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Abstract: Efficiency and comfort in buildings rely on on well-functioning HVAC systems. However,
system faults can compromise performance. Modern data-driven fault detection methods, considering
diverse techniques, encounter challenges in understanding intricate interactions and adapting to
dynamic conditions present in HVAC systems during occupancy periods. Implementing fault
detection during active operation, which aligns with real-world scenarios and captures dynamic
interactions and environmental changes, is considered highly valuable. To address this, utilizing
the dynamic simulation system HVAC SIMulation PLUS (HVACSIM+), an HVAC fault model was
developed using 194 sensor signals from each HVAC component within a single-story, four-room
building. The advanced HVAC fault detection framework, leveraging simulated HVAC operational
scenarios with the Gramian angular field (GAF) and two-dimensional convolutional neural networks
(GAF-2DCNNs), offers a robust and proactive solution. By utilizing the GAF capacity to convert
time-series sensor data into informative 2D images, integrated with 2DCNN for automated feature
extraction, hidden temporal relationships within 1D signals are captured. After training on nine
significant HVAC faults and normal conditions during occupancy, the effectiveness of the proposed
GAF-2DCNN is evaluated through comparisons with support vector machine (SVM), random forest
(RF), and hybrid RF-SVM, one-dimensional convolutional neural networks (1D-CNNs). The results
demonstrates an impressive overall accuracy of 97%, accompanied by precision, recall, and F1 scores
that surpass 90% for individual HVAC faults. Through the introduction of the unified approach that
integrates HVACSIM+ simulated data and GAF-2DCNN, a notable enhancement in robustness and
reliability for handling substantial HVAC faults is achieved.

Keywords: heating, ventilation and air conditioning (HVAC); Gramian angular field (GAF);
convolutional neural networks (CNNs); fault detection and diganosis (FDD); HVAC SIMulation
PLUS (HVACSIM+)

1. Introduction

Modern building efficiency and occupant comfort are intricately tied to the optimal
operation of heating, ventilation, and air conditioning (HVAC) system. These systems
play an important role in maintaining desired indoor conditions, impacting factors such
as occupant comfort and energy consumption. Underscoring the significance of identify-
ing operational faults is the fact that undetected issues can result in energy inefficiencies.
The timely detection and diagnosis of HVAC faults can mitigate energy wastage and pre-
vent complete equipment breakdown [1]. In line with this, numerous fault detection and
diagnosis (FDD) strategies have been developed to address energy-saving issues, with the
aim of enhancing system efficiency [2]. Extensive research [3,4] has been investigated
into optimizing air handling units (AHUs) control strategies to achieve better operational
efficiency. However, AHU controllers are susceptible to various faults, including sensor
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reading inaccuracies and control errors, signal line failures, and blockages in dampers and
hot water valves, all of which compromise energy efficiency and result in costs [5]. There-
fore, effective HVAC equipment fault detection is essential to ensure timely maintenance
or replacement.

The evolution of HVAC fault detection has transitioned towards data-driven ap-
proaches, offering a diverse techniques to enhance system monitoring and diagnosis. In the
earlier stages, rule-based fault detection approaches were introduced, specifically tailored
for air handling units (AHUs) within HVAC systems [6–8]. These approaches rely on
predefined conditions and thresholds to identify anomalies and deviations from normal
system behavior. Nevertheless, a significant limitation of rule-based methods lies in their
dependence on predefined rules and thresholds. Moreover, as HVAC systems operate
under diverse conditions and occupant patterns, these methods may encounter difficulties
in adapting to dynamic scenarios, load variations, and intricate system behaviors. Conse-
quently, the potential for such rule-based systems to generate false positives is elevated
due to the inflexible nature of the predetermined rules.

Recent advancements in artificial intelligence (AI) and machine learning (ML) have
opened the door for the development of automated HVAC fault diagnostic systems. A data-
driven approach was proposed for HVAC chiller systems using principal component
analysis (PCA) to identify anomalies and a reconstruction-based contribution method to
identify fault-related variables [9]. Notably, its primary strength lies in its capability to
function effectively even without prior knowledge or historical data concerning unfore-
seen occurrences. However, challenges might arise in identifying complex fault-related
factors, and there could be challenges related to the scalability and adaptability of the
decision table approach. Another study introduced a diagnostic bayesian network frame-
work [10], leveraging probabilistic modeling to capture complex variable relationships and
enhance fault understanding. Nevertheless, its complexity, reliance on expert knowledge,
and applicability to specific equipment can present limitations.

With continuous advancements in statistical machine learning and information the-
ory, fault detection, and classification in HVAC systems using artificial neural networks
(ANNs) [11,12], general regression neural networks (GRNN) [13], which are wavelet-based
neural networks [14], have become increasingly essential. The studies focus on the prac-
tical application of HVAC fault detection, employing artificial neural networks (ANNs)
renowned for effectively handling complex data relationships. However, potential chal-
lenges could arise from the complexity of feature extraction, selection, and scaling from
the raw sensor data, as well as in generalizing the findings to diverse HVAC systems.
The extraction and selection of irrelevant features and improper scaling can adversely affect
the learning process, leading to biased outcomes and slower convergence. Therefore, it is es-
sential to ensure appropriate feature extraction and scaling to achieve optimal performance
when utilizing ANNs for HVAC fault detection and classification.

An intelligent swarm-based artificial neural network (ANN) model, augmented with
the ensemble rapid centroid evaluation (ERCE) technique [15], is introduced. This approach
effectively selects important features by leveraging the relative entropy between low- and
high-frequency features. The ASHRAE-1312-RP dataset, reflecting diverse HVAC fault
types and behaviors, is employed for experimentation. The selected features show reduced
redundancies and enhanced model performance compared to manual selection. However,
a notable limitation arises due to the lack of simulated data for generalization evaluation,
which can potentially give insights into the model adaptability to various HVAC operating
conditions. Importantly, the consequences of inaccurate or inadequate feature selection
could compromise the entire fault detection and classification process.

In [16], a novel decentralized Boltzmann-machine-based approach for HVAC air
handling unit (AHU) fault diagnosis is introduced. It tackles challenges associated with
correlated fault indicators and computational demands by utilizing less affected residuals
as indicators and employing a unique decentralized voting mechanism for effective sensor
fault localization. While the method exhibits high accuracy in diagnosing sensor faults, it is
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constrained by potential reliance on residual data quality. The experiments use ASHRAE
Project 1312-RP data, comparing AHU-A with faults to AHU-B under normal conditions
across various seasons. However, the study lacks HVAC operational simulated data, which
is advantageous for comprehensive testing and validation of fault detection and diagnosis
methodologies, potentially limiting performance insights into across diverse operating
conditions and fault scenarios.

In the context of enhancing building energy conservation, the utilization of a deep
belief network for detecting various HVAC faults in air-conditioning systems is intro-
duced [17,18]. Despite the strength of its layer-wise training for learning intricate patterns,
the method may struggle to effectively capture the spatial and temporal relationships
inherent in HVAC data. Moreover, the focus on only five faults in the paper might not
comprehensively represent the reality, where there could be more diverse faults arising
from human errors, unexpected device malfunctions, and sensor drift. This highlights the
need for further exploration of a broader range of AHU faults to ensure the diagnostic
model accuracy.

Recent attention has been drawn to one-dimensional convolutional neural networks
(1D-CNNs) in analyzing raw sensor time series signals due to its robust classification perfor-
mance, automatic feature extraction, and computational efficiency [19,20]. The effectiveness
of the proposed method is verified through experimentation with a fault dataset derived
from a typical building HVAC systems (chiller) within the ASHRAE research project 1043
(RP-1043). While this method presents strengths in providing better accuracy, it should
be noted that it is limited in its use of simulation data for testing model generalization.
Furthermore, the constraints of employing a 1D-CNN become more apparent when dealing
with multiple HVAC fault classifications, as its focus on temporal patterns might hinder its
ability to capture complex spatial interdependencies within HVAC systems.

To overcome this challenge, emerging techniques such as Gramian angular fields
(GAF) transform time-series data into spatial representations, with recent advancements
integrating algorithms with CNNs to enhance fault diagnosis capabilities [21–23]. In [24],
the GAF-2DCNNs approach focuses on enhancing the deep learning application for HVAC
fault detection system is proposed. It involves using pruning to significantly decrease model
parameters and incorporating layer-wise relevance propagation (LRP) for improving model
interpretability. To assess its effectiveness, 31 faults data simulated from real HVAC systems
in Japan are employed. The results demonstrate a classification accuracy of 90%, while
also reducing the dimensions of model by over 99%. However, focusing only on 47 AHU
operational parameters might overlook some significant HVAC system behaviors, while
requiring additonial steps, such as pruning and LRP for 24-h cycle training. In practice,
it is important to evaluate the effectiveness of the system in various HVAC faults and
normal situations during occupied period, as false positives and negatives could result in
unnecessary alarms. Additionally, the generalizability can be assessed by comparing it
with other machine learning-based FDD systems and utilizing various benchmark datasets.

Overcoming the above challenges, the study makes a significant contribution to the
field of HVAC fault detection by introducing unified approach combining HVACSIM+
simulated data and transformative GAF-2DCNNs. By integrating the Gramian angular
field (GAF) and two-dimensional convolutional neural networks (2D-CNNs), the proposed
approach leverages on the spatial insights offered by GAF representations and the feature
extraction capabilities inherent in 2D-CNN, leading to enhanced identification of HVAC
faults. The seamless integration of HVACSIM+ simulated data within the proposed FDD
framework further strengthens its applicability. By combining real-world complexities
with simulated operational scenarios, the study offers a comprehensive understanding
of HVAC system behavior. This integration enriches the fault model and broadens the
scope of insights, ensuring that the proposed methodologies are robust and reliable under
various operational conditions. Below is a summary of the substantial contributions made
by this study:
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• Leveraging Simulated Data from HVACSIM+: This utilizes the dynamic simulation
system HVAC SIMulation PLUS (HVACSIM+) to simulate HVAC faults from 194 sen-
sor signals within a single-story, four-room building (each measuring 400 m2), offering
precise control over operational conditions and encompassing diverse faults. This
approach enhances the accuracy and applicability of fault detection models, resulting
in improved performance and more effective real-world implementations in HVAC
systems. This distinct dataset source enriches the originality of our approach and
reinforces its applicability to real-world HVAC scenarios.

• Normal State Inclusion and Multi-Fault Classification: The study further extends its
contributions by training the GAF-2DCNNs model on nine significant HVAC faults
and normal conditions. Incorporating normal conditions in a FDD system offers
advantages such as reducing false alarms, improving accuracy, and enhancing system
performance. The evaluation of the proposed system was conducted using precision,
recall, and F1 score metrics, revealing significant performance for each detected fault.

• Strategic Training During Operational Hours Enhances Robustness: Aligning with
real-world HVAC systems conditions, training during occupied periods from 6 AM to
6 PM offers significant advantages. This approach captures specific usage patterns,
behaviors, and anomalies that are more likely to arise during these times. Conse-
quently, the model gains insights into dynamic system behavior, load fluctuations,
and environmental influences associated with building occupancy, leading to robust
and precise fault detection in real-world contexts.

• Enhanced Time Resolution: By employing a finer time resolution of 1 min in HVAC
fault detection, this study achieves enhanced accuracy by capturing intricate variations
within shorter intervals, thereby improving system behavior analysis and anomaly
detection. In contrast to a larger sample size like 15 min, the utilization of 1-min
intervals offers the advantage of capturing more frequent data points. This approach
allows for a more detailed comprehension of system dynamics, enabling the identi-
fication of rapid changes and transient patterns that may go unnoticed with larger
intervals. Consequently, the finer time resolution significantly elevates the precision
and sensitivity of the fault detection process.

• Occupancy-Aware Modeling: The implementation of occupancy-aware modeling is
another notable contribution of this study. By focusing on HVAC fault detection during
occupied periods, the model captures specific usage patterns and behaviors that are
relevant to real-world HVAC systems conditions. Its tailored approach enhances the
ability of the model to distinguish between normal and faulty operations, providing
more accurate results and enabling quick decision making.

• Rigorous Validation Against Established Benchmarks: The validation against estab-
lished benchmarks, including ASHRAE data, enhances credibility and reliability of
the proposed model. This validation process aligns with industry standards, boost-
ing confidence in the effectiveness and practicality of the proposed methodologies.
By benchmarking against reputable references, the study establishes a solid foun-
dation for evaluating the performance of the proposed unified approach combining
HVACSIM+ simulated data and GAF-2DCNNs.

• Evaluating Model Effectiveness: A comprehensive comparison with support vector
machine (SVM), random forest (RF), and hybrid RF-SVM, one-dimensional convolu-
tional neural networks (1D-CNNs), is carried out to explore the effectiveness of the
proposed GAF-2DCNNs model. The noticeable result shows the superiority of the
GAF-2DCNN approach in accurately identifying nine significant HVAC faults and
fault-free scenarios within simulated operational dynamics. An added advantage of
considering fault detection during occupancy is the reduction of model computation
time, which enhances the practicality of real-time fault detection and quick decision
making without the need for extensive computation resource. This feature makes the
approach more feasible for applications that require timely responses.
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In summary, the incorporation of advanced GAF-2DCNNs techniques, seamless inte-
gration of HVACSIM+ simulated data, occupancy-aware modeling, capturing finer time
resolution of 1 min, and rigorous validation against benchmarks ASHRAE data collec-
tively contribute to the advancement of HVAC fault detection. The utilization of GAF and
2D-CNN methodologies, along with the innovative approach to address operational com-
plexities, makes this study a significant step forward in enhancing HVAC fault detection
system. Despite system complexity, the unified approach combining HVACSIM+ simulated
data and GAF-2DCNNs consistently achieves better accuracy, precision, recall, and F1
scores. This approach effectively reduces false positives and enhances fault detection,
showcasing its robustness and reliability in addressing major HVAC fault scenarios.

The upcoming Section 2 provides insight into the HVAC Simulation PLUS (HVACSIM+)
parameters and the simulation process applied to a single-story building with nine distinct
types of HVAC faults and normal condition. The theoretical foundation of transforming
time series into images using the GAF and the structure of the 2D-CNN are covered in
Sections 3.1 and 3.2, respectively. The evaluation and discussion of the proposed GAF-
2DCNNs fault detection system are presented in Section 5. Lastly, Section 6 gives the
limitations, conclusions, and potential future directions of the proposed unified framework.

2. HVAC Faults Simulation Using HVACSIM+

To enhance the fault detection and diagnosis of the HVAC systems, this study utilized
the HVACSIM+ simulation model [25] to generate both normal and faulty operational data.
The simulation was carried out for a single-story, four-room building (each measuring
400 m2), ensuring exposure to external heat loads across the rooms. The air conditioning of
the building was provided through an air-handling unit (AHU) system with four zones,
each featuring a variable air volume fan to regulate zone temperatures. The HVAC system
layout and energy mode setup are given in Figure 1. The AHU system incorporated essen-
tial components, such as preheating coils, cooling coils, heating coils, heating and cooling
coil control valves, outside air dampers, and conditioned air outlets. A duct facilitated air
circulation between the AHU and the rooms. The simulation model was equipped with sen-
sors to continually monitor the pressure, temperature, humidity, and airflow characteristics
of the system.

Figure 1. Schematic representation of HVAC systems.
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2.1. HVAC Control Algorithm Pseudocode

The implementation of the HVAC systems simulated model aligns with the provided
pseudocode Algorithm 1, which outlines the HVAC control algorithm based on the spec-
ified inputs and desired operating conditions. It involves a series of steps to manage
the room temperature and occupancy while considering various parameters. The initial
inputs include the desired temperature for the zone, maximum room capacity, temperature
tolerance range, cooling power, and heating power of the HVAC systems. The algorithm
begins by retrieving the current temperature and occupancy status. Subsequently, the tem-
perature control process is carried out, following a series of conditional statements. If the
current temperature exceeds the desired range plus the specified tolerance, the algorithm
calculates the cooling power required and applies it to the room. Conversely, if the current
temperature falls below the desired range minus the tolerance, the algorithm calculates the
heating power required and applies it. In cases where the current temperature falls within
the acceptable range, the algorithm maintains the temperature at its current level. The
pseudocode (Algorithm 1) given in this study works as a guide for executing the HVAC
control algorithm and managing temperature and occupancy dynamics within the room.

Algorithm 1 HVAC Control Algorithm Pseudocode

Require: Inputs:
1: ZONE_TEMPERATURE: Set Desired Temperature
2: ROOM_CAPACITY: Maximum Occupancy
3: TOLERANCE: Temperature Tolerance Range
4: COOLING_POWER: HVAC Systems Cooling power
5: HEATING_POWER: HVAC Systems Heating power
6:
7: function RETRIEVECURRENTTEMPERATUREANDOCCUPANCY
8: current_Temperature← getCurrentTemperature()
9: current_Occupancy← getCurrentOccupancy()

10: end function
11:
12: function TEMPERATURECONTROL
13: if current_Temperature > (ZONE_TEMPERATURE + TOLERANCE) then
14: Calculate cooling power
15: COOLING_POWER← (current_Temperature− ZONE_TEMPERATURE)
16: ×SET_COOLING_POWER
17: Apply cooling power
18: else if current_Temperature < (ZONE_TEMPERATURE− TOLERANCE) then
19: Calculate heating power
20: HEATING_POWER← (ZONE_TEMPERATURE− current_Temperature)
21: ×SET_HEATING_POWER
22: Apply heating power
23: else
24: Maintain temperature
25: end if
26: end function

2.2. Design Parameter Consideration

The HVACSIM+ simulated model, as presented in Figure 1, comprises the AHU with
essential components, such as air supply and exhaust fans, preheating coils, cooling coils,
heating coils, control valves for heating and cooling coils, external air dampers, and con-
ditioned air outlets. The operating characteristics of HVAC systems are continuously
monitored through pressure, temperature, humidity, and airflow sensors, following the
steps outlined in Algorithm 1. Additionally, a variable air volume (VAV) system regulates
zone temperatures, channeling conditioned air to terminal units and zones via a duct
network. Each terminal unit incorporates a modulating damper controlled by a thermostat,
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responding to cooling requirements within the zone. Employing diverse controllers for
supply air temperature, fan speed, and room temperature, the VAV system achieves the
desired zone temperature set point. When the room temperature (TZA) varies from the set
point (Tset,ZA), the controller activates, adjusting the internal VAV box damper to regulate
airflow volume and maintain comfortable indoor thermal conditions. Notably, Table 1
outlines key specifications for building and HVAC design.

However, as the VAV box damper undergoes repeated modulations, it introduces
alterations in the static pressure within the supply air duct. Subsequently, the supply
fan controller responds by adjusting the speed of the supply fan, taking into account the
discrepancy between the static pressure within the duct (PSA) and the predefined static
pressure set point within the duct (Pset,SA). This process aims to effectively regulate the
supply air temperature (TSA) of the AHU in the VAV system. To achieve this, the cooling
coil valve controller precisely modulates the cooling coil valve (CCV), thereby regulating
the flow rate of cooling coil water. This adjustment is guided by the difference between the
supply air temperature (TSA) and the specified supply air temperature set point (Tset,SA).

Utilizing the above control method ensures the stable operation of the VAV system.
The simulation model is subjected to a 24-h test, during which data are gathered at 1-min
intervals for each sensor reading. By incorporating 194 sensor readings into the HVAC
system analysis, this approach offers distinct advantages compared to relying solely on
the 47 AHU operational parameters [24]. Moreover, increasing the frequency of sensor
data sampling to every 1-min interval provides a more complete understanding of system
behavior. This approach captures subtle changes and interconnections that could be missed
when using a limited parameter set sampled at 15-min intervals. The finer granularity not
only enhances the precision of fault detection, but also ensures a more accurate representa-
tion of real-world operational scenarios. This holistic approach, embracing a wider range
of sensor data, ultimately strengthens fault detection accuracy, early anomaly identification,
and the practical applicability of the HVAC system analysis.

Table 1. Building design and HVAC system parameters.

Description Design Parameter

Location Sydney, Australia
L ×W of building 40 m × 40 m
Number of floor, rooms / zones Single storey, 4
L ×W of each room 20 m × 20 m
Floor to ceiling height 3.5 m
Window to floor ratio 35 %
Occupants 0.15 person/sqm
Lighting power 20 W/sqm
Equipment power 12.5 W/sqm
Shading coefficient and U value of the window SC = 0.95, U = 6.21 W/sqmK
U value of the roof 0.795 W/sqmK
U value of the above grade wall 3.778 W/sqmK
HVAC Systems Capacity Auto Sizing
Chiller coefficient 4.45
Chilled water temperature 7 ◦C
Supply/return chilled water temperature different 5 ◦C
Supply condensed water temperature 30 ◦C
Supply/return condensed water temperature different 5 ◦C
AHU fan power 0.000826 W/cfm
Supply air temperature set point 12.77 ◦C
Zone heating and cooling point 21 ◦C and 22 ◦C
Control AHU with VAV, equipped with VSD
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In accordance with Algorithm 1, the HVAC simulation model developed in this study
was adapted for summer conditions. These scenarios were broken down into AHU settings,
zone configurations, and adjustments to the heating and cooling systems. The simula-
tions extended over 24-h periods, with occupancy scheduled from 6:00 AM to 6:00 PM.
By emphasizing occupancy periods, a practical understanding of HVAC system behavior
is achieved, enhancing the relevance and applicability of the findings. The approach sets
this study apart from [24], highlighting the benefits of exclusively considering occupancy
periods in HVAC system analysis.

Furthermore, a minimum outdoor air damper opening of 40% was implemented to
ensure ventilation. The economizer control came into play when the outdoor air tem-
perature dropped below 18 ◦C, complemented by a supply air temperature of 12.77 ◦C.
The fan speeds were managed to maintain duct pressure, while the return fan operation
was synchronized to 80% of the supply fan speed. The target room temperature during
occupied hours was set at 21 ◦C, and airflow was adjusted, ranging from 200 to 1000 cfm
across different zones. The study considered three normal days and nine significant faults,
involving minute-by-minute data sampling from 194 sensors, culminating in 1440 samples
over a 24-h period.

2.3. Validating HVACSIM+ Simulation with ASHRAE Data

The study incorporates a comprehensive validation process, which compares the
dynamic behavior of HVAC systems parameters, such as time series data and fault scenarios,
produced by the HVACSIM+ simulation model with benchmark ASHRAE experimental
data [26]. To establish this validation, a direct comparison has been made between the
simulation-generated time series data and fault scenarios, and the real-world data sourced
from ASHRAE, as given in Figure 2. For validation purposes, the focus was directed
towards significant parameters: supply air and cooling coil temperature, supply air and
return air flow rate, fan speed, and power consumption.

A comparison between simulated supply air and cooling coil temperature and cor-
responding ASHRAE experimental data, as given in Figure 2a,b, revealed a striking re-
semblance in their temporal fluctuations. The observed peaks and troughs closely aligned
in both datasets, signifying accurate capture of temperature dynamics by the simulation
model. The similar trends shown when examining air flow rate data, as given in Figure 2c,d,
as both simulated and experimental records displayed consistent oscillations in air flow
rate, especially during system adjustments or external influences. The similarity strength-
ens confidence in the accuracy of the HVACSIM+ simulation when showing how air flows
within the system.

Additionally, upon examining the fan speed data, as in Figure 2e, a strong similarity
emerges between the simulation and ASHRAE measurements. The simulation effectively
reproduces how fan speed reacts to changes in system load and operational conditions, thus
reinforcing its fan modeling accuracy. Moreover, Figure 2f indicates that the simulation of
fan power consumption closely resembles the actual power consumption data collected by
ASHRAE. The consistency in power consumption trends supports the ability of HVACSIM+
simulation to offer dependable estimates of power needs. The alignment between the
simulation and ASHRAE data during validation is especially promising. It not only
proves that the simulation is accurate, but also gives more confidence to use it for HVAC
faults model for classification. While the HVAC systems simulation involves a total of
194 parameters, the comparison studies were conducted specifically on key parameters,
such as supply air temperature, cooling coil temperature, supply air flow rate, return air
flow rate, fan speed, and fan power, with illustrative examples given in Figure 2a–f.
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(a) Supply Air Temperature (b) Cooling Coil Temperature

(c) Supply Air Flow Rate (d) Return Air Flow Rate

(e) Fan Speed (f) Fan Power

Figure 2. Comparison analysis of simulated and ASHRAE HVAC operation data [26]. (—— HVAC-
SIM+ Simulated Data; ASHRAE Data).

2.4. Brief Description of Significant Faults

The selection of specific faults in the HVAC system analysis is grounded in their prac-
tical relevance and potential impact on system performance. The HVACSIM+ simulation
model employed in this study considered a wide range of significant faults that are particu-
larly complex and difficult to handle effectively, such as the “cooling coil valve fully opened”
fault (CCV100%OP), where the valve is manually set to open completely. This activation
prompts the heating coil to regulate supply air temperature, sometimes coupled with an
unintended control strategy fault that closes the outdoor air damper during heating coil
operation. Similarly, the “cooling coil valve 100% closed” fault (CCV100%CL) can lead to
excessive cooling or inadequate temperature regulation, which results in deviations in sup-
ply air temperature, opening zone VAV dampers, increasing supply airflow, and increasing
fan speeds. The simulation model also investigates the “cooling coil valve reverse action”
fault (CCVREV). The consideration of the CCVREV is important as it represents a scenario
where expected system behavior is intentionally reversed, often resulting from control
system or actuator faults. In addition, it allows to assess the effectiveness of fault detection
in identifying such complex deviations, enhancing its adaptability and applicability to
real-world HVAC systems.

Furthermore, the “duct leak after the supply air fan” (DLAFTSF) fault is simulated,
impacting duct flow resistance and subsequently affecting air pressure, airflow, and room
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temperature. Incorporating the “stuck exhaust or outside air dampers” (EADAMPOP
and EADAMPCL) faults into the model is significant because these faults directly impact
the ventilation and air circulation within HVAC systems. These faults can lead to com-
promised indoor air quality, energy inefficiency, and improper temperature regulation.
Lastly, the “outside air damper 45% opened” (OADAMP45%OP) and “outside air damper
closed” (OADAMPCL) faults are examined, affecting the proportion of recirculated air due
to simulated stuck damper positions. The validation process entails a thorough comparison
between simulated and real-world data across critical parameters, ultimately enhancing
the model accuracy and applicability across various contexts.

In the process of implementation, data were extracted specifically from the occupancy
timeframe, resulting in 720 data points over a 12-h span (6 AM–6 PM). Outside of this active
period, sensor readings exhibited minimal fluctuations as clearly presented in Figure 2,
rendering them unsuitable for effectively modeling decision-making patterns. In the
pursuit of generating a robust model, a compilation of 2160 normal samples was gathered
across three fault-free days. Additionally, for each distinct fault type outlined in Table 2,
720 fault samples were collected. This targeted strategy during occupy period avoids
additional steps, such as pruning and LRP, which would otherwise be needed to sort
through less informative nighttime data. This focused technique not only enhances accuracy
but also streamlines the architecture of the model, maintaining efficiency without the added
complexity of 24-h training [24]. This methodology fits well with HVAC fault detection
needs, ensuring accuracy, simplicity, and efficiency.

Table 2. Summary of AHU faults considered in the proposed FDD model.

Fault Abbreviation Description Sample

F0 NORMAL Normal Condition 2160
F1 CCV100%OP Control Coil Valve fully opened 720
F2 CCV100%CL Control Coil Valve fully closed 720
F3 CCVREV Cooling Coil Valve Reverse Action 720
F4 DLAFTSF Duct Leaf After Supply Fan 720
F5 EADAMPOP Exhaust Air Damper opened 720
F6 EADAMPCL Exhaust Air Damper closed 720
F7 OADAMPCL Outside Air Damper closed 720
F8 OADAMP45%OP Outside Air Damper 45% opened 720
F9 HCVLSTG2 Heating Coil Valve Leak—Stg 2 720

3. Advanced HVAC Fault Detection System

This section introduces a data-driven HVAC fault detection approach employing
Gramian Angular Fields (GAF) and two-dimensional convolutional neural networks (CNNs).
As given in Figure 3, the GAF technique encodes HVAC sensor time series into images
(Section 3.1), subsequently processed by 2DCNN for fault classification (Section 3.2). The
GAF-2DCNNs integrated framework begins by encoding simulated time series data into
2D GAF images. This transformation translates temporal changes into spatial patterns,
enabling the CNN to capture spatial relationships and patterns that might carry essential
fault-related information. In addition, the encoded GAF images work as a bridge between
temporal dynamics and spatial patterns, enhancing the ability of the model to detect latent
fault signatures.

During the training of the 2D-CNN, it iteratively learns from these images that rep-
resent various HVAC systems conditions, both normal and faulty conditions. It adjusts
and optimizes the network parameters to identify slight changes in patterns related to
different HVAC systems states. The efficiency of the proposed unified framework, trained
using HVACSIM+ simulated data outlined in Table 2, is validated through benchmark
ASHRAE data [26], with comparison studies against Support Vector Machine (SVM) [27,28],
Random Forest (RF) [29], and hybrid HVAC systems fault diagnosis models [30] to show
the superior accuracy of the proposed GAF-2DCNNs approach. Notably, these methods
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require feature extraction and selection, whereas the proposed approach stands out for
its superior accuracy. Moreover, it is important to validate the proposed fault detection
system in comparison to the one-dimensional CNNs (1DCNNs) [20], highlighting its ability
to capture both temporal and spatial information, which is a feature not captured by the
1DCNNs approach.

Figure 3. The HVAC fault detection system using GAF-2DCNNs.

3.1. Gramian Angular Field

The Gramian Angular Field (GAF) is a unique technique used in time series analysis.
It converts time series data into images by encoding temporal relationships and correlations
onto a two-dimensional polar coordinate system [31]. It transforms data points into angles
and distances, with cosine values representing the angular differences. The resulting image
captures complex temporal patterns, making it valuable for tasks such as fault detection
and signal processing. For the given time series X = {x1, x2, . . . , xn}, the first step in GAF
is to normalize it into values interval of [0, 1] by:

∼
x i =

(xi −max(X) + xi −min(X))

max(X)−min(X)
(1)

∼
x i =

xi −min(X)

max(X)−min(X)
(2)

After normalization, the normalized time series data are represented in the polar
coordinate system by encoding the value as the angular cosine and the time stamp as the
radius with the equation below:

φi = arccos(
∼
x i),−1 ≤ ∼x i ≤ 1,

∼
x i ∈

∼
X (3)

ri =
ti
N

, ti ∈ N (4)

where φ ∈ [0, π], ti is the time stamp, and N is a constant factor to regularize the span
of polar coordinate. The GAF has essential properties of rescaling time series data into
different intervals with different angular bounds, whereas [0, 1] corresponds to the cosine
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function in [0, π
2 ], while cosine values in the interval [−1, 1] fall into the angular bounds

[0, π]. After transforming the re-scaled time series to a polar coordinate system, we can
identify temporal correlations within different time intervals considering the trigonometric
sum or difference between each point. GAF can generate two images by different equations.
The Gramian Summation Angular Field (GASF) is defined in Equations (5) and (6) and the
Gramian Difference Angular Field (GADF) is defined in Equations (7) and (8), which allow
easy calculation of the angular viewpoint, where (GASF) is based on cosine functions and
(GADF) is based on sine functions:

GASF =


cos(φ1 + φ1) · · · cos(φ1 + φn)
cos(φ2 + φ1) · · · cos(φ2 + φn)

...
. . .

...
cos(φn + φ1) · · · cos(φn + φn)

 (5)

GASF = X̃′ · X̃−
√

I − X̃2
′
·
√

I − X̃2 (6)

GADF =


sin(φ1 + φ1) · · · sin(φ1 + φn)
sin(φ2 + φ1) · · · sin(φ2 + φn)

...
. . .

...
sin(φn + φ1) · · · sin(φn + φn)

 (7)

GADF =
√

I − X̃2
′
· X̃− X̃′ ·

√
I − X̃2 (8)

where I is the unit row vector. The GAF algorithm has several advantages, as it considers
maintaining temporal dependency as per-position movement throughout the time period.
This means it can quickly convert a one-dimensional time series into a two-dimensional im-
age that can be effectively used by a two-dimensional deep convolutional neural networks,
as described in Section 3.2.

3.2. Deep Convolution Neural Network

This section outlines the fundamental algorithms and structures of the deep convo-
lutional neural networks (CNNs) [23], as well as its training methodology, utilized for
classifying time series images transformed through GAF in Section 3.1. Essentially, the ar-
chitecture of CNN consists of two main parts: the initial part utilizes convolution and
pooling operations to generate a feature map from the raw input signal, employing an
appropriately chosen kernel size. The subsequent part focuses on classifying the most
intricate features, collaborating with a multi-layer perception (MLP) method. Figure 3
illustrates a typical CNN configuration featuring convolutional and pooling layers through
the use of GAF-encoded images. The initial input layer comprises N × k neurons, where k
signifies the variable count of input time series, and N represents the length of each univari-
ate series. The subsequent layer involves the convolutional layer, executing convolution
operations using m filters, convolution stride s, and a y× y filter size. Additionally, this
layer necessitates the consideration of a non-linear transformation function f .

As a next step, the pooling operation is performed in which a feature map is di-
vided into N equal-length segments, and then every segment is represented by its aver-
age or maximum value. After several convolution and pooling operations, the original
time series is represented by a series of feature maps that connects to final output layers
with n classes. The training of CNN is performed by a sequence of training examples:
(x1, y1), (x2, y2), . . . , (xNsample, yNsample), with (xt ∈ RN×k, yt ∈ Rn f or1 ≤ t ≤ Nsample).
The multivariate or uni-variate time series xt is given as input to the network, while the
vector yt denotes the target output. The training process follows a series of steps outlined
in Figure 3, culminating in the development of a highly effective CNN model.
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4. Performance Evaluation Metric

In order to evaluate the performance of the integrated approach that combines
HVACSIM+ simulated data with GAF-2DCNNs, the assessment metrics utilized com-
prise Precision, Recall, and F1-score (9)–(11) [32], which are defined as follows:

Precision =
TP

[TP + FP]
× 100 (9)

Recall =
TP

[TP + FN]
× 100 (10)

F1-score = 2× Precision× Recall
Precision + Recall

× 100 (11)

where Precision represents the ratio of accurately predicted positive instances to the to-
tal predicted positive instances, Recall signifies the ratio of correctly predicted positive
instances to all actual positive instances, and F1-score denotes the weighted average of
Precision and Recall. In these equations, TP stands for the count of true positive instances,
FP represents the count of false positive instances, and FN corresponds to the count of
false negative instances.

5. Result and Discussion

The dataset generated in Section 2 was utilized to explore the viability of the proposed
GAF-2DCNNs model, depicted in Figure 3. By leveraging the data provided in Table 2
(specifically, the fifth column), an 80% random subset was used for creating the training set,
leaving the remaining 20% for testing purposes. Consequently, the model was trained with
6912 samples and tested with 1728 samples. Through the utilization of 194 raw feature input
datapoints, the GAF-2DCNNs methodology initiated by applying the Gramian Angular
Field (GAF) technique to transform the initial time series data into image data, enabling
the model to capture both temporal and spatial relationships. This transformed image data
were subsequently fed into the CNNs model for the final fault type classification.

In this experiment, a sequential model was employed to construct the CNN using
Keras, allowing the model to be developed layer by layer. With an input image size
of [6912 × 64 × 64 × 1], the CNN model architecture was created, consisting of three
convolutional layers, three max pooling layers, and a final fully connected classification
layer. The first layer employed 32 filters, while the second and third layers utilized 64
and 128 filters, respectively. The filter size in each layer can be adjusted based on the
dataset. Convolution operations employed kernel sizes of [6× 6], [6× 6], and [3× 3] for
the first, second, and third filter matrices, respectively, generating feature maps. Rectified
Linear Activation (ReLU) was applied in the initial two convolutional layers prior to the
max pooling step. The final classification layer utilized the Softmax activation function.
For parameter optimization, the Adam (Adaptive Moment Estimation) optimizer was
employed, offering an alternative to traditional stochastic gradient descent for iterative
network weight updates based on training data [33]. Information regarding the number
of optimized parameters in the CNN architecture for the proposed GAF-2DCNNs HVAC
fault detection system is outlined in Table 3.

To assess the effectiveness of the propaosed unified framework, it is compared
with other data-driven fault detection systems, including 1D-CNN, Hybrid RF-SVM, RF,
and SVM, using a dataset detailed in Table 2. The dataset comprises ten classes, encom-
passing both normal and nine significant fault patterns associated with summer conditions.
Notably, the GAF-2DCNNs demonstrates superior performance in classifying both normal
and nine significant HVAC faults, achieving an better accuracy of 97%. The diagnostic
accuracy is further evaluated through the utilization of a confusion matrix, as depicted in
Figure 4. In the context of HVAC systems fault detection, the confusion matrix helps to
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visualize how well the model is performing in terms of correctly classifying different fault
types, as well as identifying any misclassifications.

Table 3. GAF-2DCNNs HVAC fault detection: CNN network architecture and parameters.

Layer Filters Kernel Output Parameters

Input Layer - - (64, 64, 1) -
Conv2D 32 6× 6 (59, 59, 32) 1184
Max Pooling - - (29, 29, 32) -
Dropout - - (29, 29, 32) -
Conv2D 64 6× 6 (24, 24, 64) 73,791
Max Pooling - - (12, 12, 64) -
Dropout - - (12, 12, 64) -
Conv2D 128 3× 3 (10, 10, 128) 73,856
Max Pooling - - (5, 5, 128) -
Dropout - - (5, 5, 128) -
Flatten - - (3200) -
Dense - - (256) 819,456
Dropout - - (256) -
Classification - - (10) 2570

Upon analyzing the confusion matrix depicted in Figure 4, it is evident that the di-
agnostic accuracy of GAF-2DCNNs achieves 95% for most all faults and normal apart
from exhaust air damper faults (EADAMPCL) with 94% accuracy, and EADAMPOP with
93% accuracy. Impressively, the proposed method achieves a remarkable 100% accuracy
in detecting heating coil valve leakage faults (HCVSTG2L) and a robust 99% accuracy in
identifying cooling coil valve reverse action faults (CCVREV). In HVAC systems, achiev-
ing a remarkable 100% accuracy in detecting faults such as heating coil valve leakage
(HCVSTG2L) and a robust 99% accuracy in identifying cooling coil valve reverse action
faults (CCVREV) signifies the exceptional ability of the system to promptly identify and di-
agnose these specific issues. This high accuracy level indicates that the proposed diagnostic
model can effectively recognize even the slightest deviations in the behavior of heating coil
valve leakage and cooling coil valve reverse action, ensuring that these faults are promptly
addressed and mitigated.

Furthermore, the GAF-2DCNNs demonstrates a notable level of accuracy, specifically
reaching 98% in effectively detecting cooling coil valve fully closed faults (CCV100%CL),
duct leak after supply fan faults (DLAAFTSF) and outside air damper fully closed faults
(OADAMPCL), as presented in Table 4. Additionally, the model shows satisfactory classifi-
cation accuracy of 96% for both outside air damper partially opened faults (OADAMP45%OP)
and fault-free conditions (NORMAL). While these accuracy rates showcase proficiency of
the system in fault detection, it is important to note that cooling coil valve and exhaust air
damper faults incur a slight misclassification rate of 1–3%. This can be attributed to the
nuanced and subtle nature of symptoms associated with these faults. This level of accuracy
is immensely valuable, as it enables the HVAC systems to accurately identify and address
these faults, minimizing potential disruptions and optimizing overall system performance.

Besides, the primary focus of this study lies in the strategic incorporation of normal
states into the analysis, presenting several advantages that clearly distinguish it from the
work presented in [24]. This approach proves to be particularly valuable, x as it effectively
addresses several key challenges in fault detection and diagnosis within HVAC systems. By
integrating normal states into the analysis, the proposed method significantly reduces false
positive outcomes. This means that the chances of incorrectly identifying a fault when the
system is functioning normally are minimized, leading to more accurate and reliable fault
detection. This advantage is underscored by the precision rates presented in Table 4, where
precision values range from 92% to an impressive 100% across different fault categories.
Such high precision rates showcases ability of the proposed method to correctly classify
actual faults while maintaining a low rate of false positives.
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Figure 4. GAF-2DCNNs confusion matrix.

Moreover, the emphasis on normal states enhances the accuracy of fault detection,
allowing the method to better identify and categorize faults even in complex operational
scenarios. This is evident from the recall rates provided in the same table, where recall
values consistently surpass 94%, except for one fault category (EADAMPOP), which has
a 93% recall rate. This indicates the robustness of the proposed method in capturing
a high proportion of actual faults, further emphasizing its effectiveness in real-world
applications. In addition, the F1-score, a metric that evaluates ability of the model to
handle imbalanced datasets, highlights the proposed GAF-2DCNNs strong performance.
The F1-scores provided in Table 4 demonstrate the capability to effectively manage an
unbalanced input dataset, indicating its practicality in scenarios where certain fault types
might be less frequent or inherently challenging to detect.

Table 4. Classification report for proposed GAF-2DCNNs.

Fault Precision (%) Recall (%) F1-Score (%)

NORMAL 99 97 98
CCV100%OP 92 98 95
CCV100%CL 95 97 96
CCVREV 99 99 99
DLAFTSF 98 98 98
EADAMPOP 100 93 96
EADAMPCL 94 94 94
OADAMPCL 100 98 99
OADAMP45%OP 93 96 94
HCVSTG2L 96 100 98
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The method proposed in this study stands out for its approach to addressing model
generalization, setting it apart from the approach presented in [24]. To handle this concern
effectively, comprehensive testing and validation are carried out using ASHRAE data [26],
which is widely recognized for its authoritative status in the heating, ventilation, and air
conditioning (HVAC) field. Utilizing the same optimized GAF-2DCNNs parameters, the re-
sults demonstrate in Table 5 achieve strong generalization performance and operational
stability, with an overall accuracy of 95%.

The comparison results in Table 5 highlight the remarkable performance of the pro-
posed GAF-2DCNNs method across various significant faults when compared to both
the Simulation Dataset (HVACSIM+) and the ASHRAE Dataset [26]. Notably, the GAF-
2DCNNs achieves better Precision, Recall, and F1-score metrics for critical faults such as
CCVREV (Precision: 99%, Recall: 99%, F1-score: 99%) and HCVSTG2L (Precision: 96%,
Recall: 100%, F1-score: 98%). Equally noteworthy is its consistent and strong performance
for ASHRAE-data-related faults, such as CCVREV, with a Precision of 95%, Recall of
97%, and F1-score of 97%, as well as HCVSTG2L, with a Precision of 95%, Recall of 97%,
and F1-score of 97%. Similarly, other faults, including duct leak after supply fan (DLAFTSF)
and exhaust air damper open (EADAMPOP) with respective Precision, Recall, and F1-
scores, demonstrate acceptable performance. These results demonstrate the efficacy of the
proposed method in accurate fault detection and classification across various scenarios,
underlining its reliability and potential as a robust tool for HVAC fault detection in practical
applications. Overall, the GAF-2DCNNs exhibit a strong performance with an impressive
model accuracy of 97%, surpassing the HVACSIM+ Simulation dataset and closely aligning
with the ASHRAE benchmark dataset accuracy of 95%.

Table 5. Comparison studies on ASHARE RP-1312 and simulated data from HVACSIM+.

Fault
Simulation Dataset (HVACSIM+) ASHRAE Dataset [26]

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

NORMAL 99 97 98 98 93 95
CCV100%OP 92 98 95 97 97 97
CCV100%CL 95 97 96 86 91 91
CCVREV 99 99 99 95 97 97
DLAFTSF 98 98 98 91 93 93
EADAMPOP 100 93 96 94 95 95
EADAMPCL 94 94 94 94 87 87
OADAMPCL 100 98 99 98 97 97
OADAMP45%OP 93 96 94 93 94 94
HCVSTG2L 96 100 98 97 97 97

Model Accuracy 97 95

Moreover, central to the distinct character of this study is a comprehensive examination
of outcomes and the effectiveness of the proposed unified framework introduced here. Set
apart by [24], a comprehensive assessment was undertaken by contrasting our method
with recently developed machine learning techniques, encompassing 1D-CNN, Hybrid
HRF-SVM, and traditional RF and SVM. While these methods demonstrate acceptable
performance in classifying fault and normal states, the accuracy for specific faults remains
lower than 85% in each approach, marking a significant deviation from the achieved
accuracy of the proposed GAF-2DCNNs. The comparison study begins with 1D-CNN,
and the experimental result in Table 6 shows that the overall accuracy of 94% is achieved
with the 1D-CNN; however, some faults have a higher misclassification rate, such as the
accuracy of 82% and 89% for HCVSTG2L and EADAMPCL faults.
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Table 6. GAF-2DCNN evaluation with state-of-the-art FDD algorithms.

FAULT GAF-2DCNNs (%) 1D-CNN (%) RF-SVM (%) [30] RF (%) SVM (%)

NORMAL 97 96 76 73 91
CCV100%CL 97 99 94 96 69
CCV100%OP 98 98 99 97 92
CCVREV 99 95 100 100 85
DLAFTSF 98 94 97 93 73
EADAMPCL 94 89 99 100 69
EADAMPOP 93 95 90 80 94
HCVSTG2L 100 82 98 88 94
OADAMP45%OP 96 98 94 93 64
OADAMPCL 98 95 96 93 69

Model Accuracy 97 94 91 88 82

The comparison analysis involves the evaluation of the proposed GAF-2DCNN model
against recently developed machine learning techniques, including 1D-CNN, Hybrid HRF-
SVM, and traditional RF and SVM. While all these methods exhibit proficient performance
in classifying fault types, certain faults demonstrate classification accuracies lower than
85% within each individual method. The evaluation of 1D-CNNs, as presented in Table 6,
reveals an overall accuracy of 94%, but highlights limitations in correctly identifying specific
faults. Notably, the HCVSTG2L and EADAMPCL faults show higher misclassification rates
(82% and 89% accuracy, respectively). These findings underscore the importance of precise
fault detection, especially for HVAC operations.

The misclassification the HCVSTG2L fault may impact heating functionality, while
the EADAMPCL fault can affect ventilation and indoor air quality. The trade-off between
computation and accuracy is recognized, and the 3% accuracy increase showcased by GAF-
2DCNN enhances FDD reliability, reinforcing the significance of incremental improvements
in HVAC operations. In addition, the proposed method focuses specifically on the periods
when the HVAC system is operational, and the training data are targeted to capture
relevant features and patterns during the occupy period. This targeted training strategy
helps optimize the computational efficiency of the GAF encoding process, as it eliminates
the need to process sensor data during non-occupancy periods. As a result, the ability
of the proposed approach to achieve accurate fault diagnosis is not compromised by
computational burdens.

Among the recent advancements, the hybrid RF-SVM model [30] stands out for
employing a raw sensor signal with 194 features with significant feature selection method,
enabling a comprehensive model comparison. As shown in Table 6, this hybrid model
achieves accuracy of 91% in HVAC fault detection, excelling in identifying issues such as
cooling coil valve faults, outdoor air damper irregularities, exhaust air damper closures,
and duct leakage. However, its overall accuracy falls short of the proposed GAF-2DCNNs
model. The RF-based approach also demonstrates promise result, achieving 100% accuracy
in classifying specific faults, yet it achieves an 88% overall accuracy with relatively lower
performance for NORMAL and exhaust air damper opened faults compared to the GAF-
2DCNNs approach.

As for the SVM-based model, the SVM-based FDD system achieves good results in
exhaust air damper opened faults (EADAMPOP) and heating coil valve leakage faults
(HCVSTG2L) with an accuracy of 94%. However, the accuracy in other fault type classifica-
tions is well below the accuracy of the proposed GAF-2DCNNs. The detailed comparison
results of the proposed GAF-2DCNNs with other FDD systems are shown in Table 6 and
it clearly indicates that the GAF-2DCNNs performs well in the fault diagnosis of HVAC
systems with better accuracy of 97%. After an extensive comparison, the proposed unified
framework achieves enhanced fault detection and classification accuracy in HVAC systems,
surpassing existing machine learning techniques with higher accuracy.
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6. Conclusions

Advancing HVAC fault detection methodologies, a unified framework is introduced
by combining HVACSIM+ simulated data with GAF-2DCNN. The integration of Gramian
Angular Field (GAF) and two-dimensional convolutional neural networks (2D-CNNs)
techniques allows for the effective capture of both temporal and spatial data, enhancing
fault classification accuracy for 10 major HVAC faults and normal conditions with better
accuracy of 97%. The approach provides a comprehensive understanding of real-world
scenarios by considering normal states during occupancy periods, emphasizing the ro-
bustness of the proposed method, achieving accurate classification between normal and
faulty states, and offering meaningful predictions without requiring extra interpretability
techniques. To evaluate the effectiveness of the proposed GAF-2DCNNs, a comparison
is made with Support Vector Machine (SVM), Random Forest (RF), and hybrid HVAC
systems fault diagnosis models. The results reveal an overall accuracy of 97%, with preci-
sion, recall, and F1 scores surpassing 90% for each fault. This underscores the robustness
and effectiveness of the proposed unified framework. In summary, the improved fault
detection approach seamlessly integrates HVACSIM+ simulated data, considers occupancy
patterns, records data at finer 1-min intervals, and rigorously validates against established
benchmarks, such as ASHRAE data. Collectively, these factors contribute to the advance-
ment of HVAC fault detection and add robustness to the credibility of the study. While
the proposed approach achieves high accuracy in HVAC fault detection, its effectiveness
might still be influenced by the availability and quality of input data. In scenarios where
sensor data are sparse or noisy, the model performance could be compromised. Future
work could involve investigating techniques to enhance the model robustness, potentially
involving data augmentation, transfer learning, or hybridization with complementary fault
detection methods.
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