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A B S T R A C T

With the wide adoption of building automation system, and the advancement of data, sensing, and machine
learning techniques, data-driven fault detection and diagnostics (FDD) for building heating, ventilation,
and air conditioning systems has gained increasing attention. In this paper, data-driven FDD is defined as
those that are built or trained from data via machine learning or multivariate statistical analysis methods.
Following this definition, this paper reviews and summarizes the literature on data-driven FDD from three
aspects: process, systems studied (including the systems being investigated, the faults being identified, and
the associated data sources), and evaluation metrics. A data-driven FDD process is further divided into the
following steps: data collection, data cleansing, data preprocessing, baseline establishment, fault detection,
fault diagnostics, and potential fault prognostics. Literature reported data-driven methods used in each step of
an FDD process are firstly discussed. Applications of data-driven FDD in various HVAC systems/components
and commonly used data source for FDD development are reviewed secondly, followed by a summary
of typical metrics for evaluating FDD methods. Finally, this literature review concludes that despite the
promising performance reported in the literature, data-driven FDD methods still face many challenges,
such as real-building deployment, performance evaluation and benchmarking, scalability and transferability,
interpretability, cyber security and data privacy, user experience, etc. Addressing these challenges is critical
for a broad real-building adoption of data-driven FDD.
1. Introduction

1.1. Background

Building systems, including heating, ventilation and air condition-
ing (HVAC) systems, are usually subject to faults that can lead to
undesirable performance, such as excessive energy waste, high main-
tenance costs, uncomfortable indoor thermal environments, and poor
air quality. These faults refer to sensor failure, equipment failure, or
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faulty system operation. Studies have shown that 15%–30% of energy
may be wasted due to building system faults and improper controls [1].
Therefore, fault detection and diagnostics (FDD) or automated fault
detection and diagnostics (AFDD) as it is also commonly referred to,
is crucial to ensure reliable system operation and avoid energy waste.
To be specific, fault detection is defined as ‘‘determination that the
operation of the building is incorrect or unacceptable in some respect’’
and fault diagnostics is defined as ‘‘identification or localization of the
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cause of faulty operation’’ [2]. It is reported that FDD users in the office
and higher education market sectors of the United States were able
to achieve 10% median energy savings annually with two-year simple
payback period [3]. It demonstrates the high competitiveness of FDD
systems as a profitable investment option in the building sector.

Over the past decades, many FDD methods have been developed.
With the advancement of data science and the wide adoption of build-
ing automation systems (BAS) or other smart building technologies,
data-driven FDD is gaining increased attention. Compared to the tradi-
tional expert knowledge/rule based approaches that are typically seen
in commercial-off-the-shelf FDD products, data-driven FDD requires
little or no a priori knowledge and has the potential to achieve high
etection and diagnostic accuracy at relatively low cost [4].

Despite the rapid development of machine learning techniques,
he market is slowly adopting data-driven FDD as an alternative or
omplement to the traditional rule-based approaches. A recent sys-
ematic survey of fourteen FDD tools in the United States showed
hat pure expert knowledge-driven methods for fault detection and
iagnostics continue to dominate the market, though a few vendors
re beginning to use data-driven methods [5]. In Australia, Wall and
uo [6] performed a survey of five FDD tools, two of which claimed

o be equipped with machine learning techniques. Yet, details of the
ata-driven methods were not fully disclosed.

.2. Data-driven FDD definition

Before a further discussion, it is necessary to provide a definition of
he term ‘‘data-driven FDD’’ on the basis of existing literature. During
he past two decades, more than twenty review articles concerning FDD
n building energy system have been published, and many of them
ocused on classifying existing FDD approaches. However, the scope
f what data-driven FDD encompasses varies. In the classical two-part
eview by Katipamula and Brambley [1,7], FDD studies were classified
nto quantitative model-based, qualitative model-based, or process his-
ory (data-driven) — based depending on how they approach the prob-
em of fault diagnosis. This classification is loosely based on the clas-
ification employed by Venkatasubramanian et al. [8,9,10]. Generally
peaking, quantitative and qualitative model-based approaches require
priori knowledge of the physical process, while process history-based

pproaches do not. Although this classification provided a good stand-
ng point at that time, Venkatasubramanian et al. [8] acknowledged
hat it can be confusing sometime as some methods were not one or the
ther. For example, some physical models require process data to tune
he parameters (e.g., grey-box model) and some process history-based
ethods are quantitative (e.g., neural network) [11]. Despite its short-

omings, this classification scheme was adequate at the time when most
ethods were based on physical models. It is commonly adopted by

ther reviewers, such as Chen et al. [12]. With the rapid growth of data
cience in recent years, a number of recent FDD review articles have
ocused on data-driven FDD. Zhao et al. [13] conducted a review on ar-
ificial intelligence-based (AI-based) FDD methods for building energy
ystems. They proposed two classification schemes for fault detection
nd fault diagnosis, respectively. In both schemes, studies were classi-
ied into data-driven-based or knowledge-driven-based. For fault detec-
ion, data-driven-based methods included classification-based, unsuper-
ised learning-based, and regression-based methods, while knowledge-
riven-based methods included model-based and rule-based methods.
or fault diagnosis, data-driven-based methods included classification-
ased and unsupervised learning-based, while knowledge-driven-based
ethods included inference-based (e.g., Bayesian network, fuzzy logic)

nd diagnostic rule-based methods. Upon this classification, they fur-
her labeled a part of the methods as AI-based. For fault detection, the
I-based methods overlapped with the data-driven-based methods. For

ault diagnosis, in addition to data-driven-based methods, inference-
ased methods from the knowledge-driven-based side were also labeled
2

s AI-based. Mirnaghi and Haghighat [14] conducted a review on FDD
of large-scale HVAC systems using data-driven methods. They classified
FDD into model-based, data-driven, or knowledge-based. Model-based
methods included first principle models and grey-box models. Data-
driven methods were further divided into qualitative and quantitative
methods. According to Mirnaghi and Haghighat [14], expert systems,
fuzzy logic, pattern recognition, frequency analysis were data-driven
qualitative-based methods. And statistical methods and neural net-
works were data-driven quantitative-based methods. Knowledge-based
methods were defined as the combination of a qualitative part of
the model-based method, including structural graphs, fault trees, or
qualitative physics, and data-driven subcategory including fuzzy logic
or expert systems.

From the literature, we have not seen any classification scheme that
can perfectly classify the wide variety of FDD methods, especially if
an FDD method includes multiple techniques. One of the main reasons
is that there are no uniform definitions for terms such as data-driven,
knowledge-driven, and model-based. In fact, (1) data often contains
some levels of knowledge; (2) knowledge is typically presented as
data; (3) the term model is often used to express a mathematical
relationship between inputs and outputs (which may or may not be
based on first principles). Another difficulty is that data could come
from various sources, like real building systems, laboratory testing,
or even simulation models. In addition, newly proposed methods are
often combinations of techniques belonging to different categories.
Therefore, in this paper, we will not focus on the categorization of
various data-driven FDD methods, but rather on the process, systems
studied, and evaluation metrics of data-driven FDD. We hope that this
breakdown allows the readers to have a more holistic understanding of
data-driven FDD to foster the development and market introduction of
data-driven FDD products.

In most publications, the terms data-driven and machine learning
are often used interchangeably and machine learning often is not
strictly differentiated with multivariate statistical analysis. Therefore,
we refer to those FDD methods that have at least one component, such
as baseline modeling, fault detection, or fault diagnosis, which are built
or trained from data via machine learning or multivariate statistical
analysis methods, as data-driven FDD [15]. The effectiveness of the
data-driven model is often limited by the training dataset. Therefore,
the data quality, resolution, completeness, extensiveness (i.e., whether
the data accounts for a variety of operating conditions), and uncertainty
(i.e., measurements errors) are particularly important for data-driven
FDD methods [1,13].

1.3. Literature gaps and organization of the paper

Despite extensive literature on FDD, a comprehensive review focus-
ing on data-driven methods is still missing, especially one that meets
the above definition and the scope. To further advance the development
and market adoption of data-driven FDD, this paper provides a com-
prehensive review of the state-of-the-art data-driven FDD technologies
from three main aspects: process, systems studied, and evaluation met-
rics. The goal of this review is to provide a comprehensive introduction
for researchers and practitioners who are new to the topic. It also offers
a systematic framework that can be used to categorize these methods,
as well as research gaps and future work directions for experienced
practitioners.

The content of the article is organized as follows. Section 2 presents
the literature collection methodology and provides an overview of the
collected papers. Section 3 describes the data-driven FDD process and
summarizes the methods used in each step. In addition, it describes
studies that have compared different FDD methods. Section 4 sum-
marizes the systems that the data-driven FDD methods are applied
to. These systems include, among others: air handling units (AHU),
variable air volume (VAV) systems, chiller systems, variable refrigerant
flow (VRF) systems. This section also lists the faults that have been
identified in these systems and the different data sources. Section 5
discusses typical metrics for evaluating data-driven FDD methods. Sec-
tion 6 discusses challenges and opportunities for future advancement

of data-driven FDD. Section 7 concludes the review.
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Fig. 1. Wordcloud of the reviewed papers’ keywords.

Fig. 2. Breakdown of publications by publication year.

2. Literature identification and screening

The literature reviewed in this paper was collected mainly using
a Google scholar based methodology known as Sub-keyword Synonym
Subtopics Searching (SSSS: https://github.com/lz356/SSSS). This
method aims to exhaust relevant papers by multiple searches with
synonyms and subtopics sub-keywords. This method has been proven
successful in other review papers, such as Zhang et al. [16,17]. Three
sub-keyword groups were used to collect papers from 2005 to 2021.
The first group contains: ‘‘fault detection’’, ‘‘fault diagnostics’’. The
second group contains: ‘‘data driven’’, ‘‘data mining’’, ‘‘AI’’, ‘‘black-
box model’’, ‘‘anomaly detection’’, ‘‘data cleansing’’. And the third
group contains: ‘‘building’’, ‘‘HVAC’’. For each search, SSSS took one
word from each sub-keywords group to form a new keyword, and
searched it in Google scholar. Besides the papers collected through
SSSS, relevant papers from the authors’ own collections and papers
cited in the reviewed studies were also investigated. Fig. 1 shows a
visual summary of the keywords contained in the reviewed literature.

Fig. 2 illustrates the number of published technical papers focusing
on data-driven FDD from 2005 to 2021, with a detailed breakdown
on the year of publication. The blue bars show the total number of
papers published per year while the orange line displays the cumulative
number of publications from 2005. The figure shows a gradual increase
of the number of publications with a more noticeable rise in the last ten
years. Fig. 3 illustrates the breakdown of the number of publications
for the different journals. In particular, only the journals with at least
3 publications are included in this figure. The journal Energy and
Buildings ranks the first with 32 papers. These figures, while they may
not include every relevant article, generally reflect the current trends
of data-driven FDD development.
3

3. Main steps of data-driven FDD process

Based on the reviewed literature, a data-driven FDD process can
be broadly generalized as illustrated in Fig. 4. The first step is the
data collection process, in which data are collected from the BAS,
meter, or other data sources (e.g., IoT network). Following this, initial
data cleansing such as missing data imputation and outlier detection
are often performed. The data cleansing process can be carried out
before or after the data are sorted into the data pool, depending on the
framework of each individual FDD method. Besides data from a real
building, simulated data from a digital twin or a simulation model can
also be stored in a data pool for model training purposes. Before data
is used for FDD development, additional preprocessing (e.g., feature
selection, data reduction, data scaling) is often required to improve
training performance. Section 3.3 reviews feature selection techniques
in more details, as they are crucial for data-driven applications. For
real-time implementation, a data-driven FDD method often compares
incoming data (also referred to as snapshot data in the literature) with
a baseline, which is further discussed in Section 3.4. Here a baseline
refers to data or model that represent normal operation. In some cases,
a baseline is not necessary. For example, a distributed method was
applied to faulty sensor detection which referred to neighbor sensors
instead of baselines [18,19]. The final steps of an FDD process are fault
detection, fault diagnostics and fault prognostics. It should be noted
that some FDD methods can perform fault detection and diagnostics
simultaneously, whereas, some methods only perform fault detection
without isolating the root causes [13]. Therefore, it is reasonable to dis-
cuss fault detection and fault diagnostics methods separately. Besides
fault detection and diagnosis, one may also perform fault prognosis.
Although this field is relatively underdeveloped, it is meaningful to
include it in a general process discussion as it is closely related to
detection and diagnosis. Methods used in each FDD step are discussed
in the following subsections.

3.1. Data collection

Increasing advancements in building digitization, smart sensing and
metering technologies have allowed a large amount of data to be col-
lected and saved for monitoring, analyzing, and controlling of building
systems. While modern buildings have considerably more sensing and
actuation points than ever before, using them for better data-driven de-
cisions is challenging both on a scientific and an engineering level [20].
Collecting data from a BAS is often the most time-consuming and
labor-intensive process due to the fact that an individual building may
have its unique BAS configurations, database structures, and datapoint
naming conventions [21]. The use of standardized communication
protocols, e.g., Building Automation and Control Network (BACnet),
and metadata schemas, e.g., Project Haystack, Brick, and the recent
ASHRAE 223P standard [22–24], can effectively ease the data collec-
tion process. Nevertheless, FDD applications that utilize metadata or
semantic graph are still very few and underdeveloped [25].

3.2. Data cleansing

Often, datasets obtained from the BAS or other sources may be
incomplete due to sensor and equipment failures, communication or
transmission issues, data corruption, or inconsistencies due to sensor
noise, thus, leading to loss of valuable information [26]. These issues
exist in almost all kinds of sensors/automation systems and can signifi-
cantly affect the FDD outcomes since most data analysis and statistical
tools are not designed to handle incomplete data. Therefore, in this
section, literature reported methods for missing data imputation are
mainly discussed. Existing literature on data imputation methods for
building data has been focused on univariate time series data using
statistical methods [27–29] as well as nonlinear machine learning and
deep learning [21,30–32]. More recently, ensemble methods that utilize

https://github.com/lz356/SSSS
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Fig. 3. Number of papers for journal.
Fig. 4. A general data-driven FDD process.

multiple imputation methods to make an improved prediction of the
missing values have also been developed [33,34]. Their research on
ensemble methods have shown good performance compared to single
imputation methods for building system data. While most of the tech-
niques reported for missing data imputation are focused on generic
data-driven applications, there are few studies addressing the missing
data issue for FDD purposes. For instance, Li et al. [35] proposed a
filtering technique that uses both temporal and spatial information
to reconstruct missing values, resulting in an improved FDD perfor-
mance. Similarly, Wang et al. [36] utilized expectation–maximization
(EM) algorithm to impute missing data prior to fault diagnosis. Their
comparative study showed significant improvement when adding data
imputation to their fault diagnosis model.
4

3.3. Data preprocessing

Data used for training FDD algorithms often need to be preprocessed
beforehand to achieve desired training performance. This step may
include feature selection, data reduction, data scaling, data transfor-
mation, data partitioning, etc. [37]. Typically, this step is performed
offline (e.g., selecting some relevant features from historical data), and
then the results of the preprocessing (e.g., the selected features), are
applied to the snapshot data. This section mainly reviews the feature
selection techniques.

Considering that there are hundreds or thousands of sensors from a
BAS, often consisting of redundant measurements, the selection of in-
formative and representative features strongly affects the performance
of a data-driven FDD method [38]. Using all the features available
within a massive dataset would cause models to be overfitted and
increases the model complexity and computational cost [38,39]. There-
fore, feature selection processes are often used to find the key inputs
for a data-driven model used for the FDD process. Using only selected
features instead of the entire dataset reduces the model complexity and
model overfitting issues.

Different categories of feature selection methods such as filter,
wrapper, embedded, and hybrid methods have been reported for FDD
applications [40]. For instance, Li et al. [41] developed a novel filter
method named information greedy feature filter (IGFF) to efficiently
select and identify the most informative features from the AHU mea-
surements based on mutual information. The selected method showed
good performance when applied to the ASHRAE RP-1312 dataset [42,
43]. Filter methods are computationally fast and less prone to over-
fitting; however, it may fail to find the subset of features that results
with the highest model accuracy [39]. On the other hand, wrapper
method is an exhaustive searching method that trains and evaluates
a specific model with different feature combinations, then selects the
optimal combination with the best performance. Namburu et al. [44]
implemented a simple genetic algorithm (SGA)-based wrapper to deter-
mine the optimal feature set for chiller FDD applications. Similarly, Yan
et al. [45] and Mulumba et al. [46] incorporated auto-regressive models
with exogenous variables (ARX) and Support Vector Machine (SVM) for
chiller FDD application. Chen et al. [47,48] developed a partial least
square regression and genetic algorithm (PLSR-GA) wrapper method
to identify candidate features that represent the system performance
under different operational modes. In their method, the GA search-
ing process is used to facilitate the process of searching candidate
features which are iteratively fitted to the PLSR model to evaluate
the model performance. Although wrapper methods have shown good
model performance, they are computationally expensive and suscepti-
ble to overfitting since multiple models are trained and evaluated [38].
Embedded methods that combine both the filter and wrapper methods
are usually incorporated into a specific learning algorithm such as
decision trees (DT) and random forest (RF). Yan et al. [49] applied a
DT-based fault diagnostic for AHUs using a classification and regression
tree (CART) algorithm where the features are automatically selected
when training the model. Embedded methods that are not incorporated
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into the learning are categorized as hybrid methods. Han et al. [50,
51] used mutual-information-based filter and genetic-algorithm-based
wrapper method to search for the important sensors in data-driven
chiller FDD applications.

More recently, feature extraction methods directed at identifying
and extracting interesting ‘‘localized’’ patterns within a timeseries to
guide the feature selection process have also gained attention. For ex-
ample, Zhang et al. [38] developed a novel framework that integrated
feature extraction and selection for whole building FDD. Statistical
feature extraction techniques are first employed in this framework to
actively extract features from raw sensor data using various window
sizes and statistical measures. Then, a hybrid feature selection algo-
rithm that combines the filter and wrapper method is used to select
the best feature combination. This framework achieves high model
generalization since it considers diverse durations of fault behavior
among different fault types. However, it should be noted that using a
wrapper method may increase the computation time significantly if the
number of features extracted is too high.

3.4. Baseline establishment

In order to enable FDD, a baseline which represents the normal
system operation is often needed. Here, a baseline is defined as a status
at which the building’s operation is considered to be satisfactory, for
instance, when the building has just gone through a commissioning
process [47,48]. It is well-recognized that most existing buildings do
not operate the way they are supposed to. For a real building, a true
fault-free status is hardly achievable. Hence, a more realistic fault
detection process is to detect when a building’s status is significantly
different from its baseline status [47,48]. Such baseline can either be
generated by simulation [52] or constructed from historical (normal)
data collected from a building.

Building HVAC systems present significantly different system dy-
namics under different operation modes (heating, cooling, etc.). For
example, the components and their parameters engaged in a heating
mode for an HVAC system is very different from those in a cooling
mode. Both weather and internal loads could trigger the HVAC system
to change its operation mode (e.g., from economizer control to cooling
when outdoor air temperature increases). Hence, it is often challeng-
ing to differentiate system parameter/behavior variations triggered by
weather and/or internal conditions from abnormalities triggered by
faults in the system [47,48]. Since most data-driven FDD methods
detect and diagnose faults by comparing real-time or quasi real-time
operation data (snapshot data) with the baseline, it is important that
the baseline is under the same operation mode as the snapshot data.
The majority of the existing baseline studies focus on pattern recog-
nition and motif discovery strategies to construct a baseline using
outdoor weather conditions, daily internal load profiles and temporal
association rules to ensure that the constructed baseline is under the
same operation mode as the incoming snapshot data [47,48,53–58].

In addition to being a function of the HVAC system modes (e.g.,
heating, cooling), the baseline is also influenced by the specific control
strategy (i.e., the detailed sequence of operation) implemented. A
baseline model would ideally be able to incorporate and learn these
changes instead of detecting them as faults.

3.5. Fault detection

Data-driven fault detection strategies that determine whether the
HVAC system has failures or abnormal operations have shown great
potential in efficiently characterizing system operations and developing
accurate system models that are scalable, while also reducing engineer-
ing time and labor cost. A wide range of fault detection methods have
been studied in the literature that can be categorized as supervised,
5

semi-supervised or unsupervised methods [12–14].
Supervised methods for fault detection are trained using both nor-
mal operation and labeled fault data to identify whether the incoming
data is faulty or fault-free. Supervised methods can be further catego-
rized into classification methods or regression methods based on the
type of model output. While classification methods such as SVM [44,
45,59–64] and DT [56,65–71] are used to predict whether the incom-
ing data belongs to the fault or fault-free class, regression methods
such as support vector regressions (SVR) [72,73] and neural networks
(NN) [52,69,74–81] typically predict continuous variables, represent-
ing the system operation status, which is then compared to the baseline
to identify any occurring faults. Both types of supervised methods have
been widely used for fault detection in building HVAC systems. How-
ever, the challenge with supervised methods is in obtaining sufficient
labeled fault data for training the models, often leading to imbalanced
classes. Given the difficulty and the cost to label data, models used by
supervised methods are often trained using data collected from older
components or simulation models which can lead to lower detection
accuracy and higher false alarm rates.

Alternatively, semi-supervised methods are more suitable when only
limited labeled fault data is available [14]. Semi-supervised meth-
ods transfer unlabeled data into labeled classes by comparing the
incoming data with normal operation, and updating the training set it-
eratively [82]. Although semi-supervised methods perform better when
limited labeled fault data is available, semi-supervised methods have a
higher computational cost than supervised learning [14].

Lastly, unsupervised methods that do not require fault labels have
also been reported in the literature. These methods are helpful in
discovering hidden correlations within a building’s dataset and allow
fault impact analysis to be made during the detection process. Some
of the popular methods in this category are clustering algorithms [54,
65,68,75,83–91] and principal component analysis (PCA) [44,47,48,63,
92–102] which are used typically with pattern recognition and motif
discovery methods. Since only fault-free data is required for deploying
unsupervised methods, these methods are easier to develop and deploy
for fault detection purposes.

3.6. Fault diagnosis

Identifying or localizing the root cause of a fault or anomaly is
typically more challenging than detecting the anomaly, since different
faults (e.g., malfunctioning hardware, software errors) can lead to the
same symptom. Correctly diagnosing the root cause of a fault often
requires a detailed knowledge of the HVAC configuration and control
strategies, both of which are specific to a building. The literature
has reported several inference and classification methods for fault
diagnosis. Bayesian network (BN) models based on the conditional
probability theorem that predicts the fault beliefs based on a set of
observations are popular [103]. BN models can incorporate the sys-
tem structure information through probabilistic conditional relations
between faults and their symptoms. These probabilities can be up-
dated after new observations (evidence) of the system are obtained.
Further, by adding uncertainty factors for reasoning, the BN model can
avoid incorrect diagnosis by avoiding under-responsiveness or over-
responsiveness to evidence [104]. Successful implementation of BNs
for both component-level and system-level fault diagnosis has been
demonstrated in the existing literature. For instance, Zhao et al. [104,
105] proposed a component-level diagnostic BN for different faults
in AHUs and chillers. These BNs were developed based on the fault
patterns found in projects including NIST 6964, ASHRAE projects RP-
1020 and RP-1312. Similarly, Xiao et al. [106] developed a BN based
FDD method for diagnosing faults in VAV terminal units. At the system-
level, Verbert et al. [107] developed a model-based BN method to
diagnose system-level HVAC faults which included interdependencies
between different components to carry out continuous fault diagno-

sis. More recently, Chen et al. [108] developed a discrete BN-based
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method for cross-level faults diagnosis in commercial buildings. Un-
like continuous BNs which use continuous probability distributions in
each node of the network, the continuous variables are discretized to
represent fuzzy events in a discrete BN [109]. This makes modeling
the BN parameters easier and more efficient, especially when obtaining
parameters from expert knowledge and incomplete field data [110]. Al-
ternatively, dynamic BN models that describe the temporal relationship
of the fault states within each time slice have shown to be effective
for fault diagnosis as well. Shi et al. [111] employed a dynamic BN
using simulated data which successfully identified persistent as well
as transient faults with reduced false positive rates. By carrying past
information, a dynamic BN allows fault beliefs to accumulate over
time, thus helps eliminate measurement errors and improve diagnosis
accuracy [112].

Other diagnostic inference methods such as fault-trees that are
based on a decision tree and multiple binaries of if-statements are
usually time-consuming and may be highly dependent on domain ex-
pertise [14]. Alternatively, classification methods such as SVMs [46,
113–116] and ANNs [52,74,75] are also popular. These methods gen-
erally require a large amount of labeled data for model training, which
can be challenging to obtain in real-world applications. To overcome
the challenge of insufficient labeled data, Miyata et al. [52] pro-
posed a NN-based method using convolutional neural network (CNN)
trained on dynamic system simulation data of various fault types. Their
method demonstrated good performance in learning fault behaviors
from simulated data to identify both equipment-level and system-level
faults in real data. Overall, NN-based methods have received increasing
attention in recent years and show more accurate results than other
classification methods [117]. However, the inference process behind
the diagnosis of such black-box models often lacks transparency and
interpretability [118].

3.7. Fault prognosis

Fault identification and diagnosis through FDD may not be sufficient
in cases where critical functions of the systems may have already failed
before the fault symptoms are observed, leading to excess operation and
maintenance cost [119]. Additionally, some faults in building HVAC
occur gradually and although do not produce a significant effect on the
operation at the time, they may lead to considerable energy waste over
time [14]. For example, if the zone temperature sensor drifts resulting
in a higher than actual value, the controller will supply more chilled
water to the cooling coil to reduce the zone temperature incurring in
energy wastage. Other examples of gradual faults include coil fouling,
duct leakage, decrease in fan efficiency, etc. It is estimated that over
20% of HVAC systems are running under early stage of gradual faults
resulting over 15% in energy waste [120]. Therefore, data-driven fault
prognosis approaches, which refers to identifying impending faults
ahead of time and estimating how soon a fault may occur by analyzing
historical or real-time measurements for predictive maintenance and
repair schedules, is essential for ensuring the safety, stability and for
increasing the lifespan of HVAC systems. As an example for predictive
maintenance, the maintenance program could be based on the perfor-
mance degradation of a heat pump system. Typical key performance
indicators for such an approach are the coefficient of performance
(COP) of the heat pump or the system efficiency index (SEI), which
is the ratio of the measured COP and the maximum COP at the same
specified reference temperatures [121,122].

Data-driven fault prognosis methods have been gaining attention
from different industrial sectors in recent years [119], however, de-
velopment of fault prognosis strategies for HVAC systems is still in
its infancy. Of the existing literature, Yang et al. [123] employed a
text mining approach based on operator logbooks to produce multiple
high-level metrics such as failure probabilities and mean-time to fail-
ure. Similarly, Yang et al. [124] developed regression tree models for
6

estimating time-to-failure for chillers and boilers in a central heating
and cooling plant. Ahmad and Atta [125] studied motor failures us-
ing electric current predictions and Wang et al. [126] developed an
algorithm based on particle filters to estimate the remaining useful
life (RUL) of heat exchangers. Their proposed method demonstrates
its effectiveness in predicting both natural and transient degradations.
Using their method, about half of the modeled failure events were
accurately predicted in the distributed control system of the plant.
Using typically available BAS data, Yan et al. [127] developed a Hidden
Semi-Markov Model (HSMM)-based method to efficiently estimate the
RUL of an AHU and its component. Their approach was evaluated using
ASHRAE RP-1312 data for both single and multiple fault cases.

The strength of data-driven models for fault prognosis has been
demonstrated in many industrial sectors. For example, Recurrent Neu-
ral Networks (RNNs) that can exploit temporal correlations in the data
by using a feedback loop enables accurate predictions of time series.
Such data-driven models for fault prognosis have been investigated in
process operations [128] and predictive maintenance of machines [129,
130]. Besides RNN, Autoencoder (AE) [131] and Restricted Boltzmann
Machine (RBM) [132] approaches are also applied in recent data-driven
models for fault prognosis. Those architectures show great potential for
fault prognosis of building HVAC systems.

3.8. Summary of data-driven FDD methods

Table 1 presents ten data-driven methods used for fault detection
and diagnosis that are commonly seen in the reviewed papers. These
methods are: Clustering, Decision Tree (DT), Principal Component
Analysis (PCA), Support Vector Machine (SVM), Support Vector Re-
gression (SVR), Neural Network (NN), Bayesian Network (BN), Hidden
Markov Model (HMM), Generative Adversarial Network (GAN), and
Ensemble Learning. Notice that the papers listed for each method serve
as examples and are not all-inclusive.

Among all the reviewed papers, some compared different data-
driven FDD algorithms in their studies. These comparison studies are
illustrated in Table 2. For each comparison study, Table 2 presents
information about (1) whether the study focuses on fault detection
or fault diagnosis; (2) whether the studied method is supervised or
unsupervised; (3) the HVAC system/component that the FDD method
is applied to; and (4) the specific algorithms being compared. It can be
seen that most compared algorithms belong to the same category. For
example, Amruthnath and Gupta [133] applied and compared unsuper-
vised methods for early fault detection in exhaust fans. Asgari et al. [80]
compared two supervised models, CNN and RNN, to predict multiple
simultaneous failures in the data center cooling units. There are limited
studies that compare the performance between different categories
(e.g., expert rule-based vs data-driven, supervised vs unsupervised).

4. Systems studied with data-driven FDD

Data-driven FDD methods have been reported to be applied to many
HVAC components and subsystems for various types of faults. This
section summarizes (1) the systems that data-driven FDD have been
applied to; (2) the identified faults associated with the systems; and (3)
the main data source utilized when developing and evaluating a data-
driven FDD method. Table 3 presents the detailed information that is
being discussed in this section.

4.1. Faulty systems and identified faults

Several studies discussed HVAC fault categories [120,183,184].
Based on these discussions, HVAC faults can be categorized as hardware
and software faults by the types of component. Hardware faults further
include equipment faults, sensor faults, and controlled device (includ-
ing actuator) faults. Software faults further include controller faults
(e.g., unstable control), human faults (operator faults) and control logic

errors. Fig. 5 illustrates the workflow of these categories. Reviews
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Table 1
Commonly used data-driven methods for fault detection and diagnostics.

Method Reference

Clustering Capozzoli et al. [65], Du et al. [75], Narayanaswamy et al. [134], Fan et al. [83], Miller et al. [54], Cheng et al. [84], Li
et al. [35,85], Dey et al. [86,87], Aguilar et al. [88], Gunay and Shi [89], Xu et al. [90], Zhou et al. [91], Liu et al. [68]

DT Capozzoli et al. [65], Yan et al. [49], Li et al. [135], Capozzoli et al. [66], Piscitelli et al. [56], Tesfay et al. [67], Liu
et al. [68], Piscitelli et al. [69], Chiosa et al. [70,71]

PCA Wang and Qin [92], Namburu et al. [44], Du and Jin [93,94], Hu et al. [95], Li and Wen [96,97], Cotrufo and
Zmeureanu [98], Hu et al. [99], Yan et al. [136], Shi et al. [100], Li and Hu [101], Montazeri and Kargar [63], Zhou
et al. [102], Chen et al. [47,48]

SVM Namburu et al. [44], Liang and Du [59], Li et al. [113], Han et al. [51], Dehestani et al. [60], Yan et al. [45], Beghi
et al. [61], Beghi et al. [114], Mulumba et al. [46], Fan et al. [115], Madhikermi et al. [62], Montazeri and Kargar
[63], Li et al. [64], Lee et al. [116]

SVR Zhao et al. [72], Liu et al. [73]
NN Cho et al. [137], Hou et al. [138], Du et al. [139], Magoulès et al. [74], Dehestani et al. [60], Du et al. [75], Jones

[76], Guo et al. [140], Shi et al. [100], Madhikermi et al. [62], Lee et al. [77], Shahnazari et al. [141], Sipple [78], Xu
and Chen [79], Miyata et al. [52], Piscitelli et al. [69], Asgari et al. [80], Han et al. [142], Liu et al. [143], Taheri
et al. [144], Liao et al. [81]

BN Wall et al. [145], Zhao et al. [146], Dong et al. [147], Xiao et al. [106], Zhao et al. [104,105], Verbert et al. [107],
Taal et al. [148], Wang et al. [149], Li et al. [118], Chen et al. [108]

HMM West et al. [150], Yan et al. [127,151]
GAN Zhong et al. [152], Yan et al. [82,153], Li et al. [154]
Ensemble learning Araya et al. [155], Fan et al. [156], Zhong et al. [152], Han et al. [157]
Table 2
A collection of the comparison studies using different data-driven FDD algorithms.

References Detection Diagnosis Proposed FDD type System Algorithm comparison

Namburu et al. [44] x Supervised Chiller SVM, PCA, PLS
Capozzoli et al. [65] x Unsupervised Whole building CART, K-Means, DBSCAN
Yan et al. [45] x Supervised Chiller ARX+SVM, LinReg+SVM, ARX+NN, SVM
Jones [76] x x Supervised AHU Detection: ART, LAPART, NN, SVM,

Rule-based; Diagnosis: SVM, LAPART
Mulumba et al. [46] x Supervised AHU NB, BN, RBF, MLP, SVM, RF
Li et al. [158] x Supervised Chiller SVM, DT, NN, AB, QDA, LogReg
Guo et al. [159] x Supervised VRF DBNs w/ various settings
Amruthnath and Gupta [133] x Unsupervised Exhaust fan PCA, T2 statistic, Hierarchical clustering,

K-Means, Fuzzy C-Means
Li et al. [135] x Supervised VRF CART, RF, GBM
Li and Hu [101] x x Unsupervised Chiller PCA, DBSCAN
Dey et al. [87] x Supervised FCU SVM, NN
Zhou et al. [160] x Supervised VRF DT, SVM, clustering, SNN, DNN
Ebrahimifakhar et al. [161] x Supervised RTU LogReg, LDA, QDA, KNN, Bagging, RF,

AB, XGB, SVM
Yan et al. [82] x x Semi-supervised Chiller SVM, RF, DT, BN, KNN, LogReg w/ and

w/o GAN
Yan et al. [153] x x Semi-supervised AHU RF, SVM, MLP, KNN, DT w/ and w/o

GAN
Shohet et al. [162] x Supervised Boiler KNN, DT, RF, SVM
Han et al. [157] x Supervised Chiller Ensemble learning, KNN, SVM, RF
Li et al. [163] x Semi-supervised Chiller Semi-GAN, NN, DBN, LS-SVM
Asgari et al. [80] x x Supervised AC unit CNN, RNN
Wang et al. [164] x Supervised Chiller SVM, BN, SVM+BN
Taheri et al. [144] x Supervised AHU deep RNN, RF, GB
on the impact of faults in each category are out of the scope of this
paper. For interested readers we recommend the following studies on
impact of faults: equipment faults from Mirnaghi and Haghighat [14]
and Rogers et al. [11], sensor faults from Zhang et al. [185], controlled
device faults from Weimer et al. [186], human faults from Torabi
et al. [187], and fault impact evaluation framework from Lu et al.
[188]. Most published papers focus on single fault, despite the fact that
simultaneous faults could occur in real systems. Some recent studies
such as Hu et al. [189], Hu and Yuill [190] start to discuss impacts
from simultaneous faults.

Fault detection and diagnostics can be implemented at the building
level, system/subsystem level (e.g., an air handle unit), and/or compo-
nent level (e.g., a damper) [183]. Building-level FDD aims to detect and
diagnose the occurrence of non-optimal operational patterns by iden-
tifying anomalous energy trends in the building energy consumption
time series [54,66]. At this scale, classification, regression and pattern
recognition techniques are employed to estimate the baseline for the
detection of anomalies while sub-meter load data are used to infer the
root cause of anomalies at whole-building level [70,71].
7

Fig. 5. Fault distribution in an HVAC system.
Source: Expanded from Yu et al. [120].
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Table 3
Summary of systems studied with data-driven FDD and associated data sources.

System Data source Reference

AHU or AHU-VAV lab data Cho et al. [137], Hou et al. [138], West et al. [150], Wall et al. [145], Dehestani
et al. [60], Li and Wen [96,97], Mulumba et al. [46], Zhao et al. [105], Yan et al.
[49], Zhao et al. [104], Yan et al. [127], Zhong et al. [152], Li et al. [35], Piscitelli
et al. [56], Yan et al. [153], Dowling and Zhang [165], Li et al. [118], Taheri et al.
[144], Liao et al. [81]

real data Wang and Qin [92], West et al. [150], Dong et al. [147], Narayanaswamy et al.
[134], Cheng et al. [84], Madhikermi et al. [62], Gunay and Shi [89]

sim data Wang and Qin [92], Liang and Du [59], Du and Jin [93,94], Li et al. [113], Du
et al. [75,139], Xiao et al. [106], Jones [76], Yan et al. [127,136], Verbert et al.
[107], Turner et al. [166], Shahnazari et al. [141], Lee et al. [77], Yan et al. [151],
Montazeri and Kargar [63]

Chiller lab data Choi et al. [167], Namburu et al. [44,168], Han et al. [50,51], Zhao et al. [146],
Yan et al. [45], Zhao et al. [169], Beghi et al. [61,114], Li et al. [85,158], Beghi
et al. [170], Fan et al. [115], van de Sand et al. [171], Wang et al. [149], Han et al.
[157], Liu et al. [172], Yan et al. [82], Li et al. [64], Yan [173], Li et al. [163], Han
et al. [142], Li et al. [154,174], Wang et al. [164], Liu et al. [143], Gao et al. [175]

real data Hu et al. [95], Zucker et al. [176], Dong et al. [147], Cotrufo and Zmeureanu [98],
Cheng et al. [84], Hu et al. [99], Li et al. [177], Li and Hu [101], Lee et al. [116]

sim data Du and Jin [93], Zhao et al. [72], Miyata et al. [52]
Boiler sim data Verbert et al. [107], Shohet et al. [162]
AC unit sim data Asgari et al. [80]
RTU or RTU-VAV lab data Li et al. [154]

sim data Ebrahimifakhar et al. [161]
FCU real data Dey et al. [86], Dey et al. [87]
VRF lab data Guo et al. [140], Shi et al. [100], Li et al. [135], Guo et al. [159], Liu et al.

[73,178], Zhou et al. [160], Zeng et al. [179], Zhou et al. [102]
Heat pump lab data Zogg et al. [180], Tesfay et al. [67]

real data Taal et al. [148]
District heating real data Xue et al. [181]
Whole building real data Jacob et al. [182], Capozzoli et al. [65], Fan et al. [83], Miller et al. [54], Araya

et al. [155], Capozzoli et al. [66], Fan et al. [156], Gunay and Shi [89], Sipple [78],
Xu and Chen [79], Aguilar et al. [88], Zhou et al. [91], Xu et al. [90], Piscitelli
et al. [69], Chiosa et al. [70], Liu et al. [68], Chen et al. [47], Chiosa et al. [71],
Chen et al. [48,108]

sim data Magoulès et al. [74]
Not all potential faults are studied in the existing research papers
nd reports, and different HVAC systems are focused for different
uilding sizes. For large size buildings, FDD is often applied to AHU-
AV systems, fan coil units (FCU), chillers, and boilers. Yet for small
nd medium sized buildings, FDD is usually applied to heat pumps
nd window air conditioners. From the reviewed papers, the most
opular research subjects are secondary AHU-VAV systems (35%) and
hillers (32%), followed by whole-building studies (17%) and VRFs
7%). The top two faulty systems (i.e., secondary systems and vapor
ompression systems) and the corresponding classification of the faults
n these systems (summarized from the references listed in Table 3)
re illustrated in Fig. 6. Secondary systems can provide required heat-
ng and cooling for multiple zones. Its actuator faults and equipment
aults are typically studied, including OA/RA/SA/VAV dampers, cool-
ng/heating coil valves, SA/RA fans, and air ducts. Vapor Compression
ycle (VCC) systems, consisting of a set of components (compressors,
eat exchangers, and expansion devices), are included in a wide range
f equipment, from small split air conditioners that are usually used in
esidential houses, to large central systems such as chillers that provide
ignificant cooling/heating capacity to serve an entire office building,
ospital, or campus buildings. Among them, chiller faults are the most
idely studied with regards to data-driven methods. Those faults can
e classified as local faults (e.g., condenser fouling, reduced condenser
ater flow, non-condensable in the refrigerant, reduced evaporator
ater flow, etc.) and system faults (e.g., refrigerant leak/undercharge,

efrigerant overcharge, excess oil, etc.) [149]. Furthermore, a proper
ime resolution of the measurement data should be chosen depending
n which system level is of interest. For example, determining the
OP of a heat pump with on/off control might only need data with
5-minute resolution, whereas higher resolution (e.g., 1-minute) can
eveal operational issues, such as too frequent heat pump cycling or
8

n unreasonable defrost cycle schedule. These control logic issues can
lead to a poor energy performance even though all components work
properly.

Although most of the literature on FDD focuses on the system/
component level, FDD at whole-building level has increasingly at-
tracted the interest of researchers. The influence of several factors such
as building dynamics, external climatic conditions, system operating
schedules and occupant comfort requirements can determine the oc-
currence of numerous building energy consumption patterns that are
not always easy to be recognized. In addition, in most of the real-
life applications, only few and aggregate variables pertaining to the
whole-building and main sub-loads energy consumption are available,
which increases the complexity in conceptualizing FDD processes at
the building level. In this context, the main objectives of a building-
scale FDD process are (1) the recognition of typical patterns in the
whole-building energy consumption time series, (2) the detection of
infrequent/anomalous patterns, and (3) the diagnosis of the detected
anomalies by inferring the presence of anomalous patterns at the sub-
load level. All three objectives require expert domain knowledge on
how the building and its energy systems work and are operated. Differ-
ent from applications at the system level, anomalies at a higher level of
analysis are difficult to be classified and generalized due to the lack of
ground-truth datasets for conducting both detection and diagnosis. As
a consequence, for applications at whole building level, unsupervised
learning through pattern recognition techniques is the most employed
approach [47,48,108].

4.2. Data source

For data-driven FDD method development, data, such as labeled
normal and fault data, are needed for training and method evaluation
purposes. These data can be supplied from simulation, laboratory ex-
periments, and field measurements from a real building. Among the

papers reviewed, excluding those in which the data source was not
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Fig. 6. Fault classification of HVAC systems.
explicitly stated, 48% use lab experiment data, 20% use simulation
data, 32% use real building data. The coupling between the data source
and the system type is further analyzed in Fig. 7 which shows that the
majority of whole building applications rely on real field measurement
data while system-level VRF, AHU and Chiller applications mainly rely
on laboratory data.

Among all the reviewed studies, lab experiment data were most
commonly adopted. They had been applied in tree-structured learning
FDD of chillers [158], GAN-based FDD of AHUs [153], deep learning-
based FDD of VRF systems [159] and so on. However, there are limited
examples of publicly available datasets that have verified ground-
truth information on the presence and absence of faults. Based on the
reviewed studies, four research projects offer valuable public available
experimental data. The first two are ASHRAE Project 1043-RP data
and ASHRAE Project 1312-RP data, which have been widely used in
chiller and AHU FDD studies, respectively. The third is the building
fault detection data to aid diagnostic algorithm creation and perfor-
mance testing. The fourth is the LBNL fault detection and diagnostics
datasets [191]. Notice that in many cases, a laboratory testbed is a real
building with real HVAC system, but it is not occupied and is solely
used for testing purposes, such as the ASHRAE 1312 testbed [192].
Details about these four datasets are further discussed below.

• ASHRAE Project 1043-RP data [193]: The experiments were con-
ducted on a R134a refrigerant centrifugal chiller with 90 tons
(316 kW) cooling capacity. Nine typical chiller faults were arti-
ficially implemented to the test chiller, including reduced evap-
orator water flow fault, reduced condenser water flow fault,
a combination of these two faults, condenser fouling fault, re-
frigerant leakage fault, refrigerant overcharge fault, excess oil
in the compressor fault, non-condensables in refrigerant fault,
and a defective pilot valve fault. Each fault was implemented
9

Fig. 7. Alluvial plot for the analyzed literature classified by data source and system
type.

at four severity levels ranging from 10% to 40%. At each level
of each fault, the experiment was conducted under 27 different
operating conditions for about 14 hours. The operational data
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of 64 variables (e.g., temperature, pressure, rate of flow, power)
were collected at 10 seconds and 2 minutes intervals. In each
operating condition, the experimental test was first carried out
to reach the steady state for about 30 minutes. Next, the steady
state test was continuously performed for 15–25 minutes for each
operating condition.

• ASHRAE Project 1312-RP data [42,43,192]: A series of experi-
ments were performed on two identical systems (system A and B).
Each system includes a multizone AHU-VAV (AHU-A and AHU-B)
that serves four building zones (three external and one internal).
The AHU-VAV and building zones from each system are exactly
identical to the other system. AHU-A was always operated under
normal conditions while AHU-B was used to implement different
faults. Seventeen faults were tested, including equipment faults,
control device faults, sensor faults, and controller faults. Each
fault was tested at multiple fault intensity levels in three seasons
— spring, summer, and winter. At each level of each fault, the
experiment lasted for one day and the operational data of 160
variables were collected at 1-min intervals.

• Building fault detection data to aid diagnostic algorithm creation
and performance testing [194]: Two experimental test datasets
were created for a single-zone AHU-CAV and a single-zone AHU-
VAV serving a real building zone. The experiments include the
following AHU faults at multiple fault intensity levels: outside
air damper stuck fault, heating/cooling coil valve stuck/leakage
fault, and outdoor air temperature sensor bias fault. Another
experimental test dataset was generated for RTU-VAV system
faults: condenser fouling, HVAC or lighting system setback error
(delayed onset or early determination), excessive infiltration, no
overnight HVAC or lighting setback, and thermostat temperature
bias. In all three datasets, 24 hour operational data of normal and
fault test cases were collected at 1-minute intervals.

• LBNL fault detection and diagnostics datasets [191]: The project
includes an RTU experimental test dataset, covering faults of in-
correct economizer setpoint, outside air damper stuck, and supply
air temperature sensor bias. The experiments were performed in
spring, summer, fall, and winter seasons and all data use 1-minute
measurement frequency.

Simulated data generated from non-proprietary physical model-
ased simulation software were also used in the reviewed studies. A
etailed review of current state-of-the-art for the fault modeling of
VAC systems in buildings, including fault model, fault occurrence
robability, and fault simulation platform, was provided in Li and
’Neill [195]. For instance, Du et al. [75] validated a combined neural
etworks algorithm to detect AHU abnormities using a TRNSYS-based
imulation testbed. Lee et al. [77] employed EnergyPlus software to
enerate different types of fault operation behavior data to serve as
eferences for a deep-learning FDD algorithm for AHUs. Montazeri
nd Kargar [63] used simulated data from HVACSIM+ software to
rain and test SVM and PCA FDD methods. Shahnazari et al. [141]
odeled an AHU-VAV system using Modelica to demonstrate the ability

f recurrent neural networks-based FDD algorithm. In Lu et al. [188], a
omprehensive fault impact analysis and robustness assessment of the
igh-performance control sequences from ASHRAE Guideline 36 was
onducted using a Modelica-based fault modeling framework, where
59 fault scenarios, including faults of sensor, duct and pipe, valve
nd damper, HVAC equipment (e.g., coil fouling, fan mode degra-
ation, etc.), control, design and construction, were simulated. Since
hese simulation software are originally designed to simulate fault-free
perations, fault generators or similar means are needed to simulate
aulty operations. Simulating faults using these simulation software
ometimes results in unexpected numerical difficulties such as long
imulation time, inaccurate results, or even crashing of the simulation
rogram. When modeling faults, it is important to avoid some common
auses of numerical difficulties, such as numbers that are beyond the
10
computer precision [196] and discontinuous functions [197]. When
it comes to the generation of simulation data for large-scale HVAC
systems, an advanced numerical solver that is both efficient and robust
shall be considered. For example, when simulating the HVACSIM+
model developed for the ASHRAE Project 1312-RP [192], an advanced
nonlinear equations solver [198] can reduce the simulation time by
about 70% while maintaining the same level of robustness as the
default solver, and even more for larger scale systems. In terms of open-
sourced simulation datasets, LBNL FDD datasets [191,199,200] include
large simulated datasets with verified information on the presence and
severity of faults spanning seven HVAC systems and configurations: a
single-duct AHU, a RTU, a dual-duct AHU, a series fan-powered VAV
unit, a parallel fan-powered VAV unit, a fan coil unit, a chiller plant,
and a boiler plant. HVACSIM+ and Modelica-EnergyPlus co-simulation
were employed to carry out simulations of more than 250 faulted or
fault-free condition states (e.g., mechanical faults, control sequence
faults, sensor faults, etc.) over a full year of operation. Each dataset
includes from 20 to more than 100 data points which are described
with the Brick schema [22].

Although 32% of the reviewed studies use real building data, half
of the studies focus on the detection of energy anomalies that only
require energy consumption data. For example, Zhou et al. [91] tested
a hierarchical clustering method to identify anomalies in daily en-
ergy consumption with the chiller plant power consumption data.
Publicly available power consumption datasets that can be used to val-
idate anomaly detection algorithms are rare. The competition ‘‘Power
Laws: Detecting Anomalies in Usage’’ offers a few datasets with hand-
labeled anomalies corresponding to different types of building sites
from different geographies [201]. Field measurements with labeled
faulty operation data are more challenging to obtain since manual in-
vestigation and/or maintenance record are typically needed to confirm
the occurrence of a naturally occurred fault. LBNL FDD datasets [191]
also include months of field measured RTU data for a compressor
control fault and a refrigerant undercharging fault. Measurements from
the commissioning phase of a real building often contains faults and
can thus be a valuable part of a training dataset. Documentation of
changes in the system throughout the commissioning process is of ut-
most importance to understand what was a normal or faulty operation.
Among studies that utilized real building operation data, Gunay and Shi
[89] demonstrated a cluster analysis-based anomaly detection method
with a year’s worth of BAS data from 247 thermal zones and an air
handling unit. Lee et al. [116] implemented AI-FDD on 14 chillers
for a 1 year test to obtain the real-world false alarm rejection rate.
Chen et al. [47,48] developed a weather and schedule information-
based pattern matching (WPM) and feature-based principal component
analysis (FPCA) method to detect whole building level faults using
30 day BAS data from a multi-used campus building.

In addition to the labeled time-series system operation or energy
use data under normal and fault conditions, other data sources have
also been utilized to support the data-driven FDD algorithms. For
example, expert knowledge, maintenance records, building information
models (BIM), and real-time occupancy data. Expert knowledge has
been integrated into data-driven FDD approaches to (1) detect outliers
in the data preprocessing step [83], (2) develop, select, and interpret
the characteristic features of faults [107,170,181,202], and (3) support
the selection of layers, nodes, and parameters in the BN-based or tree-
structured FDD algorithms [108,146,158]. Maintenance records were
utilized to label the ground truth of field measurements, i.e., whether
the collected data contain faults or not [116,148]. The BIM was in-
tegrated into model-based FDD to provide building design information
(e.g., architecture geometry and building equipment information) [147,
203,204]. Real-time building occupancy data from internet of things
sensors were employed as an additional data stream to detect the

degraded building operation performance [84].
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Table 4
Summary of evaluation metrics for data-driven FDD.

Evaluation metrics References

General evaluation metrics
(e.g., Eqs. (1)–(8))

Zogg et al. [180], Jacob et al. [182], Shohet et al. [162], Hu et al. [95], Zhao et al. [72], Sun et al.
[205], Zhao et al. [146], Yan et al. [45], Du et al. [75], Narayanaswamy et al. [134], Jones [76],
Beghi et al. [114], Li et al. [177], Araya et al. [155], Turner et al. [166], Verbert et al. [107], Guo
et al. [140], Liu et al. [73], Guo et al. [159], Shi et al. [100], Zhong et al. [152], Liu et al. [172],
Zhou et al. [160], Li et al. [163], Guo and Rasmussen [206], Zhou et al. [102], Piscitelli et al. [69],
Chen et al. [47,48,108]

Classification problem metrics Choi et al. [167], Namburu et al. [168], Du and Jin [93], Namburu et al. [44], Liang and Du [59], Li
et al. [113], Dehestani et al. [60], Magoulès et al. [74], Mulumba et al. [46], Yan et al. [49], Li
et al. [158], Yan et al. [127], Li et al. [135], Lee et al. [77], Liu et al. [178], Fan et al. [115], Li
et al. [35], Montazeri and Kargar [63], Ebrahimifakhar et al. [161], Yan et al. [153], Zeng et al.
[179], Aguilar et al. [88], Yan et al. [82], Dowling and Zhang [165], Dey et al. [87], Gao et al.
[175], Yan [173], Lee et al. [116], Chiosa et al. [70], Li et al. [154,174], Wang et al. [164], Liu
et al. [143]; Beghi et al. [61], Sipple [78], Asgari et al. [80]

Statistical significance tests Han et al. [157], Dey et al. [86]
5. Evaluation metrics for data-driven FDD

It is critical to evaluate and quantify the performance and effective-
ness of data-driven FDD methods by using dedicated metrics. In this
section, evaluation metrics adopted from the reviewed literature for
data-driven FDD are summarized and discussed. Corresponding studies
for each evaluation metric are illustrated in Table 4. The collected
metrics can be broadly classified into three categories: general eval-
uation metrics for FDD applications, evaluation metrics for data-driven
classification problems, and statistical significance tests that assist the
evaluation of classification problems.

General evaluation metrics

Lin et al. [207] summarized the evaluation metrics for general FDD
applications. To assess the performance of a fault detection problem,
the evaluation metrics include the true positive rate (TPR), true nega-
tive rate (TNR), false positive rate (FPR), false negative rate (FNR), and
no detection rate (NDR), which are shown in Eqs. (1)–(5). To assess a
fault diagnosis method, the evaluation metrics often include the correct
diagnosis rate (CDR), the misdiagnosis rate (MDR), and the no diagnosis
rate (NDgR), as listed in Eqs. (6)–(8). Note that each evaluation metric
mentioned above focuses on a specific aspect of the FDD problem,
and thus relying solely on one metric can be misleading. For example,
in a dataset with a large number of fault-free samples and a small
number of fault samples, TNR can be misleading, since an algorithm
that simply predicts fault-free for all samples can still achieve a high
TNR. Therefore, it is important to evaluate these metrics together. To
provide a clear understanding of these metrics, Fig. 8 visualizes the
relationship of the terms used in these equations in a confusion matrix,
which will be further discussed in the section below.

TPR = TP
TP+FN (1)

TNR = TN
TN+FP (2)

FPR = FP
TN+FP (3)

FNR = FN
TP+FN (4)

NDR = ND
TP+TN+FP+FN (5)

CDR = CD
TP+FN (6)

MDR = MD
TP+FN (7)

NDgR =
NDg

TP+FN (8)
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Fig. 8. Example of a confusion matrix. Given the predicted fault types on the columns
and the actual fault types on the rows, the matrix shows the correct diagnosis (CD),
misdiagnosis (MD), true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN).

Classification problem metrics

An FDD problem is essentially a classification problem; fault de-
tection is a binary classification problem, while fault diagnosis is a
multi-class classification problem. The general metrics described above
are often combined visually or quantitatively into a classification prob-
lem metric for a more in-depth evaluation of data-driven classifiers.
These classification problem metrics include confusion matrix, accu-
racy of correct predictions, F-measure (or F-score), Receiver Operator
Characteristic (ROC), and Area Under the Curve (AUC).

Confusion Matrix. A confusion matrix is a visualization of predic-
tion results for a classification model [208]. It depicts the degree of
algorithm confusion within different classes and is independent of a
concrete classification algorithm [157]. Each matrix element represents
the test observations, with the actual (true) class in rows and the
predicted class in columns. The diagonal elements show the correct
predictions while the off-diagonal elements show the incorrect pre-
dictions and how they were misclassified. For a 2 by 2 confusion
matrix, two rows and two columns report the number of true positive,
false negative, false positive, and true negative. Ebrahimifakhar et al.
[161] visualized the classification performance of different algorithms
in diagnosing faults for packaged rooftop units.

Accuracy of Correct Predictions. The overall accuracy of correct
predictions is defined as the number of correct predictions (i.e., the di-
agonal elements of the confusion matrix) divided by the total number of
observations, as shown in Eq. (9). Montazeri and Kargar [63] compared
the diagnostic results of the proposed FDD method (i.e., KPCA and RBF
neural network) and previous studies by visualization of the confusion
matrix and using the accuracy. Overall, it is a simple and intuitive
measure, yet it may fail on classification problems with a skewed class
distribution.

Accuracy = TP+TN (9)
TP+TN+FP+FN
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F-Measure. F-measure [209] is a comprehensive performance met-
ric to evaluate the quality of a classifier which considers the class-
specific performance, as shown in Eq. (10). F-measure ranges from
0 to 1. The larger the F-measure is, the better the comprehensive
performance of the classification model is [210]. In the equation,
‘‘Precision’’ refers to the proportion of correctly diagnosed samples in
all positive samples, while ‘‘Recall’’ refers to the proportion of correctly
diagnosed samples in the true samples.

𝐹 = 2 ⋅ Precision ⋅ Recall
Precision + Recall (10)

Precision = TP
TP+FP (11)

ecall = TP
TP+FN (12)

ROC and AUC. The ROC curve is a graph showing the performance
of a classification model at all classification thresholds [211] which
plots two parameters: TPR and FPR. One potential drawback of the
ROC curve is that it can be difficult to interpret if there are many
decision thresholds. This is because each point on the curve represents
a different tradeoff between the TPR and FPR, and it may not be imme-
diately clear which point represents the best overall performance of the
algorithm. AUC measures the entire two-dimensional area underneath
the entire ROC curve from (0,0) to (1,1). A higher AUC [212] indicates
that the model performs better in distinguishing between positive and
negative classes. Sipple [78] used AUC to compare the anomaly de-
tection performance of various models on predicting failures of HVAC
equipment.

Statistical significance tests

Statistical significance (or hypothesis) tests can aid in comparing
the performance of different classification models. The purpose of
statistical significance testing is to help gather evidence of the extent
to which the results returned by the aforementioned evaluation metrics
are representative of the general behavior of the classifiers. However,
it is noted that significance testing never constitutes a proof that the
observation is valid. It provides added support for the observations.
Ultimately, demonstrating that a new FDD algorithm performs bet-
ter than a reference algorithm requires a combination of statistical
tests, evaluation metrics, and validation experiments. The frequently
used significance tests, for data-driven FDD, include the t-test [213],
McNemar’s Test [214], Wilcoxon’s signed-Rank Test [215], Friedman
Test [216], Nemenyi Test [217], etc. Han et al. [157] used Fried-
man Test and Nemenyi Test to evaluate the performance of different
classification models on diagnosing the chiller faults.

6. Future challenges and opportunities

Although research on data-driven FDD has made great advance-
ments in recent years as discussed above, its broad market adoption
remains limited [5]. In this section, we discuss some of the ongoing
efforts and challenges to further the development and market adoption
of data-driven FDD.

Real-building deployment

As discussed in Section 4.2, although much research has been
conducted to develop and implement data-driven FDD methods for
building systems, most of the studies developed or validated their data-
driven methods in simulated environments, in laboratory settings, or
using small-scale HVAC systems. Online and real-time implementations
of data-driven FDD methods in large-scale systems in real buildings,
that can demonstrate the method’s performances under various weather
conditions, are still rare and in its infancy stage. Despite this limitation,
some real-building deployments have been reported in the literature.
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Here real-building deployment refers to using a strategy for real-time
FDD. For example, Lee et al. [116] deployed an SVM-based AI-FDD
system to reject false alarms on 14 chillers in a data center for a year.
Their results showed that the AI-FDD system achieved 100% correct
false alarm rejection rate and the operational cost of investing in the AI
platform can be recovered in three months. Wall and Guo [6] presented
case studies using five different FDD tools in Australia, some of which
reported to employ machine learning techniques. Blanes et al. [218]
reported a CASCADE Implementation Kit that integrates FDD tested in
two major European airports. The FDD tool employs the SVM method
to detect sensor faults. Although the authors implemented pilot tests
through 2013 to 2014, a complete performance evaluation was not
found.

In general, reliable, fast and computationally affordable solutions
that are readily deployable in the field have not been explored suffi-
ciently [14]. Real-building deployments are challenging due to incom-
plete information and uncertainty [13]. The main factors contributing
to this challenge are lack of sensors, poor sensor accuracy, imbalance
of fault and fault-free training data, ad-hoc naming conventions for
data points, non-standardized sensor installation and control logic, and
missing data [13]. A recent study has shown that data uncertainty has
a significant impact on the performance of SVM algorithms for chiller
fault diagnosis [64]. Validation of data-driven FDD in terms of not
only accuracy but also decision-making with real-world uncertainty is
needed to overcome market barriers.

Performance evaluation, benchmarking, and fault impact analysis

In the literature, there are limited studies that compare the per-
formance between FDD methods, especially under different categories
(e.g., data-driven vs rule-based, supervised vs unsupervised). More
comparison studies are needed to demonstrate the performance of and
identify the weakness of data-driven methods. On the other hand, estab-
lishing common FDD datasets with validated ground-truth is needed to
facilitate the assessment of different FDD methods. Lawrence Berkeley
National Laboratory has released large FDD datasets, including experi-
mental, simulated, and real building data, to support this effort [191].

In building HVAC systems, there are faults that generate relevant
effects while others have negligible symptoms. However, the perfor-
mance evaluation process of an FDD method is mostly based on the
calculation of classification accuracy metrics without considering the
importance of prioritizing faults with most adverse impacts. The impact
assessment through novel weighted multi-criteria key performance in-
dices (KPIs) is thus needed to put the right attention on different faults
considering their effects in terms of energy consumption, greenhouse
gas (GHG) emissions, energy costs, thermal comfort and indoor air
quality (IAQ) according to their severity and occurrence frequency. For
example, Chen et al. [219] developed a simulation-based framework
for evaluating the fault effects in FCU. They also proposed a metric,
namely the fault symptom occurrence probability (SOP), to assist the
fault prioritization. Lu et al. [188] conducted a comprehensive fault
impact analysis and robustness assessment of the high-performance
control sequences from ASHRAE Guideline 36 using Modelica-based
simulation with key performance indexes to evaluate fault impacts from
the aspects of energy consumption and energy cost, control quality
factor, thermal comfort, ventilation, and the power system.

Scalability and transferability

HVAC systems in large commercial buildings are typically designed
and constructed in a unique way for each building. Each building may
have its own unique boundary conditions, such as weather, occupancy,
and internal load schedules that vary daily. As a result, data-driven FDD
method developed for one building may not be applicable to another
building. The following research areas may be considered to improve
the scalability and transferability of a data-driven FDD method.
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Hybrid approach. Data-driven FDD methods require a consider-
able amount of data to exploit enough reliable and robust extracted
knowledge. However, data-driven FDD methods generally cannot ex-
trapolate well beyond the range of training data related to specific
boundary conditions, limiting then the scalability and transferability
of detection and diagnosis logics among different systems [220]. The
expert-based approach, in contrast, has a strong capability for repli-
cating and transferring expert diagnostic reasoning, especially in cases
where initial information is not enough for deploying a data-driven
process. Integration of both approaches may significantly improve the
robustness, accuracy, and generalizability of FDD tools designed for
building energy system applications.

Transfer learning. Besides the hybrid approach, transfer learning
is being investigated as a fully data-driven solution to address the
scalability issues of FDD strategies. Transfer learning [221], can ef-
fectively reduce the time to re-collect labeled data and re-train FDD
algorithms, and thus reducing developmental costs. Recently, there has
been some discussions about transfer learning in the building FDD field.
For example, Dowling and Zhang [165] demonstrated a transferable
Bayesian classifier for detecting supply fan degradation fault due to
fouling filters in a VAV system. Miyata et al. [222] demonstrated
transfer learning on convolutional neural networks (CNN) for fault
diagnosis of central chilled water plants. Liu et al. [143] developed
a transfer-learning-based CNNs for fault diagnosis of chillers. More
studies are needed to further explore the potential of using transfer
learning to improve the scalability of data-driven FDD.

Metadata schemas. Metadata schema or semantic data model al-
lows data from different buildings to be described in a consistent and
standardized manner. Using a common metadata schema not only eases
the data collection process (as mentioned in Section 3.1), but also
makes a data-driven FDD method more generic. Without a common
metadata schema, a data-driven FDD method must be hard-coded to
a specific data source of a specific building, thus limiting its scalability
and transferability. In addition, metadata schemas can provide well-
organized information about the nature of the data (e.g., type of sensor,
causal relationship between points), which allows expert knowledge to
be incorporated into a data-driven method more effectively. Project
Haystack, Brick, and the recent ASHRAE 223P standard [22–24] are
good options of metadata schema for building energy systems.

Interpretability

For a market-oriented FDD product, its interpretability (i.e., the abil-
ity to explain how a fault is detected or diagnosed) is very important. In
fact, building professionals tend to be suspicious of the output of data-
driven processes because they are unable to fully understand the model
inference mechanism [223]. It is becoming more and more important
to develop FDD tools that are capable of providing feedback about
the reasons behind a certain detection or diagnosis result with robust
indication of the supporting and conflicting evidences towards it.

In this respect, hybrid approaches, such as BNs that incorporate
causal relationships between faults and symptoms, show great advan-
tages. However, for pure black-box approaches, such as ANN, users are
often unable to explain how they make decisions due to the models
non-intuitive and non-transparent nature. The development of an ex-
plainable framework can help increase user confidence in such models.
While interpretability continues to be a challenging task, a few studies
have focused on this issue in recent years. For example, Madhikermi
et al. [62] used Local Interpretable Model-agnostic Explanations (LIME)
to explain behaviors of SVM and ANN in detecting AHU heat recycler
fault. Li et al. [174] developed an explainable CNN-based FDD by
utilizing Gradient-weighted Class Activation Mapping and validated it
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using the ASHRAE 1043-RP data.
Cyber security and data privacy

Modern BAS are typically connected to internet or enterprise net-
work to reduce operational cost and increase automation. There are
many benefits that a BAS can gain through the network connectivity,
such as remote management, cloud computing, and data sharing [224,
225]. However, a network connectivity also makes BAS and the associ-
ated systems and devices potential targets of cyber attacks, leading to
comprised systems and loss of credential information. For building en-
ergy systems, cyber attacks can disrupt the normal operation and result
in serious consequences, such as occupant discomfort, energy waste,
equipment downtime, and disruption of grid operation [225]. There-
fore, there is a need for an FDD framework that takes cyber security and
data privacy into account. For example, researchers are currently de-
veloping a Cyber Defense and Resilient System (CYDRES) that employs
fault detection, fault diagnostics, fault prognosis, and cyber-resilient
control scheme to enhance Grid-interactive Efficient Buildings (GEBs)
tolerance to both cyber-related and physical faults [225,226].

Overall speaking, cyber security and data privacy is an important
topic for any data-driven product in modern smart buildings. Further
reading on this topic of can be found in Habibzadeh et al. [227].

User experience

Each of the previously mentioned future challenges will to some
extend affect the user acceptance of data-driven FDD services. The
user/client is usually the one paying for the service, thus creating a
successful user experience will also benefit user acceptance of FDD as a
service and ease a widespread implementation in real buildings. A pos-
itive user experience depends on how information is presented to the
user to be able to understand what is happening in the building/system
and why. In this regard, dedicated dashboards for different building
users (facility managers, building owners, building tenants) are of
utmost importance [228,229]. A proper visualization of measurement
data, predicted data from data-driven models and case-specific key
performance indicators all contribute to a better user experience and
thus higher acceptance of data-driven methods among clients/users.
A proper indication of the severity of a fault is important for the
person, usually the facility manager, who has to repair the faulty
systems. Clustering and ranking faults/alarms based on their severity
and criticality for the operation of the system/building is a time-saving
measure for the facility manager in an often hectic workday. More
research is needed to understand how to improve the user experiences
for data-driven FDD methods.

7. Conclusion

This paper provides a comprehensive review of the process, systems
studied, and evaluation metrics for data-driven FDD. Existing literature
provides promising methods and frameworks for implementing data-
driven fault detection and fault diagnosis, step by step from collecting
data to detecting anomaly to isolating root causes. Data-driven fault
prognosis remains to be further developed. In terms of system studied,
many studies exist that apply data-driven FDD methods to typical
building HVAC systems (e.g., AHU-VAV and chiller). However, most
of the studies are based on simulated or lab experiment data. Many
types of evaluation metrics have been reported in the literature which
are sufficient for data-driven FDD performance evaluation. Overall
speaking, existing literature has laid a solid foundation to demonstrate
the feasibility and benefit of using data-driven FDD. Yet significant
challenges still remain for a wide market adoption of data-driven
FDD methods. These challenges include real time and real-building
implementation that is subject to data uncertainties; method perfor-
mance benchmarking in real buildings; fault impact analysis; method
scalability and transferability; fault interpretation; cyber security and
data privacy; and user experience. It is our hope that this review would
provide insights and directions for practitioners and researchers to
develop the next generation data-driven FDD products.
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Acronyms

AB Adaptive Boosting

AE Autoencoder

AHU Air Handling Unit

AI Artificial Intelligence

ANN Artificial Neural Network

ART Adaptive Resonance Theory

ARX Auto-Regressive model with eXogenous variables

AUC Area Under the Curve

BAS Building Automation System

BIM Building Information Model

BN Bayesian Network

CART Classification And Regression Tree

CAV Constant Air Volume

CNN Convolutional Neural Network

COP Coefficient of Performance

DBN Deep Belief Network

DNN Deep Neural Network

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DT Decision Tree

FCU Fan Coil Unit

FDD Fault Detection and Diagnostics

GA Genetic Algorithm

GAN Generative Adversarial Network

GB Gradient Boosting

GBM Generalized Boosted regression Model

GHG GreenHouse Gas

HMM Hidden Markov Model

HVAC Heating, Ventilation and Air Conditioning

IAQ Indoor Air Quality

IGFF Information Greedy Feature Filter

KNN K-Nearest Neighbors

KPCA Kernel Principal Components Analysis

LAPART Lateral Priming Adaptive Resonance Theory

LDA Linear Discriminant Analysis

LinReg Linear Regression
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LogReg Logistic Regression
LS-SVM Least Squares Support Vector Machine

MLP MultiLayer Perceptron

NB Naive Bayes

NN Neural Network

OA Outdoor Air

PCA Principal Component Analysis

PLS Partial Least Squares

PLSR Partial Least Square Regression

QDA Quadratic Discriminant Analysis

RA Return Air

RBF Radial Basis Function network

RBM Restricted Boltzmann Machine

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operator Characteristic

RTU RoofTop Unit

RUL Remaining Useful Life

SA Supply Air

SGA Simple Genetic Algorithm

SNN Shallow Neural Network

SVM Support Vector Machine

SVR Support Vector Regression

VAV Variable Air Volume

VRF Variable Refrigerant Flow

XGB eXtreme Gradient Boosting
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