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A B S T R A C T   

The forecasting performance of data-driven models decreases rapidly with a limited training dataset. Herein, we 
sought to solve this problem by developing an attention mechanism-based transfer learning model and 
comparing its predictive ability in day-ahead energy consumption with those of three direct learning models: 
artificial neural networks with auto-regression (AR-ANN), random forest with auto-regression (AR-RF), and long 
short-term memory neural network (LSTM). Our target building was a large-scale shopping mall in Harbin, with 
2 years of monitored data. The 2-months to 1-year data selected from the first year and all data from the second 
year were used as the training and testing sets, respectively. These models predicted the target building’s peak 
electricity demand (PED) and total energy consumption (TEC). The results showed that the proposed transfer 
learning model outperformed the three direct learning models when data were insufficient in the training set. 
Specifically, the direct prediction models’ lowest PED and TEC prediction errors were 34.34% and 26.32%, 
respectively, with 2-month training data available. In comparison, the corresponding prediction errors of the 
proposed model were only 12.48% and 10.78%, respectively. This study demonstrated the excellent performance 
of the proposed model with limited data.   

1. Introduction 

An accurate day-ahead energy prediction can play a vital role in 
building energy management, energy-saving potential evaluation [1], 
and greenhouse gas emission tracking [2]. Besides, building energy 
consumption prediction is also fundamental for the predictive control of 
building air-conditioning systems [3,4], individual control of electrical 
equipment [5,6] and integration of renewable energy systems [7]. 
Building energy consumption data are characterized by high di-
mensions, chaotic information, and unclear correlations [8]. For this 
reason, data-driven models have become a powerful technology in 
building energy consumption research [9] because of their simple 
modeling and resource-saving advantages. 

The data-driven energy forecasting model can be considered a time- 
series forecasting problem [10]. Accordingly, the contribution of early 
studies in this field concentrated on developing and advancing 
time-series algorithms mainly. Because of the purse of higher accuracy, 
the algorithms developed from multiple linear regression (MLR) [11] 
and autoregressive integrated moving average (ARIMA) [12] to machine 
learning, even deep learning. Machine learning models have become 
more popular than statistical models for building prediction tasks, such 
as decision trees (DT) [13,14], support vector regression (SVR) [15], 
artificial neural networks (ANN) [16], random forest (RF) [17], 
convolution neural networks (CNN) [18], long short-term memory 
neural networks (LSTM) [19], and ensemble models [20–23]. Tian et al. 
[24] combined the EnergyPlus model and generative adversarial 
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network (GAN) to improve the prediction accuracy for buildings on a 
large scale. Fan et al. [10] proposed a deep generative modeling-based 
data augmentation strategy to improve short-term building energy 
predictions. Feng et al.[25] introduced introduced the uncertainty of 
using window shades in several machine learning energy prediction 
models, which can improve prediction efficiency without any complex 
simulation process. Nevertheless, although most models have an 
impressive performance in energy consumption prediction tasks of 
different buildings, few of them could be applied to other buildings 
directly because data-driven models are specifically designed, resulting 
in the need for sufficient historical data, which further increases the 
inconvenience of direct application. 

Transfer learning [26] solves data limitations and reusable models. 
According to the definition, the kernel of transfer learning is used to 
reuse the knowledge acquired under sufficient data for an insufficient 
data task. Specifically, we typically define a domain with sufficient data 
as the source domain DS and tasks performed on the source domain as 
the source domain tasks TS. The domain and task we want to deal with 
but have insufficient data on will be defined as the target domain DT and 
target task TT [27]. The condition where DS ∕=DT and TS = TT is called 
transductive transfer learning. The transfer learning scenario is the most 
active building energy forecasting research field. Transfer learning 
methods are generally divided into feature extraction and fine-tuning. 
Transfer learning based on feature extraction aims to reduce the dif-
ference between DS and TS by selecting good features through 
pre-training to improve TT prediction performance on Ds, which directly 
learns by migrating parameters or prior distributions from DS to DT. 

Nowadays, transfer learning has been widely applied to improve 
building performance in different research fields. As the most mature 
building performance research field involving artificial intelligence 
technology [28], there has been a large amount of state-of-the-art 
research on transfer-learning-based building energy consumption pre-
diction. Houidi et al. [29] selected relevant and understandable features 
to build a transfer-learning model that can efficiently discriminate 
distinct home electrical appliances from energy-using profiles for resi-
dential buildings. Liu et al. [30] validated that transfer-learning-based 
strategies can be applied to detect, diagnose, and overcome data limi-
tations for HVAC systems. Gao et al. [31] developed a transfer-learning 
model for indoor thermal comfort prediction tasks in multiple cities for a 
government office building. Owing to the limitations of experimental 
conditions, major studies are still building transfer learning models in 
educational buildings based on the Genome Project [32]. However, the 
potential for transfer learning across large-scale shopping malls has yet 
to be fully developed. 

One big challenge in building energy forecasting is to make DS and DT 
as similar as possible in the transfer learning model. Therefore, many 
researchers have focused on selecting a suitable dataset for DS. Research 
in this area has shown that a model-based transfer-learning method can 
predict the thermal load for different residential buildings under the 
same energy station [33]. Ribeiro et al. [34] proposed a transfer learning 
method for cross-building energy consumption prediction based on 
seasonal and trend adjustments, which considers multiple time series 
features for multiple buildings. The results showed that using 
similar-domain datasets can improve educational buildings’ energy 
consumption prediction accuracy. An ensemble tree-based transfer 
learning investigation was implemented based on a dataset from two 
leisure centers and an office building in Melbourne [35]. Tian et al. [36] 
proposed a similarity-based chained transfer learning model to take 
advantage of a well-trained model for educational buildings with 
insufficient data. Grubinger et al. [37] used a similar source domain to 
pre-train an energy forecasting model for residential buildings and 
validated climate control. These proposed methods of searching DS 
based on DT can promote transfer accuracy to a certain extent. However, 
there are diverse reasons for the differences between the source and 
target domains, such as building location, building climate region, and 
building function. Datasets of similar buildings can improve the 

accuracy of transfer learning. When there is no appropriate DS, the 
transfer may not be effective and may sometimes result in a negative 
effect. 

The other challenge is improving the antagonism and generalization 
ability of the prediction model. Fan et al. [38] compared several 
parameter-based structures to enhance building forecasting prediction 
and then analyzed how data availability and duration period availability 
influence parameter-based transfer learning. Fang et al. [39] proposed a 
building forecasting model with few labeled data to study the effects of 
different time horizons, architectures, and buildings, employing an 
LSTM as feature extraction and then fine-tuning a regression layer for 
domain adaption. Zhou et al. [40] proposed a novel approach to perform 
load prediction with no data or augmenting data in the case of a small 
dataset. Chen et al. [41] developed a hierarchical deep convolutional 
neural network based on transfer learning for fault identification in 
transformer rectifier units. These model-based approaches have high 
technical requirements and computational costs but have poor inter-
pretability, which will limit the proliferation of model-based trans-
fer-learning approaches. However, it remains to be seen whether the 
model can maintain high accuracy for different predictive tasks of a 
building. 

In this case, we identified a major research gap: few researchers have 
focused on structuring transfer learning models based on the multi- 
source domain for energy prediction in commercial buildings. This 
study aims to develop an attention-based transfer learning strategy using 
the attention–CNN–LSTM method with the following steps: First, several 
pre-trained models were established with sufficient datasets in different 
source domains. Second, after the target domain was determined, the 
source domain was selected by calculating the similarity between the 
target domain and several source domains. Finally, we transferred the 
knowledge; the model was pre-trained from the source domain with a 
sufficient dataset to the target domain with insufficient data. This study 
sought to address the following questions.  

1. At a minimum, how much data are needed to train a standalone 
building energy prediction model with satisfactory accuracy?  

2. Can the attention mechanism be a powerful tool to predict the energy 
consumption for buildings with insufficient data by capturing the 
feature map from other buildings?  

3. Is there an effective method to help select the domain source from 
several buildings? 

2. Methodology 

2.1. Outline 

In this section, methods for constructing different models are intro-
duced. The workflow of this study is shown in Fig. 1. The model con-
struction process used in this study is as follows. Initially, the hourly 
energy consumption and meteorological data of large shopping mall 
buildings in four different climate zones were collected. These raw 
datasets were cleaned and preprocessed through outlier detection and 
missing-value filling. Next, the processed datasets were combined with 
time and holiday labels, outdoor weather conditions, and historical 
energy consumption values. The training and testing datasets were 
chronologically separated to maintain casualties and avoid information 
leakage. Finally, we developed an attention-based CNN-LSTM model, 
which was compared with three widely used load prediction algorithms: 
1) autoregression deep neural network (AR-ANN), 2) autoregression 
random forest (AR-RF), and 3) long-short memory neural network 
(LSTM). 

First, the four models were trained with 12-month data and then 
tested in the following year’s dataset to determine whether these pop-
ular models could perform well. Next, we gradually reduced the avail-
able training dataset and evaluated the performance of each model using 
different amounts of data. The models were trained with 2-, 4-, 6-, 8-, 
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and 10-month data, respectively, and then tested in the following whole- 
year dataset. Compared with the three standalone models, we proposed 
a transfer learning strategy in the attention-based CNN-LSTM model to 
select the source domain most similar to the target building from the 
three potential source domain buildings using the metrics of maximum 
mean discrepancy (MMD). Finally, we applied the same approach to 
different prediction tasks to determine the robustness of the proposed 
method. 

2.2. Data pre-processing and featurization 

2.2.1. Data description and pre-processing 
The dataset was collected from four large-scale shopping malls with 

similar structures in different cities to validate the generalization ability 
of the proposed forecasting model in different climate regions. Our 
dataset was collected from buildings with the same function under the 
same brand, which means that the same operator operates these build-
ings. For this reason, buildings can be regarded as having similar energy- 
use patterns. Moreover, because these four buildings were designed and 
constructed by the same company, their energy use patterns were the 
same. When a new shopping mall is built, developers want to develop an 
energy-saving control strategy to achieve higher accuracy and lower 
data collection costs in the early operation stage. This study is dedicated 
to developing a novel method with transferability, high precision, high 
robustness, and high generalization capabilities for building energy 
prediction. For this reason, this study aims to determine when a new 
building starts operating and how its energy consumption can be pre-
dicted using a limited dataset. 

According to the current building climate zoning standard 
(GB50178-1993) [42], China is divided into five climate zones (severe 
cold, cold, hot summer and cold winter, mild, hot summer, and warm 
winter) [43], three of which are covered in this study. The data quality 
statistics and basic information are presented in Table 1. According to 
Table 1, many missing values and extreme outliers in the original data 
are unfavorable for the prediction, so data preprocessing is required. In 
addition, both datasets provide hourly meteorological data, including 
the door temperature, humidity, and weather conditions (rain and 
sunny). 

The dataset’s quality directly affects the prediction model’s perfor-
mance [44]. Data cleaning and pre-processing are required to improve 
the reliability of the prediction model [45]. The pre-processing process 
in this study included 1) missing value processing, 2) extreme outlier 
processing, and 3) feature engineering.  

(1) Missing value processing: Generally, missing values are handled 
in two ways: by deleting or filling them. Initially, processing 
variables with too many missing values should be deleted. After 
these variables were deleted, the linear interpolation method of 
adjacent values was used to fill in the missing values. In this 
study, linear interpolation was suitable when only a few points 
were missing because of the short time interval of the data 
collection stage.  

(2) For extreme outliers, the boxplot method was used to mark the 
extreme outliers, and the linear interpolation method was used to 
replace them [46]. The definition of the boxplot in this study is Eq 
(1). 

Fig. 1. The workflow of this study.  
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L=Q1 − 1.5 × IQR (1)  

U =Q3 + 1.5 × IQR (2)  

where L represents the lower limit, and U represents the upper limit. IQR 
represents interquartile range. Extreme outliers were defined as values 
less than Q1-1.5IQR or greater than Q3+1.5IQR.  

(3) Feature engineering: Selecting the most representative input 
variable from many features is necessary to reduce calculation 
costs and avoid model overfitting. This study used the autocor-
relation coefficient (ACF) to determine the number of historical 
data input variables, such as the number of days that should be 
chosen to participate in the prediction model. In the equation, t 
represents the time series; N is the time series length, and k is the 
interval. 

The peak and annual building load histograms are plotted in Fig. 2 
and.3. Owing to the different climate zones, the energy consumption 
scales of each city are not the same. Harbin had the highest energy 
consumption level among the four cities, and Chongqing had the largest 
energy consumption range. In addition, large-scale duplicate variables 
must be manually deleted based on domain knowledge. The unit of the 
X-axis in Figs. 2 and 3 is the hourly energy consumption. 

This original dataset records 34 types of energy consumption from 
various electrical equipment such as lights, elevators, and refrigeration. 

Here, we refer to them as end-use energy consumption. There are many 
missing values and extreme outliers in the original dataset, and the 
methods adopted in this study are time series and have strict continuity 
requirements. Therefore, the cleaning process of the original dataset 
used in this study was as follows.  

(1) Repeated accumulated energy consumption variables were 
manually deleted through expert knowledge.  

(2) End-use energy consumption with more than 100 missing items 
was deleted.  

(3) Simple linear interpolation was performed for energy loss values 
to ensure data continuity.  

(4) The box plot method eliminated energy consumption values 
beyond 1.5 times the quartile site. 

2.2.2. Feature engineering 
As shown in Fig. 4, the input data can be divided into three cate-

gories. The first two categories are historical energy consumption and 
historical meteorological parameters of buildings. The number of days 
to be considered was selected based on the ACF. The calculation function 
for the ACF is given by Eq. (3). In addition to determining the input of 
the historical energy consumption, because meteorological factors are 
added to the ANN, correlation analysis is first required to analyze out-
door variables. The inputs of the meteorological parameters and time 
labels were determined using Pearson correlation analysis. The Pearson 
correlation analysis function between the variables X and Y is shown in 

Table 1 
Dataset quality overview.  

Climate Zone City Duration Energy consumption range (kWh) Missing value number Samples size 

Cold Beijing 2018.1.1–2019.12.31 [0,6172] 890 17,520 
Hot summer and cold winter Chengdu [0,3580] 798 17,640 
Hot summer and cold winter Chongqing [48,7005] 120 17,520 
Severe Cold Harbin [37,7711] 120 17,520  

Fig. 2. Hourly electricity consumption distribution of the raw dataset of different cities.  

Y. Yuan et al.                                                                                                                                                                                                                                    



Energy 270 (2023) 126878

5

Eq. (4). 

acf (k)= rk =
ck

c0
=

N
N − k

×

∑N
t=k+1(xt − μ)(xt− k − μ)
∑N

t=1
(xt − μ)(xt − μ)

(3)  

r =
∑

(X − X)(Y − Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(X − X)2
(Y − Y)2

√ (4)  

where, for the time series xt; k is represented the interval, N is repre-
sented the length of the series, and μ is represented the average value of 

the time series. 
Meteorological parameters were selected using Pearson correlation 

analysis. The second part is the outdoor meteorological conditions of the 
prediction period. The prediction task determines the length of the 
second part, and the variable selection is based on Pearson correlation 
analysis. The third part represents the time-related features, including 
the month (i.e., January to December), day type (i.e., workday or 
weekends), and time (0:00 to 23:00) of the forecast day. 

In addition, the prediction task determination in this study was based 
on practical application scenarios. The accurate prediction of next-day 
energy use for buildings can benefit from renewable energy and en-
ergy storage technologies. For instance, hourly energy consumption 

Fig. 3. Hourly electricity consumption distribution after data cleaning of different cities.  

Fig. 4. Overview of model inputs and outputs.  
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guides the battery charging schedule. From the perspective of the ice 
storage system, peak electricity demand (PED) and total energy con-
sumption (TEC) are sufficient. Accordingly, there are three prediction 
tasks based on different application scenarios: 24-h day-ahead energy 
consumption, daily PED, and daily TEC. 

This study introduced autocorrelation and partial autocorrelation 
functions to determine each model’s optimal number of days. According 
to the calculation results shown in Table 2, the previous 2, 3, 4, and 5 
days are the inputs of Harbin, Beijing, Chongqing, and Chengdu, 
respectively. 

Correlation analysis was performed to determine the input variables 
from the outdoor environment parameters. Meteorological parameters 
and time labels with the greatest correlation with energy consumption 
were obtained. The results are presented in Table 3. This variable was 
not included in this dataset. To reduce the complexity of the model and 
improve the calculation speed, only the variables whose correlation 
absolute value is greater than 0.2 are retained, that is, outdoor tem-
perature, atmospheric pressure, and visibility or Air Quality Index 
（AQI） for some cities. Correlation analysis aims to select the most 
relevant features for all features. Thus, the computation and risk of 
overfitting were reduced. 

This study also analyzed different time labels, and the results are 
shown in Table 4. The results demonstrate that the year, month, week, 
and energy consumption have a low correlation. Whether it is a holiday 
has a significant impact on energy consumption and should be added as 
an input variable to the prediction model. 

2.3. Data-driven algorithm modeling 

2.3.1. AR-ANN model 
ANNs, deep-learning frameworks, are the most widely used artificial 

intelligence algorithms [47]. The ANN structure consists of many similar 
biological neural network processing units with interconnected 
nonlinear network structures, including the input, multiple hidden, and 
output layers. Nonlinear elements were introduced into the network 
through different activation functions to solve complex problems. In a 
study by Wang et al. [48], the ANN model was proven to accurately 
estimate nonlinear problems such as energy consumption forecasting. 

Although ANNs exhibit powerful performance in nonlinear fitting 
problems, they cannot obtain temporal information from time series. As 
shown in Fig. 2, the input structure should be reshaped first instead of 
directly training the dataset to use historical data. Thus, historical in-
formation from the original dataset can be further used in the ANN 
model, and a higher forecasting precision can be obtained. This process 
is called auto-regression (AR). Accordingly, the AR-ANN model with a 
reshaped input dataset was named the AR-ANN model. 

2.3.2. AR-RF model 
RF is a popular artificial intelligence algorithm, in addition to ANNs 

[49]. Like a forest, its basic principle is an algorithm that integrates 
multiple trees through the bagging idea of ensemble learning: its basic 
unit is the decision tree. The predictions are made by averaging the 
predictions for each decision tree. 

In this study, the CART regression tree was selected as the weak 
classifier, and the bagging algorithm was used for integration. The CART 
regression tree adopts the minimum mean square error (MSE) for error 
correction; that is, for datasets D1 and D2 divided into both sides of the 

corresponding arbitrary partition points for any partition feature A, the 
corresponding feature and eigenvalue partition points that minimize the 
mean square errors of D1 and D2, respectively, and the sum of the mean 
square errors of D1 and D2 are obtained [50]. The equation is as follows: 

min⏟⏞⏞⏟
A,s

⎡

⎣min⏟⏞⏞⏟
c1

∑

xi ,∈D1(A,s)

(yi − c1)
2
+ min⏟⏞⏞⏟

c2

∑

xi ,∈D2(A,s)

(yi − c2)
2

⎤

⎦ (5) 

Similar to AR-ANN, the processing of the input data in RF is also 
static, with no time-series traits. Therefore, the input for RF in this study 
also needs to be reshaped beforehand. Therefore, the model applied in 
this study was also called AR-RF. 

2.3.3. LSTM model 
LSTM is an advanced, recurrent neural network model with feedback 

connections. It can process not only single data points (such as images) 
but also entire sequences of data [51]. There are two reasons for 
choosing LSTM to develop the prediction model in this study:1) LSTM is 
sensitive to historical states and can process dynamic information; 2) it 
performs a multivariate nonlinear prediction task. The LSTM neuron 
structure is shown in Fig. 5, where there are three door structures in the 
neuron structure: the input gate, output gate, and forget gate. In LSTM, 
the first step is to determine the discarded information in the cell status 
through the forgotten door. The second step is to determine the infor-
mation that must be placed in the cells in the input gate. The third step is 
to set the output value in the output door. 

2.4. Maximum mean discrepancy 

MMD is the most popular method for domain adaptation in transfer 
learning. It measures the distance between two different but related 
distributions. 

Based on the samples with two distributions, the mean value of the 
function f for the samples with different distributions was obtained by 
looking for the continuous function f in the sample space. The mean 
discrepancy between the two distributions corresponding to F was ob-
tained by determining the difference between the two means. An F that 
maximizes favor was selected, and MMD was obtained. The MMD is the 
test statistic used to determine whether the two distributions are iden-
tical. Its calculation formula is defined in Eq. (5): 

MMD(F, p, q)= sup
||f ||H≤1

Ep[f (x)] − Eq[f (y)] (6)  

where the distribution of x is p and y is q. Sup represents the upper 
bound. Eq. (6) represents the expectation of P, and f represents the 
mapping function. H ≤ 1 means that function f in the regenerated Hil-
bert space should equal 1. 

2.5. Attention–CNN–based pre-trained model 

The proposed Attention–CNN–LSTM model can capture long- 
distance information and comprehensively mine information from 
time-series data. The CNN module was optimized by the attention 
mechanism adopted to extract the useful feature map from the pre- 
trained model. Subsequently, the LSTM can transfer the feature map 
to the target source and complete the forecasting task. Moreover, the 
proposed model can handle various forecasting tasks. Because this study 
aimed to build a day-ahead model that can be used for an entire year, the 
long-term memory capacity of LSTM to store feature information was 
essential. Furthermore, the convolutional block attention model high-
lighted the importance of the data features at different times to improve 
the model’s performance. 

2.5.1. Basic concept of the convolution neural network 
Generally, the convolution neural network includes convolution, 

Table 2 
Historic time input specification.  

Cities Previous day’s input to models 

Harbin Last 2 days 
Beijing Last 3 days 
Chongqing Last 5 days 
Chengdu Last 4 days  
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pooling, and fully connected layers. Each convolution layer is composed 
of several convolution units, and the backpropagation algorithm opti-
mizes the parameters of each convolution unit. The purpose of the 
convolutional layer is to extract different input features. The first 
convolution layer can only extract some low-level features, such as 
edges, lines, and angles. By contrast, a network with more layers can 
iteratively extract more complex features from low-level features. 

The pooling layer reduces the shape of the input matrix and extracts 
the features. There are several different pooling methods in the pooling 
layer, among which average pooling is the most popular method that 
calculates the average value for each matrix pooling area. Another 
method is max pooling, which calculates the maximum value for each 
matrix-pooling area. 

2.5.2. Attention mechanism-based CNN module 
Inspired by human vision, experts and scholars have proposed an 

attention mechanism to efficiently allocate information processing re-
sources, widely applied in image recognition, semantic segmentation 
(NLP) [52], and other fields. 

The principle of the attention-CNN module based on the attention 
mechanism is shown in Fig. 6, which includes three parts: 1) the data- 
process layer, 2) the attention-CNN layer, and 3) the output layer. The 
attention mechanism is implemented by retaining the intermediate 
outputs of the LSTM encoder on the input sequence and then training a 
model to selectively learn these inputs and the associated LSTM encoder 
sequences to calculate the model outputs. In other words, the probability 
of generating each item in the output sequence depends on which items 
are selected in the input sequence. The training dataset was segmented 
into l and s (l < s). Each CNN cell input length l; the corresponding 

attention mechanism module inputs a unit of s. Because the s units are 
longer than the l units, the attention mechanism can obtain more 
comprehensive information than the CNN. 

Specifically, the attention mechanism-based CNN model is based on 
the convolution block attention module (CBAM) [53] and is introduced 
into the energy consumption prediction model to deal with the signifi-
cant difference in short sequence features ignored by existing structures 
and extract significant fine-grained features. In addition, the model can 
obtain the time dependence more effectively. If convolution unit F is 
represented by Eq. (7), the process of the channel attention module and 
spatial attention module is represented by Eq. (8) and Eq. (9), 
respectively: 

F ∈ RC×H×W (7)  

F′

=MC(F) ⊗ F (8)  

F′′ =MS(F
′

) ⊗ F
′ (9)  

where F represents the input feature; F’ and F′′ represent the channel- 
refined features; C denotes channel attention, and S denotes spatial 
attention. 

CBAM consists of channel and spatial attention modules, the work-
flow shown in Fig. 7. After the first convolution layer, the input features 
become several convolutional units. First, the convolution unit is input 
to the channel attention module and conducts average and max pooling. 
The input unit becomes a one-dimensional vector element-wise through 
a fully connected layer. As shown in Eq. (10), this step aggregates the 
spatial information of the feature mapping and compresses the input 
feature map to generate channel attention. Second, a one-dimensional 
vector is an input to the spatial attention module. We conducted max 
pooling and average pooling again for the one-dimensional vector. 
Finally, the concatenation of these two feature maps and the production 
of the final map is shown in Eq. (11). 

MC(F)= σ(MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
FC

avg

))
+W1

(
W0
(
FC

max

))) (10) 

Table 3 
Correlation analysis between outdoor parameters and energy consumption.  

Cities Pressure Wind direct degree Outdoor temperature Weather Wind direction Wind speed Wind direct d Visibility Humidity 

Beijing − 0.33 0.07 0.56 − 0.02 − 0.07 0.23 0.17 0.09 − 0.12 
Chengdu ¡0.44 0.02 0.64 − 0.01 − 0.01 0.09 0.01 0.36 − 0.31 
Chongqing ¡0.44 − 0.13 0.6 0.01 − 0.02 0.04 − 0.01 0.35 ¡0.41 
Harbin − 0.05 − 0.01 0.25 0.01 0.02 0.14 0.01 0.14 − 0.17  

Table 4 
Correlation analysis between time labels and energy consumption.   

Year Month Week Weekday Holiday 

Beijing − 0.06 0.06 0.01 0.01 0.21 
Chengdu − 0.04 0.11 0.04 0.03 0.15 
Chongqing 0.03 − 0.02 0.01 0.02 0.34 
Harbin 0.06 0.1 0.01 0.1 0.23  

Fig. 5. LSTM schematic diagram.  

Fig. 6. Attention–CNN–LSTM schematic diagram.  
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Ms(F)= σ
(

f 7×7
(

AvgPool(F);M = σ
(

f 7×7
([

FS
avg;F

S
max

]))))
(11)  

where MLP represents a fully connected layer, and AvgPool and MaxPool 
represent the average-pooling and max-pooling conduction, respec-
tively. W is the weight of F in the pooling layer. 

In addition, to avoid overfitting, the input of each parallel module 
had adjustable overlapping parts. Adjusting the overlapping step size of 
the input units can make the model better adapt to data with different 
principles and further expand the length of the overall input of the joint 
model to capture more accurate long-term features. The inputs between 
the parallel modules do not overlap significantly. 

2.6. Grid search of hyperparametric optimization 

In a machine learning study, some parameters will be tuned with 
manual methods to achieve a better performance model. This study used 
a grid search [47] method to obtain the best hyperparameters for each 
model. The grid search included three steps: 1) optimization of the value 
range of the parameters, 2) calculation of the combination of all pa-
rameters, and 3) cross-validation for determining the best combination. 

This study applied the grid optimization method to optimize the 
ANN, RF, and LSTM structures. Only three essential parameters were 
optimized for each model to reduce computation costs in model opti-
mization. And the range of the parameters was selected according to 
Refs. [10,39]. In principle, the sum of the multiple of the number of 
nodes and the number of hidden layers should be smaller than the 
sample size. The specific grid search settings for the three model opti-
mizations are summarized in Table 5. 

2.7. Description of the four different models 

To demonstrate the superiority of our proposed method (attention- 
mechanism CNN and LSTM, referred to as At–CNN–LSTM), their widely 
used building load prediction algorithms were selected as benchmark 
models: artificial neural network combined with auto-regression (AR- 
ANN), random forest combined with auto-regression (AR-RF), and LSTM 
(see Table 6) In addition, the processor for computation in this study was 
a 2.90 GHz Intel Core i7-10700 F. All computations were conducted in 
Python 3.8 using the neural network construction package TensorFlow. 

2.8. Evaluation 

The evaluation criteria selected in this study were based on the 
ASHRAE Guideline 14 [54]. The variation coefficient of the root means a 
square error of variance (CV-RMSE) was used to evaluate the perfor-
mance of the models. According to ASHRAE, the CV-RMSE of the hourly 
data simulation value should be less than 30%. The formula is shown in 
Eq. (12). 

CV − RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Yi − Ŷ i)

2

n

√
√
√
√
√

/∑n

i=1
Yi

n
(12)  

where n represents the number of variable Y, and i represent the order. 
In addition, the absolute percentage error (APE) was introduced to 

evaluate the deviation between the measured and predicted values, as 
shown in Eq. (13): 

APE=

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒× 100% (13)  

where y represents the series, and represent the order. 
Furthermore, the Friedman test was used to compare the evaluated 

models. The formula is shown in Eq. (14) and Eq. (15). 

τχ2 =
12N

k(k − 1)

(
∑k

i=1
r2

i −
k(k + 1)2

4

)

(14)  

τF =
(N − 1)τχ2

N(k − 1) − τχ2
(15) 

In this function, suppose we compare k algorithms on N datasets and 
let ri denote the average order value of the ith algorithm. The mean and 
variance of ri are (k+1)/2 and (k2-1)/12N, respectively. 

2.9. Test cases 

As shown in Fig. 8, we first selected the whole-year data as the 

Fig. 7. Arrangement of attention modules.  

Table 5 
The grid-search settings for optimization of each model.  

Models Parameters Grid-search 
values 

ANN The number of hidden layers 1, 2, 3 
The number of nodes for each hidden layer 16, 32, 64 
The activation functions in hidden layers ReLU, Sigmoid, 

Tanh 
Random 

Forest 
The maximum number of iterations of the weak 
learner 

100, 200,300 

The maximum depth of the weak learner 10, 20, 50 
The maximum number of features considered 
in the weak learning 

3, 5, 6 

LSTM The number of hidden layers 1, 2, 3 
The number of nodes for each hidden layer 16, 32, 64 
The number of memory cells Finer, 10, 100  

Table 6 
Four building load prediction algorithms to be compared.  

Model Specific instructions 

AR-ANN AR is initially used to process historical data. Next, by combining 
meteorological and historical data, the ANN algorithm performs 
forecasting tasks. 

AR-RF AR is initially used to process historical data. Next, by combining 
meteorological and historical data, the RF algorithm performs 
forecasting tasks. 

LSTM LSTM algorithm is applied for the data only 
At–CNN–LSTM By combining meteorological and historical data as input datasets, 

the forecasting tasks are conducted using Attention–CNN–LSTM.  
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training set under data-sufficient conditions, and the validation set was 
randomly selected from the training set. The following-year data were 
selected as the test set. Subsequently, we successfully reduced the 
amount of data available for training. In this study, 2-, 4-, 6-, 8-, and 10- 
month data were obtained from the target building. The prediction 
predicted the day-ahead PED and day-ahead TEC for 2019. For instance, 
the 2-month training dataset included November 1, 2018, to December 
31, 2018. It is worth mentioning that, in the process of practical data 
collection, we could not obtain the ideal collection duration. To facili-
tate the presentation of the predicted results, we fixed the testing dataset 
and changed the collection time of the training set from 2 months to 10 
months. 

2.10. Summarize the proposed method 

Fig. 9 summarizes the process given above: the pre-trained model of 
source domain building is developed with a sufficient dataset first. The 
source building is considered to be similar because of the function and 
management strategy, and the target task is the same. And the MMD is 
adopted to select the optimal source domain from several buildings. 
Finally, the prediction model of the target task is developed with the 
following steps: the model structure and feature map, the same as the 
pre-trained model, are first set up; the parameters of the pre-trained 
model are used as the initialization parameters of the target task 
model. The performance of this framework is evaluated from two as-
pects involving prediction error and stability under different training 
sample sizes of target tasks. 

3. Result analysis 

3.1. Model performance without transfer learning 

In this section, the performance of the proposed model was 
comprehensively compared. We randomly divided the first-year (2018) 
data into prediction and training sets and used the second-year (2019) 
data as a validation model. These models were trained well, and no 
under-fitting or over-fitting phenomenon was observed; the accuracies 
of the training, testing and validation sets were elucidated. It can be seen 
that the prediction performance has little difference between each 
model with one-year training data set. It indicates that the algorithm 
will not be the major challenge for prediction task under sufficient data 
condition. 

3.1.1. Result evaluation for multi-output prediction tasks 
This study defined multi-output prediction tasks, namely 24-h day- 

ahead prediction. For the 24-h day-ahead prediction task, the best CV- 
RMSE was achieved at 6.49%, compared with AR-ANN, AR-RF, and 
LSTM, showing improvements of 2.71%, 0.98%, and 2.89%, respec-
tively. The maximum CV-RMSE was reduced by approximately 6.90% in 
the 24-h day-ahead prediction tasks, and the average improvement is 
2.14% which is more significant for a model with a poor prediction ef-
fect. As described in Table .7, the CV-RMSE results of the training, 
testing and validation datasets for all the models met the ASHRAE 
guideline. The AR-ANN, AR-RF, and LSTM showed prediction error 
values of 9.20%–15.2%, 7.47%–15.14%, and 9.38%–19.39%, respec-
tively, and the prediction error range of At–CNN–LSTM was 6.49%– 
12.49%. This illustrates that the model developed in this study can 
deliver accurate building load prediction in different climate zones. 

Furthermore, Fig. 10 illustrates the stability of each model in the 24- 

Fig. 8. The training set and test set.  

Fig. 9. The block diagram of the proposed model.  

Table 7 
Model comparison in terms of prediction accuracy (CV-RMSE) for multi-output 
tasks.    

Training set Testing set Validation set 

Harbin AR-ANN 2.98% 7.38% 15.20% 
AR-RF 2.71% 6.21% 15.14% 
LSTM 2.71% 6.01% 19.39% 
At–CNN–LSTM 2.71% 6.01% 12.49% 

Beijing AR-ANN 3.00% 8.21% 9.20% 
AR-RF 2.39% 6.48% 7.47% 
LSTM 1.57% 6.48% 9.38% 
At–CNN–LSTM 1.23% 2.65% 6.49% 

Chongqing AR-ANN 6.51% 7.00% 11.00% 
AR-RF 2.63% 6.10% 10.88% 
LSTM 1.72% 6.53% 10.65% 
At–CNN–LSTM 0.17% 6.31% 9.69% 

Chengdu AR-ANN 5.54% 10.36% 10.69% 
AR-RF 3.38% 8.82% 8.32% 
LSTM 2.98% 5.36% 9.44% 
At–CNN–LSTM 2.98% 5.36% 8.41%  
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h day-ahead prediction task. The results showed that the APE distribu-
tions of all models conformed to the Gaussian distribution, indicating 
the effectiveness of the models. In addition, compared with AR-ANN, 

AR-RF, and LSTM, the attention mechanism can improve the predic-
tion stability for the algorithms. 

Fig. 10. Absolute percentage error (APE) distribution in different cities.  

Table 8 
Parameter configuration of the compared model structure.  

Algorithm Task hyperparameter Harbin Beijing Chengdu Chongqing 

ANN PEC layer 2 1 2 2 
Unit of each layer 16 16 16 16 
activation functions ReLU ReLU ReLU ReLU 

TEC layer 2 1 2 2 
Unit of each layer 16 16 16 16 
activation functions ReLU ReLU ReLU ReLU 

RF PEC weak learner 100 200 100 200 
maximum depth 20 30 20 20 
maximum number of features 5 3 5 3 

TEC weak learner 100 100 200 200 
maximum depth 20 50 30 20 
maximum number of features 5 3 5 3 

LSTM PEC layer 2 2 1 2 
Unit of each layer 16 8 16 16 
activation functions 10 Finer Finer Finer 

TEC layer 2 2 1 2 
Unit of each layer 8 8 16 16 
number of memory cells 10 Finer Finer Finer 

At–CNN–LSTM PEC layer 1 1 1 1 
Unit of each layer 5 5 6 5 
activation functions Finer Finer Finer Finer 

TEC layer 1 1 1 1 
Unit of each layer 5 8 5 5 
number of memory cells Finer Finer 10 Finer  
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3.1.2. PED and TEC prediction result 
Table 8 shows the detailed hyperparameter setting for all models 

after the grid search. In order to prevent overfitting, based on the 
empirical value, the parameters should not exceed one third of the 
number of training sets. 

The prediction results of the TEC and PED models for different cities 
are presented in Table 9 to demonstrate the effectiveness of the proposed 
model. Similar to the data in Table 9, we selected 2018 as the training set 
and 2019 as the testing data. In addition, 20% of the data were randomly 
used as a validation set in the training set. For PED and TEC predictions, 
the smallest CV-RMSE values of the proposed model were 8.44% and 
7.21%, respectively, and the largest CV-RMSE differences were 8.73% 
and 9.61%, respectively. 

Table 10 shows the Friedman test results for each algorithm for the 
different city datasets. A P value less than 0.05 indicates a significant 
difference between algorithms; a P value greater than 0.05 indicates no 
significant difference between algorithms. The results showed that the 
algorithms differed when the amount of data was small. 

According to the data sufficiency conditions, Harbin had the worst 
performance in the TEC and PED forecasting tasks. This was caused by 
the large amount of data with noise and error, which are difficult to be 
cleared only by pre-processing. Therefore, we selected Harbin as the 
target building and the other three cities as domain sources to demon-
strate the efficiency of the transfer-learning approach. First, the sample 
sizes of the training sets were gradually increased from 2 to 10 months, 
with the MMD between the domain source and target source. Subse-
quently, the prediction performances of the three algorithms and three 
different domain source transfer learning models were discussed. Under 
data-poor conditions, 72 models were established. 

3.1.3. Maximum mean discrepancy results for different cities 
This study used the MMD method to calculate the distribution sim-

ilarity of existing datasets in the source and target domains to select the 
source domain that is most similar to the target domain. The results are 
presented in Table 11. According to the results, the similarity between 
Ds and Ts decreased as the amount of data increased. In addition, the 
calculation results showed that the correlation between the energy 
consumption distribution and climate region was insignificant. The 
maximum mean discrepancy evaluates the dataset most similar to the 
target domain (Harbin). 

3.1.4. Experimental results for transfer learning model 
After the grid-search, the attention–CNN–based model used a 1D 

convolutional layer to extract the local temporal features from the input 
layer. The number of filters was 64, with a kernel size of 4 and a rectified 
linear unit (ReLU) activation function. A dropout layer followed the 

convolutional operations and was connected to a bidirectional recurrent 
layer with 128 LSTM units. The activation function used was tanh. 
Subsequently, another dropout layer was adopted. The attention module 
was connected to the dropout layer. Finally, the multi-output dense 
layer was the final output structure. And the detail were shown in 
Table 12. 

Table 13 shows that the prediction accuracy increased significantly 
with data availability. Table 13 summarizes the prediction accuracy for 
different cities. A decreasing trend in the CV-RMSE value was observed 
with increased data availability. Until the scope of the training set can 
cover the cooling season, the model’s accuracy will reach a useable 
range. However, when the amount of data is sufficient, transfer learning 
is sometimes invalidated, producing a negative transfer effect. In 

Table 9 
Model comparison in terms of prediction accuracy (CV-RMSE) for PED and TEC.   

PED TEC 

Training set Testing set Validation set Training set Testing set Validation set 

Harbin AR-ANN 5.38% 11.70% 11.43% 4.63% 7.35% 9.19% 
AR-RF 3.28% 9.34% 9.25% 2.23% 5.97% 9.88% 
LSTM 5.49% 7.95% 12.16% 4.87% 7.91% 8.75% 
At–CNN–LSTM 4.55% 8.26% 9.48% 3.46% 6.28% 7.21% 

Beijing AR-ANN 5.22% 10.89% 11.62% 5.40% 7.30% 12.31% 
AR-RF 3.28% 9.34% 12.25% 2.61% 6.65% 13.54% 
LSTM 3.46% 8.23% 12.16% 4.25% 5.84% 7.21% 
At–CNN–LSTM 5.20% 9.47% 8.44% 4.97% 6.25% 10.29% 

Chengdu AR-ANN 9.90% 10.17% 13.81% 9.25% 13.96% 12.48% 
AR-RF 6.03% 13.41% 16.90% 5.00% 10.52% 11.50% 
LSTM 4.35% 8.84% 15.36% 7.46% 13.39% 9.98% 
At–CNN–LSTM 4.55% 8.26% 8.42% 5.05% 6.28% 8.71% 

Chongqing AR-ANN 7.52% 13.78% 15.72% 6.48% 8.95% 17.72% 
AR-RF 4.79% 10.06% 17.47% 4.03% 7.52% 13.69% 
LSTM 6.55% 9.49% 16.88% 4.64% 6.47% 9.26% 
At–CNN–LSTM 6.33% 6.22% 8.74% 5.56% 5.54% 8.11%  

Table 10 
The Friedman test result for PED and TEC.   

TEC PED 

Friedman chi-squared 9.3 2.7 
P value 0.255 0.44 

Performance evaluation for transfer learning tasks. 

Table 11 
The Maximum mean discrepancy result of Harbin.   

2 months 4 months 6 months 8 months 10 months 

Beijing 0.68 0.57 0.52 0.46 0.44 
Chongqing 0.65 0.56 0.5 0.43 0.43 
Chengdu 0.57 0.50 0.45 0.41 0.39  

Table 12 
Parameters of attention–CNN–LSTM  

Input (365 × 4× 6) 

Attention (4 × 6) CNN（4 × 5） 
Conv (4 × 5)  
Drop Out (4 × 5) Conv (4 × 5) 
Avepool (2) Conv (4 × 5) 
Conv (4 × 8) Conv (4 × 5) 
Conv (4 × 8) Maxpool (2) 
Maxpool (2)  
attention_vec (Permute) (4 × 8)  
Sigmoid  
multiply_5 (Multiply) (4 × 8) 
Maxpool (2) 
MLP-32 
lSTM(3) 
LSTM（1）  
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conclusion, when the data availability is insufficient to cover the cooling 
season, transferring feature maps distributed from similar energy pro-
files can effectively improve the usability of the model. 

In addition, the model trained from the source domain with the 
highest value can be transferred to the target domain with the highest 
accuracy, indicating that the MMD is an indicative metric for selecting 
the most transferrable source domain for transfer-learning tasks. Our 
proposed model’s minimum prediction error (CV-RMSE) is 12.48% in 
PED prediction tasks and 10.78% in TEC prediction tasks with 2-month 
data available. The corresponding minimum prediction error (CV- 
RMSE) is 14.33% in PED prediction tasks and 11.32% in TEC prediction 
tasks with 4-month data available. The differences between the transfer 
learning and standalone machine learning models ranged from 18.40% 
to 21.86% in PED prediction tasks and 9.43%–19.67% in TEC prediction 
tasks using 2-month data. The difference ranged from 5.60% to 20.39% 
in PED prediction tasks and from 7.06% to 12.85% in TEC prediction 
tasks using 4-month data. In addition, compared with that with 12- 
month data, the accuracy of training sets with 8- to 10-month data 
exhibited a slight fluctuation, indicating that the availability of training 
sets was no longer the major limiting factor of accuracy. 

Fig. 11 compares the PED prediction performance for different 
models under 2-, 4-, 6-, 8-, and 10-month data available conditions. It is 
pleasant to observe in Fig. 10 an obviously comparison between non- 
transfer model and transfer learning models. When only the 2- or 4- 
month dataset was available, the transfer-learning method rapidly 
improved prediction performance. Therefore, our proposed transfer 
learning approach has good potential for building load prediction tasks 

with limited data. When the 8-month dataset was available, the pre-
diction error of the standalone model was significantly reduced. And 
with the data increasing, the advantage of transfer learning will be 
compromised. 

The PED for the entire year predicted under 2- and 4-months data 
available conditions for different models are shown in Fig. 12. The blue 
curve represents the measured data, and the remaining colors show the 
predicted values for AR-ANN, AR-RF, LSTM, and At–CNN–LSTM. 
Because the 2-month dataset did not consider HVAC energy consump-
tion, the predictive curves of AR-ANN, AR-RF, and LSTM were stable. 
Fig. 11 shows that the proposed models are more effective than the 
transfer the feature map from other models, especially in cooling reason. 

Fig. 13 compares the TEC prediction performance for different 
models under 2-, 4-, 6-, 8-, and 10-month data available conditions. 
Similar to PED prediction, the proposed transfer learning model out-
performed standalone models. However, when the data scale was 8 
months or higher, transfer learning showed only marginal superiority, as 
the prediction error of the standalone model was small. 

The TEC prediction performance for the entire year with 2- or 4- 
months of available data is shown in Fig. 14. The whole-year TEC trend 
of Harbin revealed that the abnormal curve of measured data in 
December was the major cause of the low prediction accuracy. 

4. Conclusion and discussion 

This study demonstrated that the CNN-LSTM model integrated with 
the attention mechanism ability could enhance the prediction accuracy 
and generalizability of building energy consumption models, which is 
especially important when the training data of the target building are 
insufficient. 

The major findings and conclusions of this study are listed as follows.  

1) When the training set included 12 months of available data, machine 
learning was a powerful tool for building energy prediction; the day- 
ahead prediction accuracy (CV-RMSE) was between 6.49% and 
19.36%. Among the four models we compared, the proposed transfer 
learning approach (Attention–CNN–LSTM) proposed in this paper 
achieved the highest accuracy for all the prediction tasks. For the 
day-ahead prediction task, the CV-RMSE of the atten-
tion–CNN–LSTM was 6.49%, which was 2.90% lower than that of the 
second-performing model (LSTM). Attention–CNN–LSTM reduced 
CV-RMSE by 2.42% and 3.27%, respectively, compared with the 
standalone method for PED and TEC prediction tasks.  

2) For PED and TEC predictions, the smallest CV-RMSE values of the 
proposed model were 8.44% and 7.21%, respectively, and the largest 
CV-RMSE differences were 8.73% and 9.61%, respectively. The re-
sults showed that the proposed transfer-learning approach effec-
tively addressed the problem of LSTM being insensitive to long- 
distance historical sample information. However, the difference in 

Table 13 
Summarize PED and TEC prediction error (CV-RMSE).  

Task Algorithm/Domain source Training dataset scale 

2 months 4 months 6 months 8 months 10 months 

PED AR-ANN 33.77% 21.16% 16.40% 14.59% 13.78% 
AR-RF 34.34% 32.03% 13.18% 12.58% 15.72% 
LSTM 32.35% 34.72% 18.68% 16.23% 15.62% 
At–CNN–LSTM-Beijing 12.48% 14.33% 13.55% 12.87% 12.45% 
At–CNN–LSTM-Chongqing 12.84% 15.47% 14.50% 13.27% 13.16% 
At–CNN–LSTM-Chengdu 13.95% 15.56% 14.18% 12.78% 12.97% 

TEC AR-ANN 30.45% 24.17% 20.52% 16.45% 12.51% 
AR-RF 26.32% 24.32% 20.90% 12.32% 10.23% 
LSTM 23.28% 21.29% 14.88% 14.36% 9.67% 
At–CNN–LSTM-Beijing 10.78% 11.32% 12.22% 12.53% 8.35% 
At–CNN–LSTM-Chongqing 13.74% 14.23% 12.63% 15.23% 13.23% 
At–CNN–LSTM-Chengdu 13.85% 13.94% 12.35% 12.32% 14.28%  

Fig. 11. PED prediction performance (APE) of four models.  
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performance between the four algorithms was insignificant when the 
training data were sufficient.  

3) When the training data were insufficient, the transfer learning 
methods significantly improved the performance compared with the 

standalone methods. Our proposed model’s minimum prediction 
error (CV-RMSE) is 12.48% in PED prediction tasks and 10.78% in 
TEC prediction tasks with 2-month data available. The correspond-
ing minimum prediction error (CV-RMSE) is 14.33% in PED pre-
diction tasks and 11.32% in TEC prediction tasks with 4-month data 
available.  

4) The effectiveness of the transfer learning method of the source 
domain selected by the MMD algorithm to the target domain was 
verified, thus facilitating the successful model transfer. Although the 
data availability cannot cover the cooling season, the attention 
mechanism-based CNN module is a suitable tool to extract the 
feature map from the source domain buildings, effectively improving 
the accuracy of the annual energy consumption predictive perfor-
mance for target buildings. However, one shortcoming of this study 
is that the data scale used is limited. If the climate conditions of the 
source building are more similar to those of the target building, 
higher accuracy of the transfer learning model can be expected. 

The limitation of this proposed model is that we need a large amount 
of data to establish the feature map set to migrate the buildings with 
insufficient data. In addition, only the impact of environmental factors 
has been considered in energy consumption forecasting. Still, the energy 
consumption of buildings is influenced by many variables, such as the 
time of use of pricing and building scales. Taking these variables into 
account when establishing prediction models will undoubtedly improve 
the accuracy of the entire model. This part of the content will be added 
in future research. Furthermore, a techno-economic analysis will be 

Fig. 12. PED prediction performance using 2 or 4 months of available data. a) Results for 2- month data. b) Results for 4-month data.  

Fig. 13. TEC prediction performance (APE) of four models.  
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discussed in future work to address the application value of energy 
forecasting. 
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