datasets are divided based on features to manage
their interactions in the same testing framework [122]. In contrast to a
decision tree algorithm, which is a hierarchical tree of partitioning the
relationship between independent and dependent variables, a random
forest algorithm is a classification/regression predictive strategy with
higher prediction precision for larger datasets [164].

The NARX ANN approach was used and implemented in MATLAB
in [165], as an alternative solution to physics-based strategies for
predicting time-dependent variables in modelling with the potential of
updating building changes in the MPC model. A non-linearity of the
NARX ANN machine learning method was solved based on hybrid op-
timisation, integrating both global and gradient-based optimiser [165].
The MPC method was used to modify optimisation algorithms at control
intervals to solve control errors [165]. A time delay neural network
(TDNN) algorithm includes a real-time status of input variables and
their previous statuses, with the potential to store delayed information
regarding inputs [166]. The MPC system simulated in MATLAB is
proposed in [64] using TDNN and regression tree (RT) as machine
learning approaches. The simulation results from the MPC were high
dimensional databases with multiple outcome time series variables,
which required regression-based machine learning strategies to approx-
imate the behaviour of the control system, reduced the data storage
size, and simplify its complexity [64]. The implemented RT had a lower
performance efficiency than the PID and TDNN, while the TDNN-based
strategy combined with the MPC with minor loss in the performance of
the MPC was a practical and simplified solution [64].

5.2. Reinforcement learning for building control

RL is a model-based/model-free deep learning control strategy for
building control problems. The structure of RL methods, as shown in
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Fig. 6. RL/DRL framework application to building controls.
Fig. 6, consists of an agent and environment that interact with each
other in discrete time-steps. In RL/DRL, the agent, which is composed
of a neural network model, takes in the states that represent the
conditions of variables in the environment, and then determines the
necessary actions that must be executed within the environment [167].

In cases that the behaviour of the environment is known, the
employed RL is model-based. However, even if RL controllers are stated
as model-free without requiring dynamic knowledge of systems [168],
the calibrated energy models are usually used for offline training of
RL agents. Even though the RL control algorithm can be adopted for
continuous real-time values of states, the computational cost for the
large state space, caused by the feature values, is high compared to a
DRL algorithm [169]. In the DRL control strategy, the dynamic thermal
model can obtain efficient and accurate control policies, which are
determined based on the trial and error of building information, for
the model’s agent [26]. As a result, the trained DRL agent is inserted
into the control system to test the proposed model, which reduces the
uncertainties in the values of parameters [26]. As DRL control systems
are modelled by using real-time data-driven information, mathematical
modelling of the system is not required [26]. Moreover, the learning
process among state observations, reward function inserted into the
agent, and the action continues until the control policy reaches the
defined convergence level [170]. For instance, in the HVAC modelling,
the data related to the thermal state of parameters is inserted into
the model and then based on the identified control policy, the control
action is activated in the thermal model to modify the set points of the
systems [170]. As a result, based on the recorded state (for example, the
indoor temperature), a reward or penalty is assigned to the agent [11].
An action is then sent to the model to regulate the set point of the
variable [11].

Multi-agent control models are possible solutions with RL/DRL
methods, enabling the interaction of multiple agents from different
building systems, which are interrelated for the decision-making of the
variables [171]. In contrast to single-agent RL strategies that one agent
is used for the whole model, in the multi-agent RL method separate
agents are defined for each subsystem, while the optimal control policy
is learned based on the interaction of agents [172]. Moreover, in
cases that the number of agents is high, a distributed controller for
multi-agent RL approaches outweighs the centralised controller, due to
the exponential growth in learning tasks of the proposed model and
simplification of describing new agents [173]. However, the numerical
scalability of many agents is difficult, as the agent should consider the
behaviour of other integrated agents [58]. The information about the
whole environment can be noisy in multi-agent cases [58]. Also, the
implementation of multi-agent models for larger case studies requires
consideration of computation cost minimisation for training, over-
fitting possibilities, and the capability of RL models for continuous
action spaces [58].

An RL control method integrated with edge-cloud for the demand
response of small and medium-sized commercial buildings is developed
in [174] by assuming similar fixed outdoor temperature and humidity
variables during demand response events. A thermal modelling ap-
proach is proposed [170], in which the states of the DRL model are
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received from the HVAC system and building thermal model simulation
in TRNSYS. A model-based DRL method for an HVAC system was
proposed in [175], which combined EnergyPlus software and a DRL
algorithm. The HVAC system was modelled by combining EnergyPlus
software, used to model building energy modelling (BEM) in offline
mode, and the DRL algorithm, which takes the calibrated BEM data
from EnergyPlus software to train the RL agents for developing the
DRL control model and deploying the trained agent to the building
automation system for real-time analysis [175]. The quality of the
calibrated data based on the bayesian regularisation algorithm could
not meet the requirements for multiple output BEM [175]. It was
suggested to add system operational changes into future DRL-based
models [175]. In HVAC control modelling with the DRL algorithm for
a multi-zone building, an individual neural network was modelled in
Phyton for approximation of Q-values in the Q-learning (model-free
RL algorithm) method, which is related to the control actions of each
zone in the simulated building [169]. As a result, higher efficiency in
the feasibility of the model was achieved with the large state space
of actions [169]. Integration of a model-free control strategy with
low computational costs and a model-based control strategy with high
accuracy to develop a hybrid control model can be investigated in
future building control systems [176]. As in model-free RL, the optimal
policies in the controller are identified without any knowledge about
the dynamics of the building [27]. However, the agent needs to be pre-
trained offline in a virtual environment of the system model (could be a
physics-based model) to enhance the control performance of the model
and reduce its computing time [25]. Table 2 provides some additional
DRL studies on HVAC control and thermal comfort applications.

5.3. Reinforced-MPC for building control

The control strategy implemented, based on the RL strategy, solely
requires a large dataset of variables and lacks the possibility of in-
cluding constraints of the system [156]. In cases that long prediction
horizons are required, the number of input and state variables for
MPC optimisation increases, which adds difficulty in the optimisation
of infinite discontinued horizons [182]. The model with both RL and
MPC had the potential of continuous learning and consideration of
uncertainty in zones [182]. The merge of the RL strategy with learning
methods such as MPC leads to distinguishing the behaviour of the
systems that cannot be obtained from the collected data and eliminating
the requirements of redesigning the whole control system with alterna-
tions in control tasks [156]. In the combination of RL and MPC, MPC
can act as a function approximator, in which the actions are imposed on
the model explicitly during the prediction horizons [182]. This strategy
is named ‘differentiable MPC’ and implemented in [183]. The other
method of merging MPC and RL is forcing the action explicitly in the
first control step, with the use of the controller model, and taking value
function for the remaining prediction horizon, while the action is forced
implicitly [182]. The ‘differentiable MPC’ has the potential to optimise
model parameters end-to-end [183].
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Table 2
DRL studies on HVAC control and thermal comfort.

RL method Reference Computing
method

Note

Double-deep-Q-network (DDQN)
Multi-agent

[172] Simulation • Transfer learning and domain knowledge are used for numerical scalability. Instead of
re-training many agents for similar systems (e.g a subset of AHU and chiller set points) in
the same building, the knowledge of optimal policy obtained by training multiple agents of
the subset is transferred to similar subsets in the same building.

Proximal policy optimisation (PPO)
Deep deterministic policy gradient
(DDPG)

[177] Simulation-
Experiment

• PPO and DDPG were compared for performance validation of the models.
• The influences of different weather conditions, simulation days, and temperature penalty
were considered in experiment.

Branching Duelling Q-network (BDQ) [178] Simulation-
Experiment

• Gaussian process-based Bayesian optimisation is applied calibrate model for mismatches
between simulation and real case study.

Deep Q-network (DQN) [179] Simulation • Performance compared with RBC method and a case that airflow direction is fixed.

DQN [180] Simulation • Gassian process regression for thermal comfort prediction.
• DQN for control.
• Performance compared with RBC.

DDPG including actor-critic networks [181] Simulation-
Real data

• The proposed model is compared with DQN, RBC, and fixed methods to verify the control
performance.
Fig. 7. Schematic of a thermal zone with a typical HVAC system.
6. Data requirements for building thermal modelling

One of the important steps in building thermal modelling is the
selection of the minimum required data for model identification. This
data minimisation depends on the modelling method and its objec-
tive(s). Fig. 7 represents a schematic representation of a single thermal
zone with a typical HVAC system including the commonly selected
variables.

(1) White-box models: Detailed information of the system is re-
quired. The model is implemented by heat and mass transfer and energy
balance equations derived based on physical knowledge of the system
describing the dynamical behaviour of systems. Based on the purpose of
the model, all the parameters and variables, which are needed to derive
the ordinary differential equations of the model, are required data. In
the building zone(s) model as an example, all the building geometry,
construction, and thermal properties data are required to simulate the
model of the system. A detailed HVAC system modelling is added in
cases that the HVAC operation optimisation is involved.

(2) Black-box models:Time-series collected sensor data are trained,
validated, and tested as inputs of the data-driven techniques. Based
on the objective of the study whether it is limited to load predictions,
thermal comfort or system performance, the required data is identified.
In the building zone model as an example, the data related to weather
conditions, indoor thermal comfort conditions, occupancy (consisting
of real-data, estimated data, and status), and HVAC set-point and
operating condition can be used for modelling. As the data is collected
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in time-series, any time-related information, such as the timestamp of
recorded data, previous data points, and period of data collection, is
used for modelling. The main focus of the studies regarding data is
related to modelling requisites including the amount of data and pro-
cessing of data. However, the identification of the minimum necessary
data type for meeting more complex objectives aiming at a building
thermal model/HVAC system control is still missing.

Based on a study, which reviewed the frequency of input variables
selected for ANN and RL control strategies modelled for thermal com-
fort and indoor air quality of buildings, the main variables computed
to the model were indoor/outdoor temperatures, volume flow rates,
and relative humidity, as opposed to building design variables [184].
Air velocity, surface temperatures, mean radiant temperatures, and
building design variables were mentioned as influencing variables on
indoor air temperature and air quality [184]. However, the unavail-
ability of measured/monitored values of these variables limited the
researchers in adding these variables into their models [184]. For
instance, in the selection of input variables for the RL methodology,
surface temperature and air density were not considered in any of
the reviewed articles by researchers in Ref. [184]. As a result, the
elimination of variables related to a building design was mostly due
to the complexity of measuring their values in contrast with the val-
ues of indoor/outdoor temperature and humidity ratios, which are
simply measurable with sensors. The other reason can be the applied
control strategy. For example, with MPC methods the variables that
their measurement is not accurate or is missed might be included
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as controllable or uncontrollable disturbances, which is the limitation
of other methods. As occupancy data is mostly uncertain, especially
occupancy behaviour and exact measurement of occupants number,
occupancy data is not included in many studies. Unless the objective
of the study is the occupancy prediction, then the occupancy data is
available.

(3) Grey-box models: As mentioned previously, the grey-box mod-
els are mostly developed with RC models. The RC models are commonly
transferred to the state-space model of the system to create a mathemat-
ical model of the system. In these models, the parameters and variables
of the models should be differentiated before the identification of
required data. For example, R and C values are the parameters of the
model and mostly as the real-time data of these parameters is not
available, constant/time-varying estimated values are employed to the
models. When dealing with the complexity of a model caused by the
absence or difficulty in obtaining accurate measurements for model
parameters and variables, employing a reduced order model becomes
a viable alternative. The variables and parameters that are impossible
to obtain are merged together to simplify the model and address the
challenge presented by the unavailability or difficulty in acquiring
specific data.

6.1. Occupancy data

Occupancy data of the building zones influence the energy con-
sumption of HVAC systems [185] and its sizing [186–188]. Occupants
are internal disturbances influencing both indoor temperature and
humidity, which are correlated with HVAC operation. As a result,
consideration of occupancy as an internal load in thermal energy mod-
elling [189–191] for indoor temperature regulation as well as HVAC
operation mode can optimise the HVAC energy performance [192].
This variable also helps in the estimation of occupancy thermal satis-
faction [193]. For instance, some studies consider human body tem-
perature and clothing level when controlling indoor air quality to
obtain a higher level of thermal satisfaction [194,195]. In this case,
the relationship between human skin temperature and ambient thermal
conditions can be evaluated.

The study of occupant impacts can be limited to assumptions based
on working schedules and standards of the buildings or actual data.
Although occupant number, behaviour, and their corresponding inter-
nal heat gain are uncertain variables in indoor thermal models [131],
their imprecise estimation effect the control model accuracy [196–
199]. For instance, the main occupancy schedule of the building was
identified to evaluate thermal discomfort levels by considering the
average indoor air temperatures and humidity ratios of the building’s
spaces in [200]. It was highlighted that including a higher level of oc-
cupant behaviour measurements in analyses could increase the model’s
accuracy to reduce thermal discomfort, as occupant activities are a
remaining uncertainty for energy models [200]. A humidity ratio below
a certain level had a more negative impact on thermal satisfaction than
indoor temperature [200].

An MPC model based on RC modelling of the zones was stud-
ied [131] by including occupancy impact based on estimating internal
heat gains. The inclusion of electricity consumption of lighting and
equipment as well as CO2 measurements in a zone, which do not follow
imilar patterns because of the changes in occupant number, could
ore precisely estimate internal heat gain [131]. For the implemen-

ation of DRL for building thermal energy control with insertion of
ccupancy number, the building control dynamics in Modelica was
equired as a virtual environment for agent training [178]. One limita-
ion of their work [178] was occupancy number, which was included
ased on manual measurement. Machine learning technologies have the
otential to model occupant behaviour from previous data to optimise
he energy usage of smart buildings [201,202]. An example of the
eural network strategy for a single occupant space is [203] with a
12

raining dataset collected through manual counting. There are different
sensor technologies for occupancy counting and detection, including
indoor air quality sensors (temperature, relative humidity, and CO2
concentration [48]), motion sensors, vision sensors [185,204–206], and
Bluetooth low energy sensors [207]. Non-dispersive infrared sensors
can monitor CO2 concentrations, while the accuracy of the results de-
pends on temperature, relative humidity, and pressure variables [208].
Table 3 provides the main features of three commonly used sensing
technologies for occupancy detection, followed by studies as examples.

6.2. HVAC system data requirements

The provision of a comfortable indoor thermal environment for
occupants is one of the objectives of the HVAC system in commercial
buildings. This includes control of indoor temperature and humidity
to satisfy the indoor thermal condition and air quality to modify air
contaminant level (e.g. CO2 from occupants and equipment). Different
types of HVAC systems are used in commercial buildings. A commercial
HVAC system is composed of several types of equipment including but
not limited to an AHU including main components for controlling the
supply air parameters, a chiller supplying chilled water to the AHU
system [243], and a cooling tower.

AHU in HVAC systems is responsible for supplying heated/cooled
air to zones [48] with the use of components such as supply fans,
dampers, and heating/cooling coils [244]. Water flows inside the cool-
ing/heating coils of the HVAC system to regulate the temperature of the
mixed air, passing through the coils, via an exchange of heat between
the air and water flow inside the coils [245]. The fan in the AHU is
responsible for flowing the air to building zones via ducts [245]. The
temperature of supply air is an output variable of AHU to be included
in a control model developed for cooling mode operation of an HVAC
system, while return temperature and air mass flow rate of return air
are the input variables entering the AHU [246]. The calculated supply
air temperature in the designed control systems should be similar to
the one provided by the AHU of an HVAC system [247]. The outside
air can be mixed with the returned air from zones based on the position
of dampers [248], while the exhaust air is discarded from the air
circulation of the HVAC system [249].

Each equipment in the HVAC system has an independent local con-
troller with possible communication with other interacting equipment.
The required data to model and control each sub-system of the HVAC
system varies based on the type of sub-system. In supervisory level
control where the outside weather condition data and zone data are
taken into account, the data from the HVAC system might be limited
to supply air temperatures and supply airflow rates, which are directly
influencing the indoor zone temperature. However, it is imperative
to consider the interaction of HVAC systems parts for HVAC system
performance investigations [250]. The minimum HVAC system data
(input variables and parameters of the model) which is required for
supervisory level control based on thermal model selection is still
missed in the literature.

7. Discussion

7.1. Modelling techniques

The selection of modelling method depends on the available infor-
mation about the investigated building. It is also important to consider
the strengths and weaknesses of each model to select the most appro-
priate one based on the objective requirements. Based on the reviewed
literature, there is significant attention on data-driven models due
to availability of sensors data measurements and research growth in
machine learning algorithms. However, limitations such as data insuf-
ficiency, dependency of prediction performance on data quality and
sensors accuracy, lack of reliability due to in-dependency from physical
dynamic behaviour, leads to selection of other methods. Based on
the findings of this review, the white-box models are more suitable
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Table 3
Benefits and drawbacks of sensing technologies for occupancy estimation in buildings.

Sensing method Strengths and weaknesses Research studies

CO2 Sensors Benefits:
• Mostly available in buildings [209,210].
• Occupancy can be estimated approximately [206].
Drawbacks:
• Failure to measure sudden occupancy changes [211,212].
• Sensitive to environmental conditions [190,210].
• Estimations are based on indirect measurements which can affect
accuracy [213].
• CO2 emission per occupant can vary [214].
• High occupancy rates can increase the error in occupancy detection
[215].
• Requires detailed physical information of the zone [216].

• Occupancy number estimation using CO2 concentration, zone temperature ,
and fresh air inflow signals via system identification and deconvolution
problem solving phases was employed in [217].
• The prediction accuracy of the occupancy detection with environmental
signals data (including CO2 measurements) implementing statistical learning
models was evaluated in [218].
• Estimation with stochastic differential equations was proposed in [209],
without the effect of opening/closing doors.
• An insertion of environmental signals, such as the air change rates between
the zone and neighbouring zones, infiltration rate, and exterior CO2 level, into
the detection algorithm (e.g. based on mass balance equations [219,220]) can
increase its precision [221].

Passive infrared
(PIR) Sensors

Benefits:
• Its implementation is easy and can be cost effective [222] if only a
few sensors are required (for example, studies limited to single
occupant zones).
• Low power usage [212].
• Low computational cost, as the collected data is in a binary format
[214].

• People counting with a limited number of PIR sensors was developed in
[223], however, the study was conducted in small office spaces.
Sensor location:
• PIR sensors, as an example of motion sensors was mounted under work
desks to detect occupancy presence behind the desk in [186] and on the
users’ desk in [224], as a direct ‘line of sight’ is needed to detect movements
[213,225,226].

Drawbacks:
• Limited to presence detection [225,227].
• Failure to detect stationary status of occupant [228,229].
• Failure to distinguish multi-/single-occupancy [222].

Camera Benefits:
• Occupancy number can be identified [205].

Detection methods:
• A convolutional neural network (CNN) was used for occupancy counting,
with head detection strategy [230,231] or low-resolution camera images for
occupancy privacy [232,233].
• CNN was adopted for fast and accurate head detection to count occupants
number [234].
• YoLo deep neural network for occupancy counting was modelled in [228].

Drawbacks:
• A ‘line of sight’ is needed [213].
• Optimal location for sensor installation needs investigation [213].
• Poor lighting condition can negatively affect the results [235].
• It has a high computational cost for image-/video-based models
[212].

Sensor location:
• Deep learning strategy was developed and the ceiling was suggested for
camera installation, and its angle and position were important factors in the
reduction of under-counting probabilities [236].
• The installation of cameras in the entrance of rooms collects overhead
views, while occupancy measurements are based on the occupants’ direction
of motion [215] (for overhead occupancy detection see [237–242]).
• The installation of cameras in the interior makes the detection more
complicated due to the existence of many objects in the zones [215].
solutions in cases where the detailed system information is available
and prediction accuracy is less important (as they lack real-time predic-
tion). Moreover, white-box models were selected in cases for parameter
estimations of grey-box models and RL/DRL offline training step. Grey-
box models and their integration with data-driven methods is identified
as the future research direction especially when multiple variables are
aimed to be predicted. This possible the selection of the most suitable
method based on the data type for each objective. For instance, in cases
that data type is images (occupancy forecasting with cameras), deep
learning data-driven method is the promising solution. While RC model
might be selected for zone temperature prediction, as it is developed
based on heat balanced equations.

The process of variable prediction with predictive building models is
represented in Fig. 8, consisting of input variables, building predictive
model, building model calibration, and output variables. The model
calibration step adjust the numerical/physical model parameters to
reduce the mismatch between real-data and predicted data.

7.2. Supervisory control methods

The prominent findings from MPC approach application in building
HVAC controls problems are:

• It is important to identify the level of detailed information is
required in model developments for MPC strategy based on the research
objectives [19].

• MPC is a suitable approach for supervisory control in building
HVAC control applications with the potential of integrating with local
controllers in buildings [45].
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• An unique model formulation is needed for each building HVAC
control [25], as control performance of MPC is influenced by model
prediction accuracy [21].

A schematic representation of a typical MPC framework in build-
ing control application is provided in Fig. 9. The main step in MPC
development is the formulation of building predictive model. This
process can be time consuming and requires expert knowledge of MPC
implementation. Identification of minimum data requirements varies
based on the models objectives. Disturbances have direct influence
on building predictive models and high level of uncertainty in distur-
bances negatively impacts the model accuracy. MPC uses optimisation
to make control decisions for a planning horizon, repeating the process
indefinitely and handling constraints effectively [148].

Based on the review, it can be inferred that RL-based building
control is an active area of research, with ongoing efforts to refine
and optimise these methods for practical use. The implementation of
RL-based building control methods is hindered by several challenges,
including the time-consuming and data-intensive training process, and
the need to ensure the security and safety of building controls [27].
There is a lack of comparative case studies on RL and MPC, to com-
pare the control performance of these methods in real experimental
research. Building control problems mainly consists of multiple objec-
tives requiring multiple agents for RL/DRL controllers. The process of
managing multiple agents presents greater challenges than managing a
single agent due to factors like agent heterogeneity, defining collective
goals, scalability, and the need to address nonstationarity [58]. Care-
ful tuning of numerous hyperparameters is required to achieve good
performance in DRL algorithms, in addition to the pre-training of the
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Fig. 8. Variable prediction structure with building predictive modelling.
Fig. 9. MPC framework application to building HVAC controls.
Fig. 10. RL/DRL framework with offline and online process to building controls.
Source: Idea adopted from [178].
control agent [25]. The combination of MPC and RL have not yet been
widely adopted in practical applications.

A possible RL/DRL framework with RL/DRL framework with offline
and online process to building controls is presented in Fig. 10, including
building HVAC system modelling, model calibration, RL/DRL training,
and deployment of the control actions to the real system [251] . In the
pre-training step, a calibrated model of the energy system is utilised to
train a DRL control agent during a specific training period and find out
unknown calibration parameters [251]. The re-calibration of building
model might be conducted during online training with the updated
data [178].
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7.3. Data requirements

Different modelling techniques for building HVAC problems have
varying data requirements. Empirical models typically are built upon
limited data, such as basic building information and historical energy
consumption data. A comparative representation of required data for
the three main modelling techniques reviewed in this manuscript is
provided in Fig. 11. Simplified models demand more detailed data,
including building geometry, thermal properties, and HVAC system
specifications, along with some sensor data for calibration and vali-
dation. Whole-building energy simulation models have extensive data
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Fig. 11. Comparative representation of data requirements for energy modelling techniques.
requirements, including detailed building geometry, envelope proper-
ties, HVAC system specifications, occupancy patterns, weather data,
and sensor data for calibration and validation. CFD models need even
more extensive data, including intricate building geometry details,
thermal properties, HVAC system specifications, occupancy patterns,
weather data, and sensor data for calibration and validation. In con-
trast, grey Box models require data such as building geometry and
layout information, thermal properties of building components, HVAC
system specifications, occupancy patterns and schedules, weather data,
and historical sensor data for calibration and validation. Data-driven
models rely heavily on historical sensor data, weather data, and build-
ing operational data for training and learning the relationships and
patterns in the data. The data requirements for data-driven models in-
clude substantial amounts of high-quality data from various sources to
ensure accurate modelling. The choice of modelling technique depends
on the available data, modelling goals, and the desired level of accuracy
and complexity in capturing the building’s thermal behaviour.

The choice between MPC and RL for supervisory control depends on
the modelling strategy employed. In the case of physics-based models,
MPC is a natural fit. The accurate system dynamics and constraints
provided by the physics-based models allow MPC to solve optimisation
problems and determine optimal control actions based on predictions.
RL, although feasible, faces challenges due to the need for extensive
data [252] and may serve as a means of refining control policies
learned from the physics-based models. However, physics-based models
mostly lack real-time predictions. In contrast, grey Box models strike
a balance between accuracy and flexibility, making them suitable for
both MPC and RL. MPC utilises the model’s predictions to optimise
control decisions, while RL can be employed to explore alternative
strategies and refine control actions. With data-driven models, MPC
can be challenging due to the absence of explicit physics-based models.
However, if a reliable data-driven model is available, MPC can leverage
its predictions for control optimisation. RL, on the other hand, is well-
suited for data-driven models, allowing for adaptive and optimised
control based on the available data. Ultimately, the choice between
MPC and RL in supervisory control depends on the specific mod-
elling strategy employed and the trade-offs between interpretability,
computational requirements, and model adaptability.

All reviewed modelling techniques are built upon the input data
as the fundamental source, which can profoundly affect the accuracy
of modelling and forecasting [37]. The level of detail and sampling
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frequency of time-series data are critical characteristics to consider,
as they can have a substantial impact on the outcome of model pre-
dictions [37]. As a result, it is crucial to identify the variables that
have a significant impact on the predicted variables, evaluate the
precision of measurements, and determine the necessary time intervals
for each variable. Occupancy related data (such as behaviour and
number) has noticeable influence on the indoor thermal variable and
building energy usage. However, lack of precise data, data measuring
difficulties, high level of uncertainty in data accuracy and incomplete
data are some of the common challenges faced when collecting and
utilising occupancy-related data in building energy management. To
overcome the challenges of collecting and using occupancy-related
data for building energy management, several strategies can be im-
plemented. Firstly, incorporating non-intrusive sensor technology like
occupancy sensors, temperature sensors, and CO2 sensors can aid in
precise data collection. Secondly, utilising data analytic techniques, in-
cluding machine learning algorithms, can uncover meaningful insights
and patterns in the data that can inform energy management decisions.
Finally, involving building occupants in the data collection process can
enhance data accuracy and completeness by gaining valuable feedback
on their behaviour patterns and how they use the building. Having a
standard framework that specifies the necessary level of detail for data
and sensor accuracy can be highly advantageous. This can ensure that
the data collected is reliable and can be used with confidence to make
informed building energy management decisions.

8. Conclusion

In conclusion, although building energy management systems exist
for most of the buildings, developing an efficient and a practical su-
pervisory controller reducing the thermal comfort dissatisfaction, while
considering energy efficiency of HVAC systems is still a concern to
focus on. The research has focused on control-oriented models for su-
pervisory control, emphasising the dominant thermal energy modelling
techniques in building HVAC systems. The integration of data-driven
models with grey-box/physics-based models has been identified as a
promising approach to overcome challenges associated with sensor
measurements and dynamic system modelling.

Furthermore, the paper has discussed the increasing interest in
model-free or less model-dependent control strategies, particularly RL,
to address the complexity and non-linear dynamics of building HVAC
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systems. However, the competitiveness of these approaches, including
RL, is still limited compared to model-based advanced controllers like
MPC. The comparison between MPC and RL for building HVAC systems
reveals distinct strengths and limitations. MPC is a model-based control
strategy that optimises control actions using a mathematical model of
the system. It offers precise control, handles complex dynamics, and
considers multiple objectives and constraints. On the other hand, RL is
an approach that learns control policies through trial-and-error inter-
actions with the environment. RL adapts well to non-linear dynamics
and system changes, but requires significant data and computational
resources. To leverage the benefits of both approaches, researchers are
exploring the integration of RL within an MPC framework to enhance
adaptability and robustness.

The choice between grey-box, physics-based, or black-box models
depends on the specific requirements and characteristics of the building
HVAC system and the control objectives at hand. Relying solely on data-
driven models for thermal energy modelling in buildings may be limited
by their lack of interpretability, extrapolation capabilities, dependence
on data quality and availability, and the need for a more compre-
hensive understanding of underlying physical mechanisms, making
hybrid models that combine data-driven and physics-based approaches
a more robust and reliable choice. Hybrid models are recommended for
thermal energy modelling in buildings due to their flexibility, accuracy,
and ability to capture complex interactions, providing more robust
and adaptable predictions. Physics-based models are mainly selected
when a detailed understanding of the underlying physical processes is
necessary, for example, at building construction stage. Also, in case of
availability, they are used for model parameter estimation or training.

To advance the field and promote more energy-efficient building
HVAC systems, several research gaps have been identified. First, the
impact of sensor measurement accuracy on model calibration require-
ments needs further exploration. Second, the level of detail required
for considering occupancy activity and behaviour should be determined
based on research objectives. Third, there is a need for more generalised
frameworks for prediction and control horizons, tailored to specific
research objectives. Finally, the development of a unified metric for
performance verification and validation of simulated models would
simplify comparisons across different studies.
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