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A B S T R A C T

The building sector is a significant energy consumer, making building energy optimization crucial for reducing 
energy demand. Automating energy optimization tasks eases the workload on engineers and hastens energy 
savings. More than 85% of building data is unstructured and diverse, concealing energy insights that demand 
laborious extraction. We propose an LLM-based multi-agent framework to explore automated tasks using these 
data. The framework includes three stages: building information processing, performance diagnosis, and retrofit 
recommendation, where LLMs injected with domain expertise act as agents for the roles of planner, researcher 
and advisor. We develop knowledge databases with retriever tools to inject knowledge and validate through 
experiments. In case studies, our framework delivered reliable results with only $5.15, effectively handling 
diverse inputs and tasks across cases. This demonstrates its potential to significantly reduce repetitive human 
labor and costs. We also discuss the potential of LLM-based multi-agent systems as trustworthy, generalized 
automated task solvers.

1. Introduction

1.1. Automated tasks in building energy optimization

The building sector accounted for approximately 30 % of global 
energy consumption in 2022 [1]. Building energy systems play an 
important role in the decarbonization and electrification of the energy 
sector, thereby aiding in the fight against global warming. Reducing the 
energy use of building energy systems while maintaining a favorable 
indoor environment is an important goal of building management. En
ergy performance diagnosis aims to identify poor energy performance in 
a building and determine the causes [2]. It can help advise the building 
operator on repairs and maintenance to keep the building running in an 
energy-efficient state. In addition, building energy audits and retrofits 
aim to improve the poor energy use behavior of buildings and effectively 
reduce the energy use of building energy systems. Therefore, building 

energy audits and retrofits are also considered as an efficient method of 
building energy efficiency [3].

Emerging research directions in the building energy optimization 
extensively utilize Artificial Intelligence (AI) technologies to automate 
tasks or discover hidden knowledge from building data. The ultimate 
goal of AI is to achieve Artificial General Intelligence (AGI) [4], which 
refers to a system capable of performing human tasks [5]. AI agents have 
long been considered a key step towards the realization of AGI as they 
have the potential to carry out a wide range of intelligent activities [6]. 
In the context of the building energy management, AI agents automate 
the relevant tasks using different data throughout the entire lifecycle of 
an energy system. Fig. 1 illustrates the conceptual form of automating 
building energy audits using an envisioned multi-agent team. The agents 
will automatically plan tasks, act with tools, cooperate and discuss with 
each other, and make decisions during the task. In specific engineering 
applications, the advice given by AI agents should be trustworthy and 
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needs to be supervised by humans at this stage [7]. The implementation 
of task automation will significantly reduce the amount of duplicated 
work required of engineers and allow them to focus on using more 
energy-efficient and environmentally-friendly systems to maintain a 
better indoor environment [8]. Current research has paid much atten
tion to automating tasks with tabular building data. However, more than 
85 % of the building data is in unstructured format [9] and a large 
amount of energy use information is hidden in these data. Effective use 
of the unstructured data will help further improve energy efficiency and 
thus reduce building energy use. However, since there are no fully 
recognized data specifications for unstructured data, unstructured data 
generated in different countries, regions and units will always in 
different language and structures. At the same time, the personalization 
of building energy systems between buildings allows for greater vari
ability in unstructured data. Currently, tasks involving unstructured 
building data still rely on a great deal of human labor and are far from 
being automated.

1.2. Opportunities for LLM-based agents

Language plays an important role in people’s communication and 
collaboration. The nature of language is thought to originate from pre
linguistic intentionality, encompassing perception, belief, desire, mem
ory, intention, etc [10]. Both written and spoken language convey a 
significant amount of information [11]. Language modelling (LM) is a 
major approach to enhance the machine’s ability to understand and 
communicate in human language [12]. In 2022 and 2023, OpenAI 
released two large language models (LLM), ChatGPT [13] and GPT-4 
[14], attracting worldwide attention. Subsequently, LLMs, the newest 
stage in LM, began to have a significant impact on the AI community, 
leading researchers to regard LLMs as sparks for realizing AGI [15]. 
Many researchers are beginning to work on developing LLM-based 
agents that will allow them to replace repetitive human work, such as 
coding and documentation in software development [16]. As the design 
and realization of building energy systems are systematic projects 

requiring collaboration across multiple trades, language also plays an 
important role in conveying information, rules, and expert experience. 
For example, the design optimization of a system requires synergies 
between different simulation software, such as IDA Indoor Climate and 
Energy (ICE) and TRNSYS [17]. Engineers need to communicate with 
each other in language to complete simulations. This role of language 
offers an opportunity to approach the realization of AGI through the 
development of LLM-based agents.

LLMs are a subset of data-driven deep learning algorithms, and their 
application can be divided into three categories [18], as shown in Fig. 2. 
We can directly apply LLM models to static tasks that do not interact 
with the environment (Fig. 2(a)), like most machine learning and deep 
learning tasks in the building energy domain (some examples are listed 
in Table 1). In addition, LLMs can be further developed into LLM-based 
agents that dynamically interact with the environment (Fig. 2(b)). This 
will allow the LLM to perform tasks that require interaction with specific 
environments, such as the control of specific chillers, the processing of 
data collected from specific energy systems, and so on. Considering that 
LLMs have demonstrated new emergent capabilities such as memory 
and reasoning in many tasks, we can further develop cognitive LLM- 
based agents (Fig. 2(c)). Building energy systems are complex and 
diverse, and meter-level building energy data are usually heterogeneous 
across buildings [33]. Data-driven models developed on these data are 
often difficult to generalize across scenarios [21]. Agents with reasoning 
skills and domain knowledge memory will be able to plan tasks in 
different scenarios and transfer the knowledge learned in previous sce
narios, thereby coping with more complex and heterogeneous tasks in 
building energy optimization.

Furthermore, LLMs are highly black-boxed and integrated, with most 
access provided through the prompting interface or the Application 
Programming Interface (API). We need to format our tasks in a way that 
LLMs can follow [34] and explore the performance limits of generic 
LLMs in our tasks. For LLMs to automate building energy optimization 
tasks, they must accurately grasp domain concepts, utilize data infer
ence, and generate code. Although generic LLMs possess such 

Fig. 1. Conceptual form of a multi-agent team for building energy audit and retrofit. (The conceptual graphics without textual notes and explanations are generated 
by DALL-E). Multiple agents individually complete tasks such as planning tasks, using tools, and so on. They communicate and discuss to finalize the decision on the 
retrofit proposal. The user only needs to provide the team with the necessary building information. The team will then automatically offer suggestions for audit-based 
energy retrofits for the building.
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capabilities, they lack specific knowledge about building energy. 
Knowledge data in the building energy domain is diverse, including 
handbooks, codes, personal experience, product manuals, national pol
icies, and more. These data, especially design, operation, and mainte
nance experience, lie outside the public domain (being personalized and 
decentralized) and are highly heterogeneous. Generic LLMs often fail to 
learn adequately during training to manage building energy tasks due to 
the data’s complexity. Thus, proper organization of task inputs and 
outputs, along with injecting domain knowledge, is essential when 
developing LLM-based agents for specific domain tasks.

1.3. Aims and objectives

In this study, we aim to explore the potential of employing an LLM- 
based multi-agent framework for automating tasks with unstructured 
building data in energy optimization. We focus on knowledge-driven 
performance diagnosis and retrofit recommendations for diverse build
ings using personalized energy audit reports. Specifically, we will 
extract building metadata, perform knowledge-driven yearly perfor
mance diagnosis, and provide richer but also reasonable retrofit 
methods for engineers to choose from. These tasks are pivotal for 
enhancing energy efficiency in buildings, yet automation in this area 
remains limited.

Currently, energy audit reports are common and important building 
data that are currently underutilized. These audit reports are completed 
by different audit units describing different buildings with different 
forms of data organization, which makes them highly heterogeneous. At 
the same time, different buildings have different system forms and en
ergy usage characteristics, which also makes the energy optimization 
task for the same purpose need to be accomplished through different 
processes in different buildings. The diversity of input data and the 
personalization of task paths make it still a challenge to design a 
framework to automatically extract information from different reports 
and accomplish energy optimization tasks.

The development of a multi-agent framework based on the LLM 
model is a potential approach to address this challenge, but currently 
still unexplored. While LLMs have shown effectiveness in various 
knowledge tasks, they have insufficient knowledge of specialized do
mains (e.g., building energy domain) and may provide results accom
panied by knowledge hallucination. The current outcomes produced by 
LLMs for specific building energy optimization tasks are unreliable due 
to the black-box nature of the answer generation process. In order to 
design a framework and enable LLMs to perform building energy opti
mization tasks, we need to explore ways to inject expertise into LLMs. At 
the same time, we also need to design a rational framework for LLMs to 
provide explicit knowledge sources and clear rationale when completing 
tasks in order to minimize the impact of knowledge hallucinations on 
task outputs.

To fill these research gaps, we discussed the following research 
questions during the development of our LLM-based multi-agent 
framework:

• How can we inject knowledge in the field of building energy opti
mization into generic LLM?

• How can we design an LLM-based multi-agent framework to auto
mate performance diagnosis and retrofit recommendations? What is 
the performance?

• Is the LLM-based multi-agent system able to handle diverse inputs?

To address these questions, we designed the framework with the 
following basic considerations:

• The agents used in our framework should be cognitive agents 
developed based on LLMs. Thus, the framework we design will be 
able to handle heterogeneous data and accomplish personalized 
tasks.

• The energy optimization tasks will be divided into several subtasks 
and completed by multiple agents. These subtasks include language 

Fig. 2. Three kinds of uses of LLMs [18]. (a) Directly apply LLM models to static tasks that do not interact with the environment. The LLM simply takes text as input 
and outputs text. (b) Use LLMs to directly interact with the external environment by transforming observations into text and using the LLM to choose actions. (c) Use 
LLMs to interact with the external environment and further elicit the LLM’s memory and reasoning abilities to autonomously plan observations and actions.

Table 1 
Some examples for the different uses of LLMs.

The use 
of LLMs

Similar examples of other data- 
driven approaches in the building 
energy domain

Examples of LLM application

(a) • Building energy forecasting 
based on energy meter data 
[19,20]

• Building energy forecasting with 
insufficient energy data [21,22]

• Non-intrusive measurements for 
thermal comfort [23]

• Equipment fault detection and 
diagnosis [24]

• Data-mining for building 
energy conservation using GPT 
models [27].

• Pure natural language 
processing (NLP) tasks, such as 
academic text generation [28], 
IDF text file generation [29]
and modification [30].

(b) • Equipment operation control 
[25]; Model-free control 
methods for building energy 
systems [26]

• HVAC terminal control with 
GPT-4 [31]

(c) No example (traditional data- 
driven algorithms do not have 
emergent capabilities such as 
reasoning)

• BIMS-GPT [32]
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generation, computation, language-based reasoning, and decision- 
making. Such language-intensive tasks can be efficiently handled 
by current LLMs, which excel in such tasks compared to other 
modalities.

• Special attention should be paid to injecting domain knowledge into 
generic LLMs. We believe that LLMs with domain knowledge injec
tion can better understand the concepts in building energy optimi
zation, thereby helping engineers accurately accomplish their tasks.

The expected value of our work is substantial. For automating 
building energy tasks, our work explores the effectiveness of developing 
new LLM-based approaches to address the critical challenge of diverse 
inputs and aims to reduce the workload of engineers in language- 
intensive tasks. In the context of solving energy optimization prob
lems, our work aims to explore the combination of data-driven and 
knowledge-driven approaches using LLMs’ ability to handle linguistic 
tasks. From an algorithmic application perspective, our work is part of 
the LLM application framework design, an attempt to develop a new 
LLM-based multi-agent framework for specialized tasks. Our work is a 
novel attempt, and we hope it can provide inspiration and promote the 
development of LLM-based agent systems in the building energy 
optimization.

The remaining part is organized as follows: Section 2 reviews the 
related work in LLM application and knowledge injection, and energy 
performance diagnosis and retrofit recommendation using language. 
Section 3 provides a comprehensive overview of the technical back
ground for LLM application, including the fundamentals, basic concepts 
of LLM, and practical methods and applications of LLM-based task 
solvers. Section 4 describes our proposed multi-agent based framework 
and the knowledge injection methods used in the framework. Section 5
describes the experiments focus on the effectiveness of knowledge in
jection we conducted before developing the framework. Section 6 de
scribes the case study of the proposed framework, which is divided into 
two parts, one on the performance evaluation and the other on the 
robust test on diverse engineering data. Section 7 discusses the potential 
of further developing LLM-based multi-agent systems as automated task 
solvers in building energy optimization. Finally, Section 8 concludes our 
work and looks forward to future work.

2. Related work

2.1. Applications of LLM and knowledge injection

Since the release of ChatGPT and GPT-4, researchers have been 
interested in applying LLMs in building construction industry and en
ergy management. They discussed the potential applications of LLMs in 
building energy efficiency and decarbonization studies [35], as well as 
in the construction industry [36]. Several studies have investigated the 
application of LLMs in building energy management. Zhang, et al. [27]
developed a data-mining framework for building energy conservation 
using GPT models. Rysanek, et al. [28] explored the data inference and 
prediction capabilities of GPT-4 in building science and generated aca
demic language with GPT-4. Gang, et al. [29] fine-tuned an LLM model 
to generate IDF files for building energy modeling (BEM) with Ener
gyPlus. Song, et al. [31] tested the performance of using GPT-4 to con
trol the HVAC terminal of a building. They implemented the interaction 
application type in Fig. 2(b) by controlling the HVAC terminal in the 
simulation environment directly using the actions provided by GPT-4, 
collecting the environment state, and then feeding it back to GPT-4. 
Zheng, et al. [32] developed BIMS-GPT to automatically search infor
mation in building information modeling (BIM) data to meet the user 
requirements. BIMS-GPT directly interacts with users and plans the 
search tasks to complete accurate BIM searches (i.e. application type in 
Fig. 2(c)). Previous discussions and research aimed to complete domain 
tasks with a single LLM model or single LLM-based agent. LLM-based 
multi-agent systems can combine the capabilities of multiple LLMs to 

accomplish more complex tasks. Zhang, et al. [30] utilized an LLM- 
based multi-agent system to modify the IDF files. In their work, multi
ple agents took on the tasks of modifying text in different fields of the 
IDF files. Table 1 summarizes the types of LLM applications for the above 
tasks. Currently, not enough attention has been paid to the development 
of LLM-based multi-agent system for building energy management tasks. 
Furthermore, LLM-based multiple cognitive agent systems remain an 
unexplored field in building energy management research.

In applying LLMs in building energy management, the performance 
boundaries of using generic LLMs have also received attention. Lu, et al. 
[37] explored the mastery of knowledge and skills in HVAC systems of 
different generic LLMs. Their work suggests that GPT4 and GPT3.5 have 
acquired some domain knowledge, but it is still insufficient for accom
plishing domain-specific tasks. Some researchers have attempted to 
inject domain knowledge into generic LLMs to make them outperform 
zero-shot generic LLMs in tasks. Zheng, et al. [32] designed prompts 
with domain context for BIMS-GPT to help align GPT models with BIM 
information searches. Song, et al. [30] developed an expert demon
stration dataset to add expert demonstrations in prompts and evaluate 
their impact on GPT performance when applied to HVAC control. Gang, 
et al. [29] injected BEM knowledge into the LLM model through fine- 
tuning. The above work demonstrates the importance of knowledge 
injection for generic LLMs to accomplish tasks in the field of building 
energy management. In order to better apply LLMs to domain tasks, 
knowledge injection methods deserve further exploration.

2.2. Performance diagnosis and retrofit recommendations using natural 
language

The main approach for energy performance diagnosis can be cate
gorized into two types: knowledge-driven and data-driven [38]. The 
development of data-driven methods requires a large amount of 
building-specific operational data [39]. Knowledge-driven methods, on 
the other hand, are developed based on diagnosis rules and expert 
knowledge, and thus require less operational data. Knowledge-driven 
methods include developing energy simulation models and using en
ergy benchmarking with energy performance indicators (EPI). The 
former is detailed but time-consuming [40], while the latter is easy to 
use and especially suitable when building layouts are not available. A 
typical EPI is energy use intensity (EUI) for building-level performance 
diagnosis. It has been benchmarked by a number of researchers [41] and 
is widely used in national programs [42,43] and codes [44]. To specif
ically identify the causes that affect energy efficiency, researchers have 
proposed EPIs for system-level [2], equipment-level (component-level) 
[45,46], and room-level [39] to achieve detailed performance diagnosis. 
Knowledge-driven methods, especially the energy benchmarking with 
EPI, perform diagnostics based on rules [40]. These rules can be accu
rately described using language, which opens up opportunities to 
automate the diagnostic process using LLM. Currently, research on 
automated energy efficiency diagnosis with LLMs remains a gap.

Retrofit recommendations in audit reports, focused on energy effi
ciency retrofits for buildings, require a great deal of expert experience 
and knowledge [47]. Traditional knowledge-based methods require 
abundant research time, whereas AI methods are less time-consuming 
but less interpretative. Case-based approaches are considered to be an 
effective combination of the two, utilizing retrofit cases from similar 
buildings to aid in decision-making [3]. In the case-based approach, 
researchers use NLP methods to find similar case buildings and leverage 
the tacit knowledge hidden in these cases [48]. Many studies have 
shown that the case-based approach is effective in early remodeling 
recommendations [49], indicating that the knowledge contained in 
natural language is beneficial for early remodeling recommendations. 
The popularity of LLMs gives hope for using them in knowledge-based 
retrofit recommendations. Rysanek, et al. [28] used LLM to provide 
retrofit recommendations, but without clear reasons, and the knowledge 
on which the decisions were based was not explicit due to the highly 
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black-boxed nature of LLMs. Not enough attention has been paid to 
retrofit recommendations that utilize explicit knowledge.

3. Technical background for LLM application

3.1. Fundamentals of LLM

3.1.1. LLM model structure
The development of LLM has gone through several stages: basic 

language modelling, pre-trained language models (PLMs), and then 
LLMs. In the basic language modeling stage, the crucial technique was 
Word2vec (i.e., word embedding) [50,51]. Word2vec vectorizes words 
to ensure that those with similar meanings are proximate in a lower- 
dimensional vector space, and thus enabling computers to address 
language-related issues. It describes the essential foundations of ma
chine language modelling problems.

PLMs were developed based on a key model, the Transformer, and 
employed a key training method: pre-training and fine-tuning. The 
Transformer [52] was proposed to solve sequence-to-sequence tasks and 
is now widely used in various fields [53]. Unlike traditional models 
[55,56], the Transformer excels at capturing dependencies over long 
distances [54] by introducing self-attention into a general Seq2seq 
structure (i.e. encoder-decoder structure) [57,58]. Pre-training and fine- 
tuning [59] enhance model’s performance without extensive labeled 
data for the downstream task. Pre-training enables the model to obtain 
generalization performance in language modelling [60]. Fine-tuning 
further tailors the model to specific tasks, ensuring optimal perfor
mance [61].

Latter, researchers found that scaling the model size or the training 
data size of PLMs can improve model capacity and enable them to solve 
complex tasks [62]. For example, GPT-3 (175 billion parameters) [63]
can solve downstream tasks with simple instructions before fine-tuning, 
whereas GPT-2-XL (1.5 billion parameters) [64] cannot [53]. These 
large PLMs became known as LLMs [65]. Depending on the part of 
Transformers and the type of modification used in model structure, LLM 
models can be divided into two categories: encoder-decoder or prefix- 
decoder language models (also known as non-GPT style models) and 
causal-decoder language models (also known as GPT style models) [66]. 
Models with different architectures specialize in different tasks, but a 
recent study stated that scaling the model size may reduce the ability 
differences caused by model architecture [67]. Currently, most state-of- 
the-art LLMs are causal-decoder models, e.g., GPT-4, LLaMA [68], 
Claude, and Bard, while T5 [69] is an encoder-decoder model and GLM 
[70] is a prefix-decoder model.

3.1.2. Adaptation methods for LLM
Most access to LLMs is currently through the prompting interface or 

API, such as GPT-4, Claude, and Bard, while some open-source LLMs (e. 
g., LLaMA) can be accessed by loading model checkpoints. None of these 
access methods require changes to the model structure, making LLMs 
highly black-boxed and integrated in application. Methods for adapting 
them to specific tasks are engineering-oriented, focusing on the process 
rather than requiring extensive AI expertise. Furthermore, these 
methods can be generalized across various domains [34].

Current adaptation methods are inextricably linked to three emer
gent abilities of pre-trained LLMs.

• Instruction following: After fine-tuning using a mixture of multiple 
downstream task datasets (i.e., instruction tuning), LLMs perform 
well on unseen downstream tasks [71].

• Few-shot learning (in-context learning) [63]: By providing a few 
natural language commands and/or one task demonstration (i.e., 
one-shot, zero-shot), LLMs can perform the desired tasks without 
additional training or gradient updates.

• Multi-step reasoning: Small language models cannot solve complex 
reasoning tasks [72]. LLMs can solve such tasks with the chain-of- 
thought (CoT) prompting strategy [73].

These abilities reflect that LLMs can adapt to downstream tasks 
without gradient updates. Fine-tuning is no longer the only option for 
adapting to downstream tasks, providing new possibilities for LLM 
adaptation methods [74]. The main approaches to model adaptation can 
be divided into two groups.

• Supervised fine-tuning (SFT): Fine-tuning the pre-trained model to 
enable it to follow instructions. Reinforcement learning with human 
feedback (RLHF) is a significant type of SFT method that aims to 
align the LLM with human values, and is used in the development of 
InstructGPT [71] and ChatGPT [13].

• Prompt engineering: Prompt engineering aims to design suitable task 
instructions or specific in-context learning strategies to help elicit the 
emergent abilities of pre-trained LLMs [34] without extra gradient 
updates [74]. The LLM can be instructed to perform the desired task 
by specifying in a prompt the role it needs to play, the formatting 
requirements for the output, etc [75]. Besides, CoT [73], Reasoning 
and Acting (ReAct) [76], and Retrieval-Augmented Generation 
(RAG) [77] are popular prompting strategies used in prompt engi
neering tasks. The CoT prompting strategy achieves complex 
reasoning capabilities through intermediate reasoning steps. The 
ReAct prompting strategy combines the reasoning and action capa
bilities of LLMs, enabling them to solve more complex reasoning and 
decision-making tasks. The RAG strategy incorporates retrieved 
documents into the prompt to provide additional information for 
LLM generation.

3.1.3. Current shortcomings of LLM
LLMs have been proven capable of addressing a wide range of real- 

world problems that extend beyond the traditional definition of down
stream tasks in NLP [66]. The abilities of generic LLMs offers hope for 
the development of LLM-based task solvers to replace large amounts of 
repetitive work in domain-specific tasks (practical methods and appli
cations can be found in Section 3.2). It should be noted, however, that 
current LLMs still have the following shortcomings which may affect 
task performance.

• Hallucination: Hallucination refers to the fact that LLMs sometimes 
generate text that contains fictitious, meaningless, or incorrect in
formation [78]. For example, when asked about the specific standard 
suitable for designing an air-conditioning system in China, the LLM 
may mislead user into adopting incorrect standards.

• Knowledge cutoff: Because LLMs are trained on data that is time- 
sensitive, they may generate responses that are outdated. For 
example, when users inquire about a multi-zone infection risk 
assessment model of airborne viruses on cruise ships proposed in 
2023 [79], an LLM trained with data before 2023 may provide 
outdated or irrelevant details due to its training data limitations.

For further development and application, knowledge injection 
techniques are considered to be effective in addressing the effects 
brought by such shortcomings (detail descriptions can be found in 
Section 3.2.1).

3.2. Practical applications of LLM-based task solvers

3.2.1. Knowledge injection techniques
Model adaptation methods can be used to inject domain knowledge 

into LLMs, reducing the impact of the above shortcomings when applying 
LLMs to specific domain tasks. For instance, ChatDoctor [80] injects 
medical knowledge into LLaMA-7B by SFT with a patient-physician con
versation dataset, effectively improving the LLM’s ability to provide 
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medical advice. Instead of updating model parameters to learn domain 
knowledge, a common method is to combine queries with relevant doc
uments and feed them into the LLM [81]. The RAG strategy with proper 
prompt design has been proven to be a potent method for bolstering the 
LLM’s capabilities in generating factually grounded responses [77]. This 
method involves augmenting the encoding process with extensive docu
ments or passages retrieved from unstructured data, thereby improving 
the LLM’s performance in outputting accurate answers, reducing hallu
cinations, and keeping the knowledge up-to-date [82].

SFT can inject domain-styled knowledge into the model and enhance 
the specialization of the model output, but the need for gradient update 
training makes it difficult to update frequently. RAG, on the other hand, 
has the advantage of injecting real-time updated knowledge data into 
the model by simply updating the knowledge source. At the same time, 
RAG supports models that output results based on explicit knowledge 
sources, which makes it applicable to a wider range of application sce
narios. Recent research by Microsoft has demonstrated that RAG per
forms better than SFT in the injection of domain knowledge into LLMs 
[83]. However, SFT also has the advantage of enabling models with 
domain style output capabilities. Therefore, most domain models are 
built following a roadmap that initially involves injecting domain 
knowledge based on RAG, and then combining this with SFT to further 
align with the requirements for domain-specific tasks (e.g., legal coun
seling in the field of law). ChatLaw [84] and ChatDoctor [80] were 
developed using SFT to enhance the style and ability to solve domain- 
specific tasks, and using RAG to ensure that knowledge is up-to-date 
and accurately.

3.2.2. Agent and multi-agent systems
The task planning and reasoning capabilities emerging from LLMs 

give them great potential for further development into AI agents [85]. 
Researchers use LLMs as the major component of the brain or controller 
of the agents and expand their perceptual and action space through 
strategies such as multi-modal perception and tool utilization [86]. 
These agents can exhibit reasoning, planning abilities and the ability to 
interact with the environment through prompting strategies for LLMs, 
such as CoT and ReAct [18]. With LLM’s in-context learning capabilities, 
agents can have short-term memory and learn to utilize tools through 
structured prompts with instructions and examples [87]. LLM-based 
agents have been applied to various real-world tasks, such as travel 
planning [88], web automation [89], math theorem proving [90], and 
chemical scientific discovery [91].

Since LLMs have natural language understanding and generation 
capabilities, they can interact seamlessly, enabling collaboration and 
competition between multiple agents [92]. Through collaboration, 
multiple agents can handle more dynamic and complex tasks than a 
single agent. In an LLM-based multi-agent system, multiple agents are 
given different profiles and collaborate on a task in a shared task oper
ational environment. They are defined with their roles, traits, actions, 
and skills through prompt engineering and can interact with the oper
ating environment using tools (calls to the agents-environment inter
face) [86]. Currently, several LLM-based multi-agent systems have been 
developed for multiple applications, such as automated software 
development [16], automated 3D modeling [93], and human society 
simulation [94].

3.2.3. Model evaluation methods
Many LLM applications, agent systems, and multi-agent systems are 

developed to automate human work. Since work automation tasks vary in 
reality, the evaluation methods for these systems are varied and context- 
specific. Some work automation tasks have a research base and public 
benchmark datasets, such as HumanEval [95] for automated software 
development [16]. Researchers can evaluate systems using these public 
benchmark datasets. However, some tasks do not have benchmark data
sets and require subjective evaluation with human annotation [85]. For 
example, DesignGPT [96] is a multi-agent system developed for design 

collaboration in which two experts independently score each design so
lution. Additionally, LLMs are sometimes asked to be the judge to carry 
out subjective assessments in evaluation [85]. Chemcrow [97] is a multi- 
agent system designed for chemical research, with one evaluator being an 
LLM and one human expert conducting the assessment.

4. Proposed framework

4.1. Multi-agent based framework overview

4.1.1. Workflow description
The framework aims to use the building energy audit report as the 

input and then complete energy efficiency diagnosis and audit recom
mendations for the building. Firstly, the energy audit report is loaded to 
construct a knowledge database. Meanwhile, a retriever tool (Fig. 3 (d)) 
is developed to retrieve the needed information from the knowledge 
database and then inject it into LLMs. Other documents required to 
complete the task, such as energy codes, handbooks, and engineering 
experience reports, are loaded in the same way to build the knowledge 
database and develop the corresponding retrievers. Then an LLM-based 
multi-agent team completes the task through three stages, as shown in 
Fig. 3 (a). The three stages are building information processing, per
formance diagnosis, and retrofit recommendation.

• Building information processing: This stage aims to extract building 
metadata from the audit report and create a structured summary of 
building metadata to provide contextual information for subsequent 
tasks.

• Performance diagnosis: In this stage, we enable multilevel diagnosis 
of energy performance by calculating the EPI.

• Retrofit recommendation: Based on the first two stages, we try to 
combine explicit knowledge to make retrofit recommendations for 
the given building.

Detail methods used in three stages are described in Section 4.3.

4.1.2. Agent roles and functions
We divided task completion in every stage into three steps: plan, 

execute, and summarize. Thus, we defined three kinds of roles in the 
framework: Planner, Researcher, and Advisor. The Planners is responsible 
for dividing a complex task into several parallel tasks. Researchers are 
responsible for acting with different tools to accomplish each parallel task. 
The Advisor is responsible for summarizing the results of all parallel tasks. 
In every stage, multiple agents with these three roles cooperate and act 
with tools to complete subtasks. Since the division of tasks in the building 
information processing stage can be determined by the composition of the 
schema, the roles of Planner and Advisor are omitted.

As shown in Fig. 3 (b), every agent is developed based on an LLM 
model, with different roles and tasks defined through structured 
prompts. In addition, CoT and ReAct prompting strategies were 
employed to enable the agents to engage in task-planning, self-reflection 
and acting with tools. Agents can automatically plan tasks based on the 
information and data available for each building, allowing them to 
handle tasks with different inputs. The prompts used in our framework 
are categorized into two main types based on the prompting strategy 
employed: prompts that use only the CoT strategy (marked as CoT-only 
prompts), and prompts that use both the CoT and ReAct strategies 
(marked as CoT-ReAct prompts). Detailed information and examples of 
these prompts can be found in Appendix E.

4.1.3. Tool integration
Two kinds of tools are developed to help agents complete their tasks: 

the Python sandbox tool and the retriever tool. The Python sandbox tool, 
as shown in Fig. 3 (c), can run the Python codes generated by the LLM 
and print the results. Agents can perform complex calculations and data 
analysis by generating Python codes and then using the Python sandbox 
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tool [98]. For example, when an agent needs to calculate the annual 
operating hours of a chiller based on schedules for different seasons and 
different day types, it can generate code and then call the Python 
sandbox tool to run the code and complete the calculation. The retriever 
tool is developed by injecting knowledge into an LLM through the RAG 
prompting strategy and can answer document-specific questions. The 
interaction example for the retriever tool in Fig. 3 (d) applies to all 
retriever tools in the workflow, such as the audit report retriever, 
handbook retriever, and so on. Agents can collect accurate information 
from specific documents through a retrieval tool developed for those 
documents. Detailed methods used in the retriever tool development are 
illustrated in Section 4.2 and Fig. 4.

4.2. Knowledge database and retriever tool

4.2.1. Injected multi-modal knowledge
The generic LLM usually doesn’t have enough knowledge for specific 

tasks in building energy optimization. Therefore, further development of 
the LLM-based agent requires knowledge injection. The aim of devel
oping the knowledge database and the retriever tool is to help the LLM- 
based agent acquire more knowledge when completing tasks. The 
knowledge that needs to be injected and the knowledge files we used are 

listed in Table 2. To support knowledge injection, knowledge should be 
embedded into a form in which machines can compute distances be
tween knowledge meanings. We use natural language to describe 
knowledge and embed the knowledge into vectors using a dynamic text 
embedding model, text-embedding-ada-002 from OpenAI [100,101].

4.2.2. Development of the knowledge database
The knowledge files we used are in multiple modalities (including 

images, text, tables, formulas, etc.). Therefore, we loaded the unstruc
tured documents in different modalities separately and used Markdown 
formatting to preserve the structure of the document. Text data could be 
used directly after loading, while data in other modalities required 
further processing. For example, table and formula data may be struc
tured incorrectly, and image data required additional processing to 
retain information in text format. We specified the target format for 
processing, invoked an LLM with vision capability to process the data 
into informative text, and performed necessary manual checks. All the 
informative texts were filled back into the Markdown structure with 
necessary delimiters. The Markdown texts were split into chunks based 
on the delimiters (i.e., “#”) while preserving hierarchical structure and 
separating different original modalities of the data. All the text chunks 
were embedded as vectors using the text embedding model, and then 

Fig. 3. The proposed multi-agent based framework. (a) The entire workflow. The entire workflow consists of three stages. Each stage is completed by agents with 
different roles and operating different tools. (b) An example of the LLM-based agent development. Use a prompt to specialize the role and the task of an LLM to 
become an agent. When completing a task, the agent will plan the steps needed, determine the tools to use, and judge whether the task has been completed. (c) An 
interaction example between an agent and the Python sandbox tool. The agent generates Python code and observes the results printed by the Python sandbox after 
running the code. (d) An interaction example between an agent and the retriever tool. The agent asks a query, and then the retriever retrieves the knowledge and 
provides the result. The retriever was developed based on the RAG strategy.
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stored in a vector database. With knowledge embedding stored, the 
vector database was acknowledged as the knowledge database. The 
knowledge database development workflow is shown in Fig. 4 (a). 
Detailed information and examples in this process can be found in A 
ppendix A.

4.2.3. Retriever tool development
The retriever tool completes the retrieval task and generates an 

answer when an agent asks for information. It is developed based on the 
RAG prompting strategy, and the detailed example of the workflow is 
illustrated in Fig. 4 (b). A rewrite process is added to the workflow to 
enrich the expression of input queries and thus improve retrieval per
formance [101]. Cosine similarity is used to measure the semantic 
similarity of the knowledge and queries. A structured prompt with a 
prompt template is used to call an LLM to give the final answer. The 
structured prompt includes the input user query and the related 
retrieved knowledge in text chunks. To further reduce the LLM’s 
hallucination [102], the structured prompt also includes a role in
struction, such as having the LLM act as an HVAC expert and honestly 
admitting when it lacks the relevant knowledge.

4.3. Framework stages

4.3.1. Building information processing
Determining a structured framework (i.e., semantic data schema) for 

information extraction can ensure consistency and standardization of in
formation summaries, thus facilitating subsequent tasks [103]. We adapt 

Fig. 4. The development workflow for knowledge database and retriever tool. (a) The knowledge database development workflow. Detailed descriptions can be 
found in Section 4.2.2 and Appendix A. (b) An example of the workflow when the retriever tool is called. An agent calls the tool with a query and then an LLM rewrite 
the query to enrich its expression. Cosine similarity is used to measure the semantic similarity between vectors, and similar vectors are retrieved from the knowledge 
database using both the raw and the rewritten queries. Retrieved vectors are then recovered to be retrieved text chunks, in which most of the information is related to 
the query while some may not be relevant. Subsequently, roles and tasks are assigned to an LLM using a prompt. All retrieved text chunks are used as context, with 
the raw query for the LLM to generate an answer.

Table 2 
Knowledge needed for energy efficiency diagnosis and retrofit decision.

Retriever tool 
name

Needed information Knowledge document

Handbook 
retriever

Accurate fundamental 
knowledge of building energy 
systems, especially heating, 
ventilating and air 
conditioning (HVAC) systems, 
related principles, etc.

• ASHRAE fundamental 
handbook

Audit report 
retriever

Basic information about the 
building, information about 
the building energy system, 
information about the 
building energy use, etc.

• Energy audit report for the 
specific building

Engineering 
experience 
retriever

Engineering experience and 
case experience related to 
energy-saving retrofits. 
Including common energy- 
saving retrofit measures, 
corresponding energy savings 
and empirical data on 
recovery cycle, etc.

• An engineering technical 
report: Effectiveness of 
energy retrofit methods in 
public buildings [99]

Building code 
retriever

Detailed information on 
building energy efficiency 
design parameters, 
performance indicator 
calculation methods and 
thresholds for the region 
where the building is located.

• Economic operation of air- 
conditioning systems [44]
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the information form from the Energy Audit Standards for Public Build
ings DG/TJ08-2114–2020 [104] to an expandable JSON semantic schema 
as the target structure for information extraction. This schema includes 
the building metadata required for an energy audit and offers common 
options. The required information includes basic information, building 
envelope, energy system type, equipment performance, and more.

The extraction of building information falls under the information 
extraction (IE) tasks in NLP, which aim to extract structural knowledge (e. 
g., entities, relationships, and events) from pure natural language text 
[105]. Our task is more complex than traditional IE tasks since the se
mantic schema is expandable according to the system type of the building, 
and the amount of information extracted varies among cases. Meanwhile, 
some information needs to be inferred according to the context if it is not 
directly mentioned, such as the distribution system type. To address these 
complexities, we designed a CoT-only prompt and fill it with different one- 
shot examples and necessary background knowledge for different infor
mation extraction task (detailed information on the prompt components 
can be found in A ppendix E). A Researcher agent is tasked with accom
plishing this IE task using these prompts.

4.3.2. Performance diagnosis
The energy performance diagnosis method used in our work is multi- 

level diagnosis based on EPI. The EPIs used in our work are listed in 
Table 3 [44,2]. The EPI at the building level applies to all buildings, 
whereas the applicable EPIs at the HVAC component level vary from 
building to building depending on the system type. The benchmark for 
comparison of the EPI at the building level is the statistical distribution 
of buildings of the same type in the local area. The benchmark for an EPI 
at the HVAC component level is the threshold value, which we use as 
provided by [44].

To calculate these EPIs, relevant data needs to be collected from 
audit reports. However, the data available for calculation varies from 
case to case due to the heterogeneity of the audit reports [106]. For 
example, the total power consumption is always reported, while the 
power consumption of a specific device may not always be available. 
Meanwhile, missing data situations are widespread among audit reports 
and they prevent accurate energy efficiency diagnostics in many build
ings. To make further retrofit recommendations, a quantitative perfor
mance diagnosis would be helpful. Thus, designing a robust 
performance diagnosis method to cope with different missing data sce
narios is a major challenge for the automated workflow. In our work, 
estimation methods (listed in Table 4) are used when the directly needed 
data is not available. These estimation methods were adapted from the 
Energy Audit Standards for Public Buildings DG/TJ08-2114–2020 
[104]. Although these estimation methods may not reflect the real state 
of the building system very accurately, they can provide engineers with 
a reference result when there is insufficient data. At the same time, we 
required the model to provide the calculation process along with the 
output results and clearly indicate whether the estimation has been 
carried out or not, in order to minimize the impact caused by the esti
mation. As shown in Fig. 3 (a), several agents with three distinct roles 
collaborate to complete the task. The flow of planning, subtasks, and 
actions of an agent within a calculation task is shown in Fig. 5. Due to 

the various system types and data heterogeneity of the building, every 
action flow of the agents is different.

4.3.3. Retrofit recommendation
Retrofit recommendations should be appropriate to the building and 

supported by sufficient background knowledge. Thus, we excite the 
reasoning abilities of LLMs with CoT prompting strategy to allow LLMs 
to analyze and make specific retrofit recommendations in the context of 
the current energy use of the building. We also design a multi-agent 
collaboration framework that allows LLMs to give recommendations 
together with reasons based on explicit knowledge and reliable knowl
edge sources. As shown in Fig. 3 (a), the Planner agent at this stage will 
analyze the previously generated building metadata and performance 
diagnosis results and plan the direction of retrofit recommendations 
based on a set of commonly used retrofit directions derived from the 
literature [47]. The needed information, including previous results and 
retrofit direction options, will be provided to the agents as a component 
of the CoT-ReAct prompt and thus guide their planning. Several 
Researcher agents will then collect relevant HVAC background knowl
edge, engineering experience, and the necessary building information by 
interacting with the handbook, engineering experience, and audit report 
retriever tools (detailed information of the documents is listed in 
Table 2). Agents will communicate with each other and collaborate to 
collect information for comprehensive analysis. Finally the Advisor 
agent will integrate all the collected information to make specific rec
ommendations for the building with corresponding reasons and 
knowledge sources within the original directions proposed by the 
Planner agent. The framework will provide recommendations under the 
ASHRAE energy audit Level I requirements along with a description of 
the rationale, advantages and disadvantages, thus helping human ex
perts to accomplish further decision making.

It is worth mentioning that currently the aim of this stage is to pro
vide richer but also reasonable retrofit choices for engineers and thus 
help them speed up their work without having to spend extra effort 
searching for information. The results do not need to be totally certain 
and consistent among runs, but outputs that differ too much between 
runs can make the framework unreliable. The Planner, Researcher, and 
Advisor agent structure in this stage is designed to reduce the random
ness of the recommendation output. The Planner agent is asked to 
choose suitable and sufficient directions from a set of options and the 
downstream agents will make recommendations within the direction 
choice. Thus, each run of the multi-agent framework will take into full 
consideration the retrofit directions applicable to the building system 
and then output retrofit recommendations that cover consistent 
directions.

5. Experiment: Effectiveness of knowledge injection with the 
retriever tool

5.1. Experimental setup

To test the knowledge injection effectiveness of the retriever tool, we 
took one knowledge document as an example, developed the knowledge 

Table 3 
Energy performance indicators (EPI) for multi-level diagnosis.

Level Description EPI

Building Energy use of the whole building
EUI =

Total power consumption(kWh)
Building area(m2)

Building Cooling load allocation for building area ACL =
Configured cooling load(W)

Building area(m2)

HVAC component Energy performance of the cold and heat source
COP =

Accumulated cooling load(kWh)
Total power consumption of the source equipments(kWh)

HVAC component Energy performance of the distribution system
WTF =

Accumulated cooling load(kWh)
Total power consumption of the distribution system(kWh)

HVAC component Energy performance of the HVAC terminal
EER =

Accumulated cooling load(kWh)
Total power consumption of the HVAC terminals(kWh)
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database, and created a retrieval tool individually. The knowledge 
document we chose for experiment is the ASHRAE Fundamental 
Handbook. We selected the ChatGLM-std model (marked as GLM-std) 
and the GPT3.5-Turbo model as the base models. We then developed 
the knowledge database in Chroma and created two retriever tools using 
Langchain [107] in Python. Additionally, we chose the GPT 4-Turbo 
model, which is regarded as the state-of-the-art (SOTA) LLM, as the 

benchmark model for comparison. All models were called using the 
official APIs provided by the model issuers (OpenAI and ZhipuAI). Test 
cases were tested in zero-shot settings. Other settings for the retriever 
tool development can be found in Appendix B.

To evaluate the knowledge injection effectiveness of the retriever 
tool, we generated an evaluation dataset. The dataset was constructed 
with multiple statements, and the LLM was asked to judge whether each 

Table 4 
Estimation method for the unavailable data.

Needed data Estimation method

Configured cooling load Configured cooling load =
∑

all non− standby

cold sources

Rated cooling capacity of each cold source(kW)

Accumulated cooling load Accumulated cooling load = η× Configured cooling load(kW)

where η is a factor to estimate the ratio of a building’s total annual load to its annual peak load. The exact value is related to the region where the 
building is located. In our work, the value is taken as the statistical average obtained from the simulation for the Shanghai region. 

Total power consumption 
of the source equipment / 
Total power consumption 
of the distribution 
system/ 
Total power consumption 
of the HVAC terminals 
(Esubsystem)

Esubsystem =
∑

all relevant equipment

in the subsystem

Energy consumption of the equipment(kWh)When Energy consumption of the equipmentis not available from the report,

Energy consumption of the equipment(kWh) = Rated power of the equipment(kW)×

Annual operating hour of the equipment(h) When Annual operating hour of the equipmentis not available from the report,

Annual operating hour of the equipment =
∑

s∈S

(∑

d∈Dworkday
hworkday

s,d +
∑

d∈Dweekend
hworkeend

s,d

)

where S is the set of seasons; Dworkday and Dweekend represent the sets of weekdays and weekends, respectively; hworkday
s,d and hworkeend

s,d represent the number 
of operating hours of the equipment on weekdays and weekends, respectively.

* The subscript symbol subsystem represent heat and cold source equipment, distribution systems, and HVAC terminal equipment, depending on the scenario.

WTFcalcualtion 
task for 

chilled water 
system

WTFcalcualtion 
task for 

cool water 
system

EUI 
calculation 

task

...

Energy diagnosis
researcher

Energy diagnosis
researcher

Energy diagnosis
researcher

EPI calculation

Energy diagnosis
researcher

If no need of estimation

until all needed 
information collected

until all needed 
calculation completed

until all needed 
calculation completed

...

...

WTF result 
for 

chilled water 
system

WTF result 
for 

cool water 
system

EUI result

WTF for cool water system calculation

WTF for chilled water system calculation

EUI calculation

Energy diagnosis
advisor

Energy diagnosis
planner

Fig. 5. The flow of planning, subtasks, and actions of the agents within an efficiency diagnosis task. When given a building, an agent will first plan several EPI 
calculation tasks based on the building information form and the applicable scenarios of EPIs. For each EPI calculation task, an agent will call the Audit report 
retriever tool to get the required data and generate the calculation code to call the Python sandbox tool to perform the calculations. If the required data is not 
available, the agent will perform the estimation, calling the same tools. The actions of acting with tools may be repeated multiple times until the corresponding task is 
completed. Finally, an agent will summarize the results of all EPI calculations.
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statement was right or wrong. The accuracy of the judgement indicates 
whether the LLM captured the related knowledge or not [108]. We used 
ASHRAE Fundamental Handbook and a textbook used in China to 
generate the evaluation dataset (detailed information can be found in 
Appendix B). The dataset contains 7,549 statements, making its size 
comparable to the benchmark datasets commonly used in the field of 
LLM applications [109]. We used metrics for classification problems to 
evaluate the models. The metrics include Accuracy, F1 score, and 
Balanced Accuracy (formulas can be found in Appendix B).

5.2. Results and analysis

Table 5 lists the accuracy on the evaluation dataset. Two retriever 
tools (marked as RAG-GLM and RAG-GPT 3.5, respectively) achieve 
better performance in all metrics on the evaluation dataset than the base 
models and the SOTA model (GPT 4-Turbo). Due to the limitation of 
parameter quantity, the GPT series models performed better than GLM 
model on the evaluation dataset. According to the results of F1 score 
(negative), the GPT 4-Turbo model is stronger than the GPT 3.5-Turbo 
model in judging incorrect statements.

We use Balanced Accuracy to be the main metric in performance 
analysis (results for other metrics can be found in A ppendix C). As 
shown in Fig. 6 (a), the two retriever tools show better performance than 
the three generic LLMs on each theme of the evaluation dataset, with the 
RAG-GPT 3.5 achieving the best performance on most themes. The 
retriever tools achieve better accuracy on all themes, demonstrating the 
effectiveness of knowledge injection. In Fig. 6 (b) and 6 (c), we take the 
SOTA model as the benchmark and calculate the ratio to the SOTA 
model’s balanced accuracy of the two adaptation cases before and after 
the adaptation. In each theme, the retriever tools perform better than the 
SOTA model, while their base models perform worse than the SOTA 
model. These results indicate the effectiveness of the knowledge injec
tion, regardless of the theme of the knowledge and the performance of 
the basic models.

6. Case study

6.1. Framework development and evaluation metrics

We developed the multi-agent framework with Langchain and 
CrewAI [110] in Python. All agents are built with structured prompts 
based on the CrewAI agent. The multi-agent interaction was imple
mented using CrewAI sequential processes combined with text file 
writing and reading for key information (detailed descriptions can be 
found in A ppendix E). The implementation of the Python sandbox tool 
was adapted from the Python REPL (Read-Eval-Print Loop) tool in 
Langchain. The retriever tools were developed in the same way as Sec
tion 5, we use GPT 3.5-Turbo as the base model for retriever develop
ment. In the workflow realization of the first two stages, we used GPT 4- 
Turbo as the LLM backbone of the agent because most of the tasks at 
these stages were reasoning tasks, and GPT 4 was evaluated to be the 
current SOTA in terms of reasoning abilities [111]. Since there were no 
complex tasks in the retrofit recommendation stage, we used GPT 3.5- 

Turbo-16 k as the backbone to reduce costs. The temperature parameters 
of the LLMs used in the framework development were set to the lowest 
randomness setting (i.e., 0 for the GPT series).

To explore the end-to-end performance of the framework, we 
manually labeled the baseline results and defined metrics for the 
building information extraction and performance diagnosis process. For 
the building information extraction task, we used two evaluation met
rics: Precision (accuracy of target extracted information) and Recall 
(correctness of extracted information). For performance diagnosis, we 
defined a score to evaluate the degree of task completion, inspired by 
[97]. Detailed information can be found in A ppendix D. For retrofit 
recommendations, we compared the results to the original recommen
dations given in the report and defined the coverage of the original 
recommendations by the results as a metric (Coverage). We also invited 
domain experts to judge whether the generated recommendations and 
reasons are reasonable. Considering LLMs are probabilistic models and 
may generate different results each time, we ran the framework three 
times for each case to investigate the average performance. Every trial is 
conducted together with an AgentOps [112] session so that all behaviors 
of the agents can be observed and replayed.

6.2. End-to-end performance analysis

6.2.1. Case setup
We collected 63 energy audit reports (20 of which were electronic) 

from building owners and auditors. From these, we chose an informative 
and well-structured audit report as input to test the effectiveness of the 
framework (detailed information can be found in Appendix D). After 
careful manual checking, the text contained no obvious grammatical 
errors and was easy to read without too many long and complex sen
tences. To avoid information leakage, we manually removed the energy 
efficiency calculations and retrofit recommendations from the report. In 
the following discussion, this case is marked as Case #0.

6.2.2. Results and performance analysis
Table 6 summarizes the results of the validation metrics for each 

trial. In the building information extraction stage, the Recall metric 
reaches an average of 0.9627, indicating that the metadata extracted 
into the schema is mostly accurate. The Precision metric results suggest 
that the schema is well-expanded and most of the required metadata is 
extracted. This indicates that the building metadata generated by the 
framework is accurate enough, requiring only a few manual adjustments 
to achieve complete accuracy. This greatly reduces the amount of 
manual work involved in organizing the metadata from the text data.

The performance diagnosis score results show that most of the in
dicator calculation processes were planned correctly, information was 
extracted correctly, and most calculations were accurate. The main 
reason for not achieving a full score was the defective presentation of the 
text data in the report. The building uses forms of energy other than 
electricity, but the expression “annual energy consumption” was used to 
present the annual electricity consumption, leading to the extraction of 
incorrect information. Fig. 7 (c) provides an example of agent behaviors 
during this stage, showing how agents with three different roles coop
erate, act with tools, and complete the task step by step.

In the three trials, the framework gave 15–30 recommendations, 
with varying coverage of the original recommendations. The unmen
tioned recommendations were the direct replacement of heating and 
cooling source equipment and the addition of solar power. Instead, 
recommendations with similar objectives, such as adding inverters for 
heating and cooling source equipment, adjusting temperature differen
tials and flow rates to optimize the operation of chiller systems, adding 
energy storage devices, and participating in demand response programs, 
were mentioned. Because the current framework does not support 
retrofit cost analysis with reliable data sources, it is unable to rank the 
retrofit recommendations or accomplish decision-making for recom
mendations with similar objectives. Therefore, we can consider the 

Table 5 
Overview of the accuracy on the evaluation dataset.

Accuracy F1 score 
(positive)

F1 score 
(negative)

Balanced 
Accuracy

GLM-std 0.7824 0.8305 0.6959 0.7728
GPT 3.5- 

Turbo
0.8114 0.8590 0.7153 0.7857

GPT 4- 
Turbo

0.8183 0.8581 0.7474 0.8145

RAG-GLM 0.8559 0.8894 0.7933 0.8485
RAG-GPT 

3.5
0.8567 0.8873 0.8031 0.8607
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current results to be reasonable and the directions of the retrofit rec
ommendations to be consistent enough. The framework provides rea
sons along with the data sources when giving recommendations, as 
shown in Fig. 7(b). The recommendations were also reviewed and 
considered reasonable by an expert we invited.

The average token and money cost for the framework is summarized 
in Table 7. While it costs about $5 to complete the entire process, this is 
far less than the cost of a team of laborers and shows potential to 
significantly reduce repetitive human labor and costs.

6.3. Robust testing on diverse engineering data

6.3.1. Case setup
To test the performance of the framework on diverse cases, we chose 

energy audit reports of three buildings as inputs (marked as Case #1, #2, 
and #3). The three audit reports were completed by different audit units 
with different report structures and data organization. They include 
different available energy data with different data units. At the same 
time, the three buildings have different forms of energy systems, which 
require different information to be extracted and different indicators to 
be applied for energy efficiency diagnosis. Detailed information of the 
buildings can be found in A ppendix D.

The reports were simply processed to remove the retrofit recom
mendation information. Several data quality problems can be observed 
from the reports, as listed in Table 8. Readability refers to the ease with 
which a text can be read and understood based on linguistic features 
within the text. It is one of the key features of a text. We used the 
readability metrics provided by cntext [113] to evaluate the readability 
of the textual content of the reports. The readability metric was calcu
lated by combining the length of subordinate clauses and the proportion 
of adverbs and conjunctions in the sentences. A higher value of the in
dicator means that the text is more complex and less readable. As listed 
in Table 9, all three reports were less readable than Case#0 and each had 

several quality problems.

6.3.2. Performance analysis
Table 10 lists the results of the robustness tests. In the building in

formation extraction, the accuracy of the extracted information and the 
schema extension are mostly correct although they are degraded by the 
quality of the report text. Only a small amount of adjustment is required 
to achieve complete correctness. The performance diagnosis stage is 
somewhat affected by contextual inconsistencies and unclear references 
in sentences. These issues affect the accuracy of information extraction 
in some of the trials, thus impacting the final results. Although the 
planning and calculations in the tasks are mostly correct, proper pre
processing of the unstructured data is necessary and may further help 
improve performance. The framework made 15–18 recommendations in 
each trial. The retrofit recommendations cover consistent directions, 
though there is some deviation in the specific expressions. These rec
ommendations basically covered the original recommendations. And 
some recommendations were richer and more detailed than the original 
ones, along with verifiable reasons, which can provide reference for 
engineers. Overall, it can be suggested that the framework can handle 
the heterogeneous tasks brought about by diverse engineering data well 
and has good robustness.

7. Discussion: LLM-based multi-agent systems as automated task 
solvers

LLMs are of significant value in language-intensive tasks. Our frame
work exploits unstructured building data while assigning different pro
fessional roles to different LLMs and injecting linguistic knowledge into 
LLMs, providing a solution that effectively bridges the gap between data- 
driven and knowledge-driven approaches to building energy optimization 
tasks. There is a large amount of unstructured data in the building energy 
optimization process, and unstructured data often carries a large amount 
of expert knowledge. In the future, a building energy optimization auto
mation framework that combines data and knowledge can be further 
developed based on LLM utilizing building unstructured data such as work 
orders. At the same time, the multi-agent model structure has a clearer and 
more explainable structure than a single LLM model, and thus may help 
engineers to better understand the results and developers to further 
improve the model performance. Implementing the data-driven and 
knowledge-driven hybrid approach with LLM framework is a promising 
direction for the building and energy engineering domains that require 
trustworthy automated task solvers.

Meanwhile, in our framework, we developed the LLM models as 
cognitive agents, exploiting their ability to use tools, plan, learn and 

Fig. 6. Result comparison (a) Balanced accuracy for each theme on the evaluation dataset. The categories of themes are inspired by the parts of the ASHRAE 
fundamental handbook; (b) Comparison of the balanced accuracy of GLM-std model before and after adaptation with GPT 4-Turbo; (c) Comparison of the balanced 
accuracy of GPT 3.5-Turbo model before and after adaptation with GPT 4-Turbo.

Table 6 
Overview of the results (the results in brackets are the average results of three 
times).

Number of 
the trial

Building information 
extraction

Performance 
diagnosis

Retrofit 
recommendation

Precision Recall Score Coverage

1 0.9647 0.9794 0.9750 0.8182
2 0.9294 0.9400 0.9125 0.5454
3 0.9176 0.9688 0.9125 0.6363
Result 0.9647 

(0.9373)
0.9794 
(0.9627)

0.9500(0.9250) 0.8182(0.6667)
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interact with the environment, thus extending the boundaries of the 
capabilities of LLM as pure language models. In the future, researchers 
can further enable the LLM-based agents to use specialist tools in the 
field of building energy optimization. This will not only enable the LLM 

to handle tasks that go beyond plain text but also connect it closely to 
existing work, leading to the further development of automated work
flows that effectively reduce human labor. Using LLM’s memory capa
bilities, it is also possible to combine it with the original case-based 
research to optimize and improve the memory flow, allowing the agent 

Fig. 7. Examples of the results. (a) An excerpt example of the building metadata in JSON semantic schema generated by the framework. (b) An excerpt example of 
the retrofit recommendations generated by the framework. (c)An excerpt example of the agent behaviors during the performance diagnosis stage. A Planner agent (on 
the top left side) first plans the EPI calculation tasks. Then several Researcher agents (on the right side) act with tools to complete the tasks and output the calculation 
result in a given format. Finally, an Advisor agent (on the bottom left side) summarizes all results and provides diagnostic advice. All the agents are acting follow the 
ReAct strategy.

Table 7 
Overview of the cost.

Stage Average token cost Average money cost

Building information extraction 104,610 $ 1.16
Performance diagnosis 303,987 $ 2.91
Retrofit recommendation 1,193,992 $ 1.08
Total 1,602,589 $ 5.15

Table 8 
Example data quality problems.

Problem Examples Examples 
from

Inconsistency in 
context

• The table lists 4 pumps, while the text 
says there are 3 pumps.

• The rated power of the pump in the table 
is 15 kW, while the text says it is 22 kW.

Case #1

Overly informative 
table

• Include information on substations, 
chillers, air handling units in a single 
table

Case #2

Sentences with 
unclear references

• In ‘There are 6 sets of cooling towers, 6 
sets of circulating water pumps, 3 sets of 
chilled water pumps, 3 sets of cool water 
pumps, total power; 419.5kw.’, the 
subject that the total power belongs to is 
unclear.

Case #3

Table 9 
Overview of the report qualities.

Case Sentence readability score Observed problems

#0 22.75
#1 32.67 • Inconsistency in context
#2 29.19 • Overly informative table
#3 24.50 • Sentences with unclear references

• Overly informative table
• Inconsistency in context

Table 10 
Overview of the results in robust test (the results in brackets are the average 
results of three trials).

Case 
building

Building information 
extraction

Performance 
diagnosis

Retrofit 
recommendation

Precision Recall Score Coverage

#1 0.9153 
(0.8908)

0.9775 
(0.9554)

1.0000 (0.8889) 1.0000(0.9583)

#2 0.9375 
(0.8906)

1.0000 
(0.9624)

0.9454(0.9121) 1.0000(1.0000)

#3 0.8961 
(0.8355)

0.9463 
(0.8992)

0.8488(0.8345) 1.0000(0.9444)
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to continually learn from cases. In addition to this, using LLM’s planning 
capabilities, we can cope with changing data structures and scenarios 
and develop generic solutions. In conclusion, LLM-based multi-agent 
systems will hopefully free engineers from complex case-based pro
cessing, and LLM-based agent systems have a wide range of potential for 
development in automation tasks.

8. Conclusions and future work

8.1. Conclusions

Automating tasks in building energy optimization will help reduce 
the engineers’ workloads and allow them to focus on creating environ
mentally friendly indoor environments. Over 85 % of building data is in 
unstructured format and a large amount of energy use information is 
hidden in these data. Effective use of unstructured data can help further 
improve energy efficiency and thus reduce building energy use. 
Currently, tasks involving unstructured building data rely on a great 
deal of human labor and are far from being automated. Inspired by the 
outstanding performance of LLMs in solving general language-intensive 
tasks, we proposed an LLM-based multi-agent framework for automating 
tasks with unstructured building data. The framework includes three 
main stages: building information processing, performance diagnosis, 
and retrofit recommendation. In each stage, multiple agents with three 
kinds of roles: Planner, Researcher and Advisor, cooperate and act with 
tools to complete tasks. To equip generic LLMs with necessary knowl
edge to complete specialized tasks, we utilized the RAG prompting 
strategy and developed knowledge databases together with retriever 
tools to inject knowledge into the LLM. We completed experiments to 
test the knowledge injection effectiveness and explored the performance 
and robustness of the entire framework on various cases. With the 
findings from the case studies, we discuss the opportunity for developing 
LLM-based multi-agent systems as automated task solvers.

The main conclusions of our work are as follows:

• Knowledge injection is vital in adapting generic LLMs to solve 
domain tasks. Our work shows that the RAG prompting strategy is 
efficient in domain knowledge injection to LLMs.

• Our proposed framework can automatically extract information from 
unstructured audit reports to generate building metadata in a given 
schema, perform knowledge-based energy efficiency diagnosis, and 
provide retrofit recommendations with verifiable reasons. In the case 
studies, our framework delivered mostly reliable results at a cost of 
only about $5 and showed robustness in dealing with various inputs 
and heterogeneous tasks. It can greatly reduce the repetitive human 
work in unstructured data-based building energy optimization tasks.

• The results of our case study show that the data quality affects the 
further utilization of unstructured data. We suggest that research on 
normalization and preprocessing of unstructured data is necessary 
and important.

• Our work tests the ability of LLMs to handle unstructured knowledge 
of buildings and the ability of LLM-based cognitive agents to plan 
when facing heterogeneous tasks. We believe that LLM-based multi- 
agent systems have great potential for developing trustworthy and 
generalized automated task solvers in building energy optimization.

8.2. Future directions

Although the current framework performs well in the case study and 
passes the robust test, some work can be done to improve the perfor
mance and capabilities of the framework.

(1) Knowledge injection
Generic LLMs do not have sufficient domain task knowledge, and the 

knowledge injection process is important and necessary. In our work, 
the RAG approach effectively completes the knowledge injection into 
the LLM, enabling it to perform specialized tasks. The RAG approach is 
lightweight and supports real-time knowledge updates to the model, but 
the token cost is high, and long-term use is costly. Fine-tuning, as 
another LLM knowledge injection method, also deserves attention and 
experimentation. More discussions can be carried out on different 
knowledge injection methods for different task types.

(2) Data quality
Audit reports completed in different countries, regions and audit 

units will always in different language and structures, and possibly have 
different data quality problems. Our work enumerates three data quality 
issues present in audit reports. These quality problems affected the 
performance of the framework in some of the test trials in the robust test 
of the framework. While the performance of the framework is generally 
good, implementing effective data preprocessing will help develop a 
more robust framework.

(3) Data exchange
Energy audits of buildings are a very important process during the 

operational phase of a building. A large amount of unstructured data 
from energy audit reports has not been fully utilized. The first stage of 
our proposed framework explores the information extraction of audit 
reports into building metadata in the form of an expandable JSON se
mantic schema and demonstrates the potential of LLM in extracting 
information and normalizing unstructured data. Further development of 
the LLM framework to normalize different audit reports into a more 
universally applicable schema [106] will be valuable in advancing the 
building data exchange during energy optimization tasks.

(4) Equipped with specialist tools
By acting with different retriever and Python sandbox tools, our 

framework allows LLMs to provide automated yearly energy efficiency 
diagnosis and qualitative retrofit recommendations based on audit re
ports. However, in practical energy optimization tasks, the wider appli
cation scenarios are daily and hourly energy efficiency diagnosis and 
retrofit decision-making combined with energy-saving potential analysis. 
Many specialist tools have been developed to facilitate some of the 
automated energy optimization tasks. For example, building performance 
simulation tools (e.g., EnergyPlus) could simulate the hourly energy per
formance of a given building, and thus benefit building performance 
optimization and retrofit decision [114]. Further development of the LLM 
framework to enable them to utilize specialized tools can further improve 
their capabilities in solving actual energy optimization tasks.
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Appendix A:. Detailed information on knowledge document processing

Most of the knowledge documents in the field of building energy optimization are in PDF format, which is well-suited for communication because it 
supports accurate display in different systems. Since the underlying structure of a PDF file does not map to the logical structure of a document, we need 
to perform additional processing. Figure A1 shows four example pages from knowledge documents in PDF format. The PDF files are in diverse layouts 
and often include textual, tabular and visual data. In addition, there are significant differences in the layout and structure of different PDF documents, 
especially audit reports issued by different audit units (as shown in Figure A1(b) and (c)). Thus, in order to preserve as much information as possible 
about the document, we need to process the data in different modalities and preserve the document structure. 

Fig. A1. Four example pages from PDF documents. (a) Two pages from the engineering technical report used in our framework. (b) A page from the audit report of 
the Case # 1 building, translated from Chinese into English. (c) A page from the audit report of the Case # 0 building, translated from Chinese into English.
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As shown in Fig. 4 (a), we first loaded the documents unstructuredly using the Python package PDFPlumber and PDFMiner. Data in different 
modalities within a single document was loaded separately during this process. We then used an Optical Character Recognition (OCR) model along 
with regular expression matching to transform the document into Markdown format to preserve the structure of the document. The OCR model we 
used is Nougat, which is open-soured by Meta. Due to the variable document structure, this process required some manual review.

Next, we invoked an LLM (e.g., moonshot-v1-32 k) and a VisionLLM (e.g., GPT-4 Vision), specifying the target format for processing tables, 
formulas and images into informative texts. The target format for table processing is the Markdown-formatted table, and for formula processing is 
LaTeX-formatted text. Image processing targets are categorized into two scenarios: for flowcharts, the processing target is GraphViz dot code, while for 
other images, the processing target is descriptive text. It should be noted that the OCR model we used (Nougat) can directly convert most tables and 
formulas written in English into our target formats when transforming the document into Markdown format. LLMs and VisionLLMs are primarily used 
for data processing that Nougat cannot handle (e.g., processing of Chinese tables, formulas interspersed with Chinese text, and all images).

Due to the limitations of current processing technology, the document data processing involved a small amount of manual checking. We performed 
manual checks to ensure the preservation of the document structure and the processing results of the VisionLLMs. Manual checks included verifying 
that the rendering results of LaTeX and Graphviz dot code are consistent with the original content, and that the descriptive text expresses the core 
content of the image. For the processing of tables, formulas, and flowcharts, the model we used (GPT-4 Vision) performs well, requiring little manual 
adjustment in our work. However, the process of generating descriptive text for images requires more manual adjustments. Since most of the images in 
the audit reports were visualizations of other modal information in the original text, we did not process them in the automation process. For the 
ASHRAE Fundamental Handbook and the engineering technical report, the processing of pictures was carefully checked manually. Such checks ensure 
the stability of the constructed tool and minimize the impact on the performance of the automation framework. Several results of the data processing 
can be found in Fig. A2.

All information texts are then split into text chunks for storage in the vector database. Texts were split based on hierarchical delimiters (i.e., “#”) to 
preserve hierarchical structure. Text of the same level and the same original modality was split into the same chunk, and the hierarchical structure to 
which the text belongs was expressed in the field and stored. Chunking by level avoids the loss of information caused by cutting, while preserving the 
hierarchical information of the document. It also helps to keep data from different original modalities stored in the knowledge database in the form of 
text chunks separately. Additionally, we limited the size of the text chunk to avoid overly long text (i.e., more than 1000 words) at the same level, 
which could result in an oversized text chunk and thus prevent subsequent prompts from exceeding the API access limit of the LLM model. When 
splitting text chunks by size, we set the overlap parameter to minimize the loss of information due to splitting. The splitting method according to chunk 
size was mainly used in the processing of the ASHRAE Fundamental Handbook, as this document contains a lot of text within a level. The settings for 
the chunk size and the overlap parameters in the framework implementation can be found in Appendix B. It should be noted that the chunk size and the 
overlap parameters are tunable hyperparameters. However, splitting by chunk size was not widely used in our practice because it was uncommon for 
the text to be too long. Meanwhile, quantitatively assessing the impact of these two parameters on the overall model is expensive. Thus, we did not 
further optimize the settings for the chunk size and the overlap parameters. In future work, the data processing process can be further improved by 
optimizing these two parameters. 

T. Xiao and P. Xu                                                                                                                                                                                                                              Energy & Buildings 322 (2024) 114691 

16 



Fig. A2. A few examples of processing images, tables, and formulas. On the left is a screenshot of the example data from the original file, and on the right is the 
corresponding results in the informative text after processing. The text in blue is the processing result by VisionLLM. (a)&(b) Two examples of non-flowchart image 
processing; (c) An example of flowchart processing; (d) An example of table processing; (e) Three examples of formula processing.

Appendix B:. Detailed settings for the experiment

Table B1 lists the detailed settings of the knowledge database and tool development in Case 1. The reason why we choose the GLM-std and the 
GPT3.5-Turbo is because the former is the most commonly used non-GPT style LLM (>7 billion parameters) and the latter is the most commonly used 

T. Xiao and P. Xu                                                                                                                                                                                                                              Energy & Buildings 322 (2024) 114691 

17 



LLM today. All the models we chose have more than 7 billion parameters and are called using the official APIs.

Table B1 
Detailed settings of the experiment.

Setting Value

Text embedding model OpenAI text-embedding-ada-002
Text chunk size 800
Text chunk overlap 50
Text embedding vector dimension 1536
Vector database Chroma
Vector similarity metric Cosine similarity
Related text chunks count 5

In evaluation dataset generation, we used ASHRAE fundamental handbook and a textbook used in China as the text source. We split the text into 
chunks and generate questions for each chunk to allow as much knowledge as possible to be brought to attention. The text chunk size is 1000 and the 
text chunk overlap is 0. Inspired by the outstanding ability on language editing and rewriting of LLM, we called the GPT3.5-Turbo-16 k API to generate 
a specific number of statements under a CoT prompt based on the provided chunk. The proportions of correct and incorrect statements were also 
controlled by prompts to avoid the extremely imbalance of correct and incorrect statements. A total of 7763 statements were generated by LLM, and 
after a simple cleaning (removing statements that need to be judged by context), 6808 statements remained. Besides, 741 statements were generated 
from the textbook and thus the dataset has a total of 7549 statements. The overview is listed in Table B2, with the categories inspired by the parts of the 
ASHRAE fundamental handbook.

Table B2 
Overview of the evaluation dataset.

Category Correct Incorrect Total

Principles 677 279 956
Indoor environmental quality 778 487 1265
Load and energy calculations 1487 917 2404
HVAC design 490 257 747
Building envelope 272 121 393
Materials 311 117 428
General 1003 353 1356
Total 5018 2531 7549

The following metric for classification problem is used in our work. 

Accuracy =
TP + TN

TP + TN + FP + FN 

Precision =
TP

TP + FP 

Recall =
TP

TP + FN 

F1 score = 2 ×
Precision × Recall
Precision + Recall 

Accuracy of Positive Class =
TP

TP + FP 

Accuracy of Negative Class =
TN

TN + FN 

Balanced Accuracy =
Accuracy of Positive Class + Accuracy of Negative Class

2 

where TP denotes the number of samples in which the positive class was correctly predicted; TN denotes the number of samples in which the 
negative class was correctly predicted; FP denotes the number of samples in which the negative class was incorrectly predicted to be a positive class; 
FN denotes the number of samples in which the positive class was incorrectly predicted to be negative.

Appendix C:. Detailed results for the experiment

Table C1 lists the results of different metrics for each theme on the evaluation dataset.
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Table C1 
Accuracy for each theme on the evaluation dataset.

Accuracy GLM-std GPT 3.5-Turbo GPT 4-Turbo RAG-GLM RAG-GPT 3.5

Principles 0.7563 0.8128 0.8232 0.8828 0.8766
Indoor environmental quality 0.8032 0.8253 0.8490 0.8696 0.8870
Load and energy calculations 0.7781 0.7910 0.8043 0.8519 0.8473
HVAC design 0.7949 0.8338 0.8070 0.8633 0.8606
Building envelope 0.7809 0.7985 0.8338 0.8665 0.8438
Materials 0.7407 0.7897 0.8201 0.8224 0.8528
General 0.7956 0.8316 0.8118 0.8346 0.8338
F1 score (positive) GLM-std GPT 3.5-Turbo GPT 4-Turbo RAG-GLM RAG-GPT 3.5
Principles 0.8187 0.8655 0.8703 0.9165 0.9105
Indoor environmental quality 0.8380 0.8613 0.8764 0.8946 0.9047
Load and energy calculations 0.8190 0.8370 0.8388 0.8781 0.8719
HVAC design 0.8357 0.8740 0.8428 0.8942 0.8896
Building envelope 0.8337 0.8524 0.8745 0.9013 0.8812
Materials 0.8115 0.8558 0.8706 0.8725 0.8927
General 0.8529 0.8825 0.8632 0.8826 0.8795
F1 score (negative) GLM-std GPT 3.5-Turbo GPT 4-Turbo RAG-GLM RAG-GPT 3.5
Principles 0.6284 0.6919 0.7225 0.8035 0.8013
Indoor environmental quality 0.7492 0.7641 0.8061 0.8290 0.8610
Load and energy calculations 0.7131 0.7089 0.7512 0.8113 0.8110
HVAC design 0.7273 0.7559 0.7500 0.8068 0.8109
Building envelope 0.6790 0.6825 0.7537 0.7938 0.7721
Materials 0.5843 0.6121 0.7050 0.7077 0.7658
General 0.6651 0.7030 0.6981 0.7198 0.7322
Balanced Accuracy GLM-std GPT 3.5-Turbo GPT 4-Turbo RAG-GLM RAG-GPT 3.5
Principles 0.7415 0.7856 0.8130 0.8646 0.8697
Indoor environmental quality 0.7958 0.8084 0.8427 0.8605 0.8912
Load and energy calculations 0.7680 0.7676 0.7992 0.8493 0.8503
HVAC design 0.7946 0.8132 0.8149 0.8551 0.8623
Building envelope 0.7702 0.7699 0.8285 0.8545 0.8446
Materials 0.7176 0.7327 0.8096 0.8112 0.8614
General 0.7911 0.8109 0.8205 0.8294 0.8473

Appendix D:. Detailed information of the case reports and tasks

We collected a total of 63 audit reports, all corresponding to buildings located in Shanghai, China. All the reports are written in Chinese. 43 of these 
reports are in paper format, which cannot be automated at this time, but can help us understand the data characteristics of the audit reports. Among 
the reports in electronic form, we have selected four as case studies. Table D1 lists basic information about the four case buildings, the number of 
information items in the manually labeled metadata, and the number of original recommendations provided in the report. As shown in the table, the 
four reports vary in terms of building function and level of detail of content. In addition, the audit units that completed these reports differed (we are 
not permitted to disclose the audit unit information). The data organization characteristics of these reports vary, and the metadata information is 
scattered throughout different parts of the reports. Figure A1 (b)&(c) in Appendix A shows segments of two reports (translated into English for ease of 
reading). As can be seen from the figure, the two reports have different levels of detail in the information about the heat and cold source equipment, 
and the structure of the tables representing the heat and cold sources is different. Extracting metadata automatically and accurately with the same 
framework poses a challenge due to these variations. Table D2 shows the EPIs available in the performance diagnosis of each case building and the 
estimates required in the calculations due to missing relevant data in the report. The table demonstrates that the EPI calculation tasks applied and the 
estimates required for different case buildings vary, which intuitively reflects the data heterogeneity and missing data across the different audit 
reports. Such situations are widespread across the audit reports we have.

Table D1 
Overview of the case buildings and the corresponding reports.

Case #0 #1 #2 #3

Primary use type Office Office and mall Mall Office and mall
Location Shanghai, China Shanghai, China Shanghai, China Shanghai, China
Gross area (m2) 37,000 77,543 32,144 67,477
Height (m)/floor 98/28 110/22 Not available/8 Not available/24
Number of metadata information items 85 177 64 154
Number of recommendations from the report 11 8 3 6
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Table D2 
Applicable EPI calculations for each case building.

Case EPI Need 
estimation

Estimated value Note

#0 EUI No − Need unit conversion (tce to kWh)
ACL Yes Configured cooling load
WTF Yes Accumulated cooling load; energy consumption of the pumps For chilled water system and cool water system, 

respectively.
EER − − Not enough data provided

#1 EUI No −

ACL Yes Configured cooling load
WTF Yes Accumulated cooling load; energy consumption of the pumps; annual operating 

hour
For cool water system. Other systems don’t have enough 
data.

EER − − Not enough data provided
#2 EUI No − Need unit conversion (tce to kWh)

ACL No −

WTF Yes Accumulated cooling load; energy consumption of the pumps; annual operating 
hour

For chilled water system and cool water system, 
respectively.

EER Yes Accumulated cooling load; energy consumption of the terminal units; annual 
operating hour

#3 EUI No −

ACL No −

WTF Yes Accumulated cooling load; energy consumption of the pumps For chilled water system and cool water system, 
respectively.

EER − − Not enough data provided

We designed a scoring metric for the performance diagnostic phase, and Table D3 illustrates the scoring elements. The scoring elements consisted 
of plan reasonableness (broken down into four score points), information extraction accuracy, calculation accuracy, ability to follow instructions 
(format), and accuracy of the final result. This indicator is designed to assess the framework’s ability to plan, calculate, and extract information in the 
face of diverse tasks.

Table D3 
Scoring components for the performance diagnosis stage.

Evaluation rules Fraction

Planning • Correctly determine that the current indicator should be calculated (25 %)
• Correctly determine the estimation steps (25 %)
• Correctly plan the information extraction (25 %)
• Correctly plan the calculation process (25 %)

0.4

Extraction score =
The number of correct extraction
The number of extraction needed

0.2

Calculation score =
The number of correct calculation
The number of calculation needed

0.2

Instruction following • Correctly follow the output format 0.1
Final result • Correct final results (50 %)

• Correct diagnostic conclusions (50 %)
0.1

Appendix E:. Technical supplement for framework development

In our framework, agents are specialized with roles and tasks through structured prompts. These prompts are categorized into two main types 
based on the prompting strategy used: prompts that use only the Chain-of-Thought (CoT) strategy (marked as CoT-only prompts), and prompts that use 
both the CoT and ReAct strategies (marked as CoT-ReAct prompts). The CoT-only prompts apply to tasks that do not require dynamic planning or 
interaction with tools, while the CoT-ReAct prompts are used for tasks that require real-time selection and interaction with tools based on task 
completion. In Fig. 3(a), the type of prompt used by different agents is represented by the form of different icons. An agent using a CoT-only prompt is 
indicated by an icon with only CoT characters, while an agent using a CoT-ReAct prompt is represented by an icon with both CoT and ReAct characters. 
Both CoT-only and CoT-ReAct prompts are highly structured and are constructed using the components listed in Table E1.

The implementation of multiple agent interaction is crucial for multi-agent system development. In our framework, the form of multiple agent 
interaction primarily takes the shape of a one-way flow of tasks in the form of a pipeline. As outlined in Section 4.1.2, during each stage, the Planner 
agent divides a complex task into several parallel tasks. Then, several Researcher agents accomplish each of these parallel tasks. The Advisor agent 
summarizes the results of all parallel tasks. In practice, the Planner agent distributes the task into multiple subtasks, thereby initiating multiple 
pipeline branches. Within each pipeline branch, the task is completed by the Researcher agents. Finally, the Advisor agent summarizes the results of 
multiple pipeline branches. The interaction within each pipeline branch is facilitated by a CrewAI sequential process, while the interaction between 
the Planner, Researcher, and Advisor agents is realized through writing and reading files. The sequential process in CrewAI implements a dynamic 
pipeline workflow, progressing through a predefined list of tasks. Task execution follows the order in the task list, with the output of one task serving as 
context for the next. Consequently, within every pipeline branch, the downstream Researcher agent can continue the pipeline with the necessary 
information provided by the upstream Researcher agent. Meanwhile, the Planner, Researcher, and Advisor agents write out to files and read in key 
results (such as tasks planned by the Planner agent and task completion results for each Researcher agent) to exchange necessary information and 
cooperate to complete the entire task of the current stage.
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Table E1 
Components of the structured prompt.

Component name Function Example Use in

Role and goal Describe the roles and goals the agent needs to 
play.

You are a helpful HVAC expert, specialized in energy audit. CoT- 
only, 
CoT- 
ReAct

Task description Describe the current task that the agent needs 
to accomplish.

You will be given a brief description of a building and its mechanical and electrical system. 
The given information will start and end with the delimiter ‘‘‘. Please provide 3–5 direction 
proposals that you believe are appropriate for the further energy savings potential analysis/ 
energy retrofit program for this building.

CoT- 
only, 
CoT- 
ReAct

Background 
information for the 
task

Describe the necessary background 
information such as relevant domain 
knowledge (e.g., commonly used retrofit 
methods in China), and outputs from the 
upstream task (e.g., the building metadata, the 
energy diagnosis results).

The given information is: 
‘‘‘{building_metadata}‘‘‘Here are some reference common retrofit method direction (not 
detailed) 
: 
− Building envelope:* Building fabric insulation  
(i.e. roof, wall, etc.)* Windows retrofits  
(i.e. multiple glazing, low-E coating, etc.) 
* Add shading systems 
− HVAC system:* Using energy-storage cooling/heating source  
(i.e. water storage, ice storage, eutectic salt storage, etc.)* Using ground source heat pumps  
(i.e. water source, soil source, etc.)* Free cooling  
(i.e. fresh air free cooling, water-side free cooling, etc.) 
* Heat recovery system (i.e. exhaust air heat recovery, condensing heat recovery, etc.) 
* Large temperature difference water distribution 
* Variable-frequency control of pumps and fans 
− Lighting system: 
* Lighting device upgrade 
* Daylighting 
− BA system: 
* Chilled/cooling water pump frequency and operating number optimization* Chiller and 
cooling tower operating number optimization* Fresh air volume optimization

CoT- 
only, 
CoT- 
ReAct

Step guide for task 
accomplishment

Describe the path to completion of the current 
task step-by-step. This is the key component to 
realizing the CoT strategy.

Please provide the proposals following these steps, 
1. Based on the basic information about the building, suggest directions where further 
information of the building is needed to further determine the energy savings potential.2. 
Suggest some retrofit methods according to the directions. You can refer to common energy 
efficiency retrofit methods for every direction. Then you can select the proper methods from 
the common methods for the building. Notice that the methods you provide are not limited 
to the common methods.4. Prepare the direction proposal with number and the mark 
“[System/Object/Equipment]: ” at the beginning of the proposal. For example, “

CoT- 
only, 
CoT- 
ReAct

Additional 
requirements for 
task 
accomplishment

Additional requirements to supplement the 
completion of tasks.

When you are providing the proposals,1. Remember the proposal should not fall outside the 
scope. The scope of the building audit included: building envelope (including wall, roof, 
window, and shading), HVAC system (including source, recovery, and distribution), lighting 
system, building automatic control (BA) system, BEMS system, substation system, etc. 
2. Remember that the retrofit method should meet ASHRAE’s recommendations for energy 
audit Level I.3. Avoid overly brief descriptions.4. The energy diagnosis results may be very 
helpful.

CoT- 
only, 
CoT- 
ReAct

Output format 
requirement

Describes the format requirements for the 
output result. If the task requires JSON output, 
specify the available JSON fields and what 
each field should contain. If the task output is 
regular text, specify the text segments and 
what each segment needs to contain.

Please provide the proposals with number as follow: 
1. [System/Object/Equipment]: xxx 
2. [System/Object/Equipment]: xxx 
3. [System/Object/Equipment]: xxx

CoT- 
only, 
CoT- 
ReAct

Examples Provide one or more sample task outputs. 1. [Lighting System]: Need to know more about the lighting energy. Retrofit all fixtures to 
energy efficient fixtures“.

CoT- 
only, 
CoT- 
ReAct

Tool list Describe the tools available to the agent 
together with what every tool can do and how 
to use them.

You ONLY have access to the following tools, and should NEVER make up tools that are not 
listed here: 
Search_report: useful for when you need to know some information about the target 
building. The input to this tool should be a question directly. 
python_repl_ast: Python Code Interpreter Tool. ALWAYS PRINT VARIABLES TO SHOW THE 
VALUE. The environment is long running and exists across multiple executions. You must 
send the whole script every time and print your outputs. When printing results, print all 
results on the same line.Script should be pure python code that can be evaluated. It should be 
in python format NOT markdown. Remember that the key of the input dictionary is ’query’. 
The code should NOT be wrapped in backticks. 
Here is a example of input:{ ’query’:‘‘‘’# begin’’print(’hello world!’) 
’‘‘‘}All python packages including requests, matplotlib, scipy, numpy, pandas, etc are 
available. Create and display chart using ‘plt.show() 
‘.Search_system_energy_efficiency_evaluation_indicators_and_methods: useful when you 
have energy data of an air conditioning system or its equipment and want to know how to 
diagnose the energy efficiency of the system. The input to this tool should be a question 
directly.Search_energy_audit_code: useful when you have collected some basic data from a 
building and want to understand how it can be further processed for audit or diagnose. The 
input to this tool should be a question directly.

CoT- 
ReAct
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