
Building and Environment 244 (2023) 110816

Available online 7 September 2023
0360-1323/© 2023 Elsevier Ltd. All rights reserved.

MF^2: Model-free reinforcement learning for modeling-free building HVAC 
control with data-driven environment construction in a residential building 

Man Wang a,b, Borong Lin a,b,* 

a Department of Building Science, Tsinghua University, Beijing, 100084, China 
b Key Laboratory of Eco Planning & Green Building, Ministry of Education, Tsinghua University, China   

A R T I C L E  I N F O   

Keywords: 
HVAC 
Energy efficiency 
Reinforcement learning 
Environment 
DQN 
DDPG 

A B S T R A C T   

Reinforcement Learning (RL) has advanced energy-efficient control of building Heating, Ventilation and Air 
Conditioning (HVAC) systems. Constructing a suitable RL environment for buildings is a crucial challenge. 
Compared to widely-used simulation-based environments, data-driven approaches offer higher training effi
ciency but face convergence difficulties due to influential factors, limiting their current application. 

To explore data-driven construction of RL environments for building HVAC systems, this study proposes two 
strategies for controlling room temperature setpoints in a residential building. XGBoost and Long Short-Term 
Memory Network (LSTM) are trained for energy consumption and room temperature prediction. One strategy 
predicts parameters for on-off states, while the other for power-on states. The XGBoost models are integrated into 
an OpenAI Gym environment. The first strategy achieves 0.8634 R2 and 0.2423 Root Mean Squared Error (RMSE) 
for energy consumption prediction. The R2 of room air temperature models are approximately 0.99 and the 
RMSE are lower than 0.31. The second strategy achieves 0.9181 R2 and 0.1042 RMSE for energy consumption 
prediction and similar performance for room temperature prediction. Deep Q-learning (DQN) and Deep Deter
ministic Policy Gradient (DDPG) algorithms are separately trained using these environments. Results show that 
the first strategy fails to induce the correct training of RL models, while the second strategy successfully induces a 
useable DDPG model for controlling building HVAC systems but fails to induce a useable DQN model. We analyze 
the reasons behind these observations. Compared to the original room temperature setpoint method, the DDPG- 
based HVAC control logic achieves a 10.06% energy-saving effect while ensuring comfort.   

1. Introduction 

HVAC systems have inherent problems [1]. Firstly, building air 
conditioning systems are nonlinear. Their equipment performance 
curves and thermodynamic properties of working mediums all exhibit 
nonlinear characteristics. Additionally, building HVAC systems are dy
namic. On one hand, indoor and outdoor disturbances such as weather 
and personnel are constantly changing, and on the other hand, tem
perature, frequency and other settings of the air conditioning system 
may change momentarily. These characteristics above impede energy 
efficiency control of building HVAC systems. 

However, the operation of building HVAC systems is highly depen
dent on manual labor, which cannot capture the dynamic changes in 
weather and personnel. And it is also a waste of data and sensors for 
building automation systems (BAS) [1]. Manual operation can no longer 
meet the requirements for energy-saving operation of buildings, and it is 

very urgent to explore more efficient ways to control building HVAC 
systems. 

The control strategies for building HVAC systems can be roughly 
divided into three stages. The first stage is evolutionary algorithm 
control [2–7], during which bio-inspired evolutionary algorithms, with 
genetic algorithms as the representative, are mainly used to search for 
the optimal solution of proportional, integral and derivative (PID) 
control and improve the performance of PID control. In Ref. [8], re
searchers trained a model based on the genetic algorithm to tune PID 
controllers in HVAC systems automatically. The results indicated that 
the proposed model was useful for this task. In Ref. [9], Lu et al. 
established mathematical models associated with cooling loads and 
energy consumption for heat exchangers and energy-consuming devices. 
Then they solved the formula of mix-integer nonlinear constraint opti
mization of system energy by modified genetic algorithms. In Ref. [10], 
researchers used a multi-objective genetic algorithm to permit the 
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optimal operation of the building’s HVAC systems. And they validated 
the proposed optimization process on an existing VAV system in two 
summers. The main issue with this approach is the low efficiency of the 
algorithm used, making it unsuitable for controlling complex air con
ditioning systems with a large number of parameters. 

The second stage is Model Predictive Control (MPC) [11–15], where 
this approach involves establishing a combined thermodynamic model 
for the building and HVAC equipment, then determining the optimal 
control parameters of the HVAC system through computational 
methods. In Ref. [16], Yudong et al. developed a deep learning (DL) 
based MPC model to realize real-time control of building thermal 
environment. They achieved 4%–7% energy saving on average through 
DL-based MPC compared with adaptive and conventional PID control. 
PengFei et al. [17]proposed a practically effective and computationally 
efficient MPC algorithm to optimize building energy usage while 
maintaining thermal comfort in a multi-zone medium-sized commercial 
building, which achieved 17.5% energy saving. Bing et al. [18] illus
trated a methodology to control the HVAC system of the building based 
on the prediction of occupant behavior patterns and local weather 
conditions. Then a Nonlinear Model Predictive Control (NMPC) was 
designed and reduced 17.8% energy consumption in the experiment. 
The main problem with this method is that the thermodynamic model, 
which is optimized for the solution, heavily relies on the experience of 
researchers. The model may be over-simplified, leading to a poor match 
between the model and the actual scenario. 

The third stage is Machine Learning (ML) based control [19,20]. This 
method mainly determines control parameters by learning the hidden 
expert experience in the data through ML algorithms. InRef [21], re
searchers established a rule-based HVAC control system using a 
multi-layer perceptron network. The system outperformed other alter
natives when the deep and medium bounds are utilized. In Ref. [22], 
transfer learning is utilized to overcome the challenge that deep RL used 
for HVAC system control took too much time training. Zhe et al. [23] 
applied Long Short-Term Memory Networks (LSTM) o predict miscel
laneous electric loads, lighting loads, occupant counts and internal heat 
gains in two office buildings. Prediction errors of internal heat gains are 
reduced from 12% to 8% in Building A and 26%–16% in Building B. 
Currently, the main challenges are defficult feature engineering, inap
propriate model application, and insufficient integration with expert 
knowledge. 

In recent years, RL [24–34] has received significant attention in ML 
control algorithms. This is because, compared to deep learning, RL has 
lower dependence on historical data and theoretically enables 
model-free control. In Ref. [35], researchers meant to establish a 
multi-agent deep RL method for the building Cooling Water System 
Control (MA-CWSC) to optimize the load distribution, cooling tower fan 
frequency, and cooling water pump frequency of different types of 
chillers. The MA-CWSC method achieved an 11.1% improvement 
compared with rule-based control. Xi et al. [36] developed Transfer 
Learning and Deep Reinforcement Learning (TL-DRL) integrated 
framework. By fine-tuning the last few layers of the target Deep 
Q-learning (DQN) in the target building, they improved the training 
efficiency by about 13.28%. Yue et al. [37]presented a Deep Rein
forcement Learning (DRL) based multivariate occupant-centric control 
framework. By considering personalized thermal comfort and occupant 
presence, they achieved 14% cooling energy saving with 11% thermal 
acceptable improvement. 

In air conditioning control based on RL, an important issue is how to 
construct the environment for training the RL agent. Currently, the most 
common approach is to build the environment using building simulation 
software such as EnergyPlus and Modelica. In Ref. [38], Takao et al. 
proposed an RL testbed for power consumption optimization based on 
Energyplus. They develop a data center simulation model as an RL 
environment and achieved 22% improvement compared to a 
model-based control algorithm built in the EnergyPlus. In Ref. [39], 
researchers estimated the control algorithm based on DQN on the 

Energyplus-BCVTB testbed. The proposed agent could reduce CO2 below 
800 ppm all the time with superior PMV and 4–5% energy saving. In 
Ref. [40], an RL environment based on Modelica was established and the 
A2C algorithm was tested on this environment. 

The aforementioned method of constructing the environment based 
on simulation software allows the agent to obtain sufficient information, 
as the physical environment of the building is completely known to the 
agent. Therefore, convergence is relatively easy. However, there is often 
a performance gap between the building energy simulation model and 
the real building, leading to significant differences between the simu
lated environment and the real environment. Consequently, when the 
agent is deployed in the real environment, it may not perform well. 
Additionally, the interaction between building energy simulation soft
ware and Python, for example, may remain unchanged, resulting in long 
training times for the agent. 

To overcome such problems for RL environment construction by 
building simulation software, researchers began to explore a method to 
build RL environment with data-driven models. Christian et al. [41] 
pre-trained an offline RL agent in a black box model environment based 
on a LSTM model with an average error of 0.3246. The model could be 
deployed with a 19.4% cost reduction compared to traditional control
lers. Mengjie et al. [42] proposed a model-free RL control method to 
optimize window opening behaviors of an office building. The Root 
Mean Squared Error (RMSE) for the experimental room temperature 
prediction LSTM model was 0.2 ◦C. The indoor air quality of the office 
improved by 90% with the RL controller trained in this LSTM environ
ment compared to historical data. Shunian et al. [43] proposed a 
model-free optimal control method based on RL. The COP and cooling 
tower outlet water temperatures are simulated by random forests. The 
COP model achieved 1.75% MAPE and 2.56% CV(RMSE) in the test 
dataset. The MAPE and CV(RMSE) of the cooling tower outlet water 
temperature prediction model are 0.67% and 1.01%, respectively. These 
models were integrated with other thermodynamic models to build an 
RL environment. Finally, the Q-learning model trained in this environ
ment could save 11% energy consumption compared to the basic 
controller. Overall, building an RL environment based on data-driven 
models is closer to the real environment, and the interaction between 
the environment and RL is more convenient and efficient. However, this 
type of environment is non-white-box, and there may be potential 
influencing factors within the historical data, which increases the dif
ficulty of convergence during the training process of the RL agent. 

To explore the applicability of data-driven methods in building an RL 
environment, this study conduct the following research on a residential 
building. In this study, data from the heating season of the building 
during 2020–2021 are collected, and based on this historical data, en
ergy consumption prediction models for the HVAC system and temper
ature prediction models for three target rooms are trained using two 
different strategies based on the XGBoost model and LSTM model. In 
Strategy 1, the energy consumption and temperature prediction models 
are used to predict the HVAC system’s operation status, both for turning 
it on and off. In Strategy 2, the energy consumption and temperature 
prediction models are only used to predict during the HVAC system’s 
operation period. Rule-based control is employed to validate the RL 
environments under the two strategies mentioned above. Based on the 
energy consumption and temperature prediction models, RL agents are 
trained using a DQN-based model for discrete output room setpoint 
temperature and a Deep Deterministic Policy Gradient(DDPG)-based 
model for continuous output room setpoint temperature. The energy- 
saving effect and indoor thermal environment of the trained models 
are compared with rule-based control results. None of LSTM models are 
converged. So the XGBoost models are used further. The energy con
sumption prediction model performance for Strategy 1 is 0.8634 of R2 

score and 0.2324 of RMSE, and the temperature prediction model per
formance is around 0.99 of R2 score and lower than 0.31 of RMSE. For 
Strategy 2, the energy consumption prediction model performance is 
0.9181 of R2 score and 0.1042 of RMSE, and the temperature prediction 
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model performance is also around 0.99 of R2 score and lower than 0.32 
of RMSE. However, the DQN model does not converge in this study’s RL 
training. Under the continuous output control temperature from DDPG, 
it achieves a 10.06% energy saving compared to rule-based control 

while ensuring thermal comfort. 
This study validate the feasibility of using data-driven methods to 

build an RL control environment and provided some references on how 
to construct such an environment. Furthermore, a comparison is made 
between the training of RL agents using discrete output control tem
perature and continuous output control temperature. The DDPG algo
rithm achieves a 10.06% energy-saving rate while maintaining indoor 
thermal comfort. 

2. Methodology 

The technical roadmap of this paper is as shown in Fig. 1. 

2.1. Data collection and preprocessing 

The target building of this study is a near-zero energy residential 
house located in Beijing. As an experimental building, it is unoccupied 
for long periods, resulting in minimal disturbances from human activ
ities in its historical data. The floor plan of this house is shown in Fig. 2. 
The residential building consists of a living room, a dining room, a 
master bedroom, two secondary bedrooms, a kitchen, two bathrooms, 
and a balcony. The living room and dining room are connected. In our 
research, we focus on the necessary air-conditioned zones, so our study 
includes the living room, dining room, master bedroom, and two sec
ondary bedrooms, treating the living room and dining room as one 
space. 

As a near-zero energy building, this residential house has excellent 
thermal insulation performance. The insulation materials, thickness, 
and heat transfer coefficients of the external walls are shown in Table 1. 
The inclusion of ground insulation is due to the building’s location on 
the second floor. In order to reduce heat transfer with the first floor, 
insulation measures have also been applied to the floor. 

The air conditioning system of the building is equipped with an air- 
source heat pump fresh air unit. The fresh air can be turned off, and in 
the historical operational state, it is known that the fresh air was not 
enabled. The heat pump has heat recovery capability with an efficiency 
of up to 70%. Each air-conditioned room is equipped with an end unit 
connected to the heat pump, but there is only one temperature setpoint 
for all rooms, meaning that individual temperature control in each room 

Fig. 1. Method in this essay.  

Fig. 2. House type.  

Table 1 
Thermal performance of envelop enclosure.  

Envelop 
enclosure 

Material Thickness 
(mm) 

heat transfer coefficient（W/ 
m2’K） 

Roof XPS 400 0.06 
External wall GEPS 250 0.17 
Floor GEPS 400 0.08  
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is not possible. The dining room and kitchen have return air outlets in 
the ceiling, while the other rooms only have supply air outlets. The 
supply air speed can be set to high, medium, or low, but to minimize 
noise, the historical data indicates that the supply air speed was fixed at 
a low speed. The system can be remotely controlled by writing to a 
database, and its historical operating data is also uploaded to the 
database. 

We extract historical data for the heating seasons of 2020 and 2021 
from the aforementioned database. The data are collected at hourly 
intervals. The energy consumption is measured in kWh, and the room 
temperature is in ◦C. The data collection period for 2020 is from 
November 6, 2020, to March 20, 2021. Due to data recording damage 
during the late period of the 2021 heating season, the data collection 
period for that year is from November 8, 2021, to February 24, 2022. 
Table 2 presents the parameters related to the indoor environment in the 
historical data. After organizing the data, it is discovered that the tem
perature of the living room is not recorded due to a sensor failure. 
Therefore, in subsequent research, the thermal comfort of the indoor 
environment is evaluated based on the temperatures of the three bed
rooms, and no further processing of the temperatures in the living room 
and dining room is performed. Since the temperature setpoints for each 
room are not recorded in the heat pump parameters, and household heat 
pumps are controlled based on room temperature, we choose to use the 
return air temperature as a substitute for the room temperature setpoint 
during training. This is because the return air temperature can be 
considered an actual value of the room temperature and can largely 
reflect the temperature setting in that room. Based on statistics, out of 
114 wall sensors, 9 sensors are installed on the walls of the three bed
rooms. When training the energy consumption prediction model, based 
on prior knowledge, the indoor temperatures of the three rooms, the 
actual values of the fresh air temperature, supply air temperature, 
exhaust air temperature, and room temperature setpoint (return air 
temperature) are selected as parameters for training. Similarly, when 
training the room temperature prediction model, the available wall 
temperatures are also selected as parameters based on prior knowledge 
for modeling the room temperature. 

2.2. Methodology for building an environment for RL HVAC control 

2.2.1. Principles of ML algorithms 
Next, we will introduce the principles of XGBoost and RL. XGBoost is 

a boosting algorithm proposed by Tianqi Chen [44] in 2016. It is an 
ensemble learning method that combines the power of gradient boosting 
with advanced regularization techniques, making it highly effective in 
solving a wide range of supervised learning problems. 

RL is an algorithmic approach that mimics the learning process of 
humans by continuously interacting with an environment through an 
agent. In RL, a training environment is provided first, which is respon
sible for interacting with the agent being trained. At time t, the agent 
receives specific environmental parameters, referred to as state St, from 

Table 2 
Collected data.  

Indoor thermal 
temperature 

Wall surface temperature Heat pump operation 
parameters 

Master bedroom Internal surface temperature Fresh air temperature 
Secondary bedroom 1 Temperature between 

insulation layers 
Supply air temperature 

Secondary bedroom 2 Return air temperature 
Exhaust air temperature  

Fig. 3. DQN network structure.  

Fig. 4. DQN network update.  

Fig. 5. DDPG network structure.  
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the environment. Based on the current environmental situation, the 
agent takes action At, which affects the environment. The environment 
then provides a score, known as reward Rt, for that action. Through 
iterative processes, the agent learns which actions yield the highest re
wards, thereby acquiring the ability to make decisions based on the 
environment. 

In this study, we primarily apply two RL algorithms: DQN [45] and 
DDPG [46]. The following sections will provide an introduction to these 
two algorithms. 

The network structure of DQN is illustrated in Fig. 3. DQN consists of 
two networks: the Q-network and the target Q-network. Given a state St, 

Fig. 6. DDPG actor network update.  

Fig. 7. DDPG critic network update.  

Fig. 8. Interaction process of RL with the environment.  

Table 3 
Ranges of parameter variations for LSTM models.   

Minimum value Maximum value 

Hidden size 16 256 
Hidden layer number 2 5 
Learning rate 0.00001 0.01 
Time step 4 24  

Table 4 
Energy prediction and indoor temperature prediction performance of XGBoost 
models for Strategy 1.  

Prediction 
model 

Energy Master 
bedroom 
temperature 

Temperature of 
secondary 
bedroom 1 

Temperature of 
secondary 
bedroom 2 

R2 0.9537 0.9905 0.9920 0.9975 
RMSE 0.1454 0.2784 0.2698 0.1532  
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the Q-network can output the Q-values for various actions, enabling the 
selection of the current action At based on a greedy policy. By applying 
At to the environment, the subsequent state S(t+1) and reward R(t+1) at 
time (t+1) can be obtained, thus forming a complete experience tuple 
(St, At, S(t+1), R(t+1)). These experiences are then stored in an experience 
replay buffer. 

In the subsequent training process, the update procedure is illus
trated in Fig. 4. A batch of experiences is sampled from the experience 
replay buffer, where the red items represent the known values. 
Assuming At = A1 and At+1 = A2, the current action-value Q(St, A1) can 
be determined based on the current state St and action At. Then, the next 
state St+1 is inputted into the target Q-network to obtain the Q-values for 
various actions, and the action A2 corresponding to the maximum Q- 
value is selected. Using Q(St, A1) as the predicted value and R(t+1) + γQ 
(St+1, A2) as the target value, the network is updated through the 
backpropagation of errors. The parameters of the Q-network are 

periodically copied to the target Q-network for its update. 
The network structure of DDPG is depicted in Fig. 5. It consists of two 

actor networks whose objective is to output actions At that maximize the 
action-value Q(St, At) based on the state St. The better the actor network 
performs, the larger the Q(St, At) value. Additionally, there are two critic 
networks whose objective is to output the corresponding action-value Q 
(St, At) given the state and action (St, At). The more accurate the Q(St, At) 
value, the better the training results of the critic networks. The differ
ence between the target actor/critic networks and the original actor/ 
critic networks is similar to DQN, where the target networks undergo 
delayed updates. However, in DDPG, the network updates involve 
copying a certain percentage of the original network’s parameters to the 
target network. This ensures smaller update magnitudes and maintains 
network stability. 

When generating experiences, given a state St, the actor network 
produces an action At’ which is then perturbed by adding noise N to 
obtain the action At = At’ + N. The addition of noise is to ensure a certain 
level of exploration. Subsequently, the action At is applied to the envi
ronment, resulting in the next state St+1 and reward Rt+1, thus forming 
an experience tuple (St, At, St+1, Rt+1). 

During training, a batch of experiences is sampled from the experi
ence replay buffer. Taking (St, At, St+1, Rt+1) as an example, as shown in 
Fig. 6, the red items represent the known values. When training the actor 
network, the state St is fed into the actor network, yielding a predicted 
action At_pre. This (St, At_pre) pair is then inputted into the critic network, 

Table 5 
Energy prediction and indoor temperature prediction performance of LSTM 
models for Strategy 1.  

Prediction 
model 

Energy Master 
bedroom 
temperature 

Temperature of 
secondary 
bedroom 1 

Temperature of 
secondary 
bedroom 2 

R2 − 0.0601 − 0.0111 − 0.0091 − 0.0228 
RMSE 0.6620 2.9742 2.9436 3.0565  

Fig. 9. Energy prediction of Strategy 1.  
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which outputs an action-value Q(St, At_pre). Since the objective of the 
actor network is to maximize Q(St, At_pre). The negative of Q(St, At_pre), 
-Q(St, At_pre), is used as the loss for backpropagation to train the actor 
network. 

For training the critic network, as shown in Fig. 7, the red items 
represent the known values. Using Q(St, At) as the predicted value and 
Rt+1 + γQ(St+1, At+1) as the target value, the difference between the 
predicted value and the target value is used as the loss. The loss is then 
backpropagated through the network to train the critic network. 

These two algorithms have different requirements for the action 
space due to their underlying principles. DQN requires a discrete action 
space, while DDPG requires a continuous action space. 

2.2.2. Two RL environment construction strategies 
The interaction process of RL with the environment in this text is 

shown in Fig. 8. In this environment, it is necessary to predict energy 
consumption and indoor temperature. First, it is necessary to predict the 
indoor temperature of three bedrooms based on current indoor tem
peratures, the temperature set value, and other parameters. After 
obtaining the predicted temperatures of the three rooms, the energy 
consumption of the HVAC is predicted based on other operating pa
rameters. In this study, our goal is to reduce the energy consumption of 
air conditioning while ensuring room thermal comfort, which will be 
reflected in the reward function. Once the environment is set up, the 
agent will start interacting with the environment. The agent will receive 

the current environmental state and the reward value of the previous 
action, make a decision on the action value for the next moment, and 
continue to provide it to the environment. This process will be repeated 
continuously during the agent’s training process to train an agent 
capable of achieving control objectives. 

This paper proposes two data-driven strategies for constructing 
HVAC RL environments in buildings. The following will introduce the 
basic concepts of RL, states (St), actions (At), and rewards (Rt). 

Strategy 1: Strategy 1 is based on an ideal completely uncontrolled 
HVAC system in buildings. The basic idea is to use a ML prediction 
model to simultaneously predict the environmental characteristics of the 
air conditioning system under both on and off states. 

State: Assuming the current time is t, we want to obtain the power 
consumption and indoor environmental parameters of the air condi
tioning system at this time. The power consumption at this time, Et, 
represents the electricity consumption within 1 h. The indoor environ
mental parameters, after preprocessing, mainly include the tempera
tures of three bedrooms: master bedroom temperature Tmst, secondary 
bedroom 1 temperature Tscd1, and secondary bedroom 2 temperature 
Tscd2. Therefore, the state St can be represented as Formula 1: 

St ={Et,Tmst,Tscd1,Tscd2} (1) 

Reward: In Ref. [47], the residential schedule is set as follows: on 
weekdays, people are away from 8:00 to 19:00 and indoors from 19:00 
to 8:00 the next day. On weekends, people are indoors all day. The 

Fig. 10. Temperature prediction of master bedroom of Strategy 1.  
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reward differs when the air conditioning is on and off during these time 
periods. 

During indoor hours, the reward is calculated based on Formulas 2-4. 
The reward consists of the energy consumption indicator ekpi and the 
indoor thermal comfort indicator tkpi. λ is a weight that can adjust the 
importance of ekpi and tkpi in the reward. A larger λ value means ekpi is 
more emphasized in the reward, and the agent tends to evolve towards 
energy-saving. According to our survey in China, more than half of 
building users consider both the environment and energy conservation 
equally important. Therefore, in our experiments, λ is set to 1. In prac
ticable application, λ can be adjusted by users of the building to main
tain their demands for energy saving or thermal comfort. 

In tkpi, we consider the room temperatures of the three rooms. Texp is 
the desired temperature that we expect the rooms to reach. The design 
heating temperature for this building is 18–24 ◦C. To ensure energy 
efficiency while considering comfort, we set the expected temperature to 
20 ◦C for training the RL agent. Since the quadratic function is sym
metric about the vertex, if we only consider energy-saving effects and set 
the temperature to the lower limit of comfort, it may induce tempera
tures below the comfortable range. For example, if the expected tem
perature is set to 18 ◦C, both 17 ◦C and 19 ◦C room temperatures will 
yield the same tkpi. Under the influence of ekpi, the model may prefer to 
choose 17 ◦C as the indoor temperature, which does not align well with 
our requirements. Theoretically, the minimum value of tkpi can be 0. η2 
is the amplification coefficient for tkpi. 

In ekpi, E_min is the minimum value obtained from energy con
sumption prediction by the data-driven model in pre-experiments. Due 
to the fluctuations in data-driven models, it is not ruled out that there 
may be energy consumption smaller than Emin in subsequent prediction 
results. However, this coefficient already allows ekpi to theoretically 
reach 0, similar to tkpi. η1 is the amplification coefficient for ekpi. 
Multiplying ekpi and tkpi by different amplification coefficients is to 
adjust the significant difference in magnitude caused by the unit dif
ference, so that both have a considerable impact on the agent when λ is 
1. F is an activation function to facilitate the convergence of RL math
ematically. in practical applications, other commonly used activation 
functions can be chosen based on the requirements of their problem. The 
introduction of η1 and η2 is to solve the problem that the ekpi and the 
tkpi have different physical quantities, measured in kWh and ◦C. Direct 
addition, subtraction, multiplication, or division of these quantities 
would result in a significant disparity in the magnitude of the reward 
values. So η1 and η2 are determined by the developers and cannot be 
adjusted further. 

ekpi= − η1 × (f (Et − Emin)) (2)  

tkpi= − η2 ×
[(

Tmst − Texp
)2

+
(
Tscd1 − Texp

)2
+
(
Tscd2 − Texp

)2
]

(3)  

reward = λ × ekpi + tkpi (4) 

During the shutdown period, the reward is 0. 

Fig. 11. Temperature prediction of secondary bedroom 1 of Strategy 1.  
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Action: Our action target is the room temperature setpoint, which is 
also the most common control point for residential air conditioning. 
Since we will train RL agents using both discrete action space and 
continuous action space algorithms, when training agents with a 
discrete action space, the action space is defined as Formula 5. 

Action Space={18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28} (5) 

When training agents with a continuous action space, the action 
space is defined as formula 6. 

Action Space= [18, 28] (6) 

The temperature set point in both equations is in ◦C. Due to the 
difficulty in accurately predicting data that has never been seen before 
with data-driven methods, the action space selected in Equation 5is 
slightly smaller than the actual range that can be controlled by the 
household air conditioner, and is based on the distribution of data in the 
historical data. 

Strategy 2:Strategy 2 only models the period when the air condi
tioner compressor is turned on. In application, the on/off of the air 
conditioner needs to be manually controlled, and whether the 
compressor is turned on in the on state of the air conditioner can be 
determined by the air conditioner’s self-control system. Therefore, when 
training the energy consumption prediction model and room tempera
ture prediction model, only the compressor-on periods in the historical 
data were extracted and the rest were excluded. The definition of the 
state and action in Strategy 2 is the same as in Strategy 1, but there is no 
off period, and the reward is calculated using Equations 1-3during the 
training process. 

Fig. 12. Temperature prediction of secondary bedroom 2 of Strategy 1.  

Table 6 
Energy prediction and indoor temperature prediction performance of XGBoost 
models for Strategy 1 after dimensionality reduction.  

Prediction 
model 

Energy Master 
bedroom 
temperature 

Temperature of 
secondary 
bedroom 1 

Temperature of 
secondary 
bedroom 2 

R2 0.8634 0.9887 0.9913 0.9953 
RMSE 0.2423 0.3051 0.2864 0.2087  

Table 7 
Energy prediction and indoor temperature prediction performance of LSTM 
models for Strategy 1 after dimensionality reduction.  

Prediction 
model 

Energy Master 
bedroom 
temperature 

Temperature of 
secondary 
bedroom 1 

Temperature of 
secondary 
bedroom 2 

R2 − 0.0342 − 0.0273 − 0.0247 − 0.0061 
RMSE 0.6526 2.8503 3.1221 3.0457  
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2.3. Comparison with the original control logic 

To compare the effect of the control logic generated by RL, we 
analyze the historical data of the room temperature set point (return air 
temperature) and selecte the room temperature set point with the 
highest frequency of occurrence. We input this temperature into the 
environment we constructe and obtaine the energy consumption and 
indoor temperature under this temperature in the reserved test set, and 
compare it with the energy consumption and indoor temperature under 
the control logic generate by RL. 

3. Evaluation 

3.1. Comparison of the results of building the environment with two 
strategies 

3.1.1. XGBoost energy prediction model and indoor temperature prediction 
model 

In this section, we will compare the energy consumption prediction 
model and the room temperature prediction model generated by the two 
strategies. As described earlier, each strategy will produce one energy 
consumption prediction model and three room temperature prediction 
models. In the energy consumption prediction of Strategy 1, the selected 
feature parameters include the current temperature in the master 
bedroom, the current temperature in the secondary bedroom 1, the 

current temperature in the secondary bedroom 2, the current exhaust 
temperature, the current supply temperature, the current fresh air 
temperature, the room temperature set point (return air temperature) 
for the next time step, and the outdoor temperature for the next time 
step. In the room temperature prediction, we selecte the current indoor 
temperature, the current wall temperature, and the current insulation 
layer temperature, the room temperature set point (return air temper
ature) for the next time step and the outdoor temperature. We obtaine a 
total of 5854 h of data over two years. To prevent data leakage during RL 
agent training, we use the week from February 18, 2022 to February 24, 
2022 as the training set for the RL agent, and a total of 5686 h of data are 
used to train the energy consumption prediction model and indoor 
temperature prediction model. 

R2 score and RMSE are the indicators to evaluate the performance of 
the XGBoost models and LSTM models. All LSTM models have per
formed parameter tuning using a grid search method. The ranges of 
parameter variations for the grid are shown in Table 3. The R2 score and 
RMSE of the four models are shown in Table 4 and Table 5. As can be 
seen from Table 4, the R2 of the XGBoost model for energy consumption 
prediction we trained can reach 0.9537 and its RMSE is 0.1454, and the 
R2 of the XGBoost models for room temperature prediction are all above 
0.99 and their RMSE are less than 0.3. Figs. 9–12 show the results of the 
XGBoost models of air conditioning energy consumption and room 
temperature prediction of Strategy 1 in the winter of 2020 and 2021. 
They also show that the model captures the changes in energy 

Fig. 13. Energy prediction of Strategy 1 after dimensionality reduction.  
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consumption and room temperature well. However, the R2 score and 
RMSE of LSTM models for energy consumption prediction and indoor air 
temperature prediction indicate the training process of these models is 
not converged, which cannot be used further. 

However, in the subsequent environment construction, we find that 
when building the RL environment, all parameters within that envi
ronment must be iterable. If not, training will be difficult. Although 
based on prior knowledge, we know that wall temperature and insu
lation layer temperature have a certain impact on the prediction of in
door temperature, and operational parameters of the system such as 
supply temperature, exhaust temperature, and return air temperature 
will also have an impact on air conditioning energy consumption pre
diction. While these parameters are easily obtainable in a real mea
surement environment, they are difficult to acquire in a data-driven 
environment due to the challenges in iteration. Therefore, in the sub
sequent energy consumption prediction model training, we exclude the 
supply temperature, exhaust temperature, and fresh air temperature of 
the system, and only retain the current indoor temperatures of the three 
bedrooms, the next time step’s room temperature set point (return air 
temperature), and the outdoor temperature. For indoor temperature 
prediction, we exclude the wall temperature and insulation layer tem
perature, and only retain the current indoor temperature, the next time 
step’s room temperature set point (return air temperature), and the 
outdoor temperature. Tables 6 and 7 and Figs. 13–16 demonstrate the 
changes in model performance after excluding the aforementioned 

parameters. 
According to Table 6 and it can be observed that the performance of 

the XGBoost model for energy consumption prediction is significantly 
affected after excluding the operational parameters of the system. The 
model’s performance decreased by approximately 0.09 of R2 score and 
increase 0.1 of RMSE. It is unable to accurately identify the on/off states, 
which can potentially interfere with the training of the RL agent. On the 
other hand, the performance of the indoor temperature prediction 
model is minimally affected. The prediction performance of the master 
bedroom temperature even slightly increase after dimensionality 
reduction. This indicates that wall temperature has little impact on the 
prediction of room temperature in that particular room. This can be 
attributed to the thick insulation layer in nearly zero-energy buildings, 
which provides strong insulation against external heat disturbances and 
results in minimal temperature difference between the wall and the 
indoor environment. The slight increase in performance for the master 
bedroom may be attributed to the different random seeds used during 
the training of the XGBoost model. Figs. 13–16 displayed the prediction 
results of these XGBoost models. 

In Table 7, the R2 score and RMSE of the LSTM models for energy 
consumption prediction and indoor air temperature prediction are 
rather poor. These models are still not converged. 

Although excluding certain parameters has a significant impact on 
energy consumption prediction, for the sake of model iteration, we can 
only perform the aforementioned treatment in this experiment. 

Fig. 14. Temperature prediction of master bedroom of Strategy 1 after dimensionality reduction.  
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However, there may be potential benefits in training the RL model with 
the excluded parameters. 

In the subsequent modeling of Strategy 2, we only conducte 
modeling based on dimensionality reduction. Since Strategy 2 focuses 
solely on modeling the periods when the air conditioning compressor is 
activated, we exclude the periods when the compressor is not in oper
ation during the modeling of the energy consumption and temperature 
prediction models for Strategy 2. As a result, we retaine 3966 time 
hours, with a consecutive set of 144 h reserved as the test set for the RL 
agent model. A total of 3822 h are used for training the energy con
sumption and temperature prediction models. Tables 8 and 9 and 
Figs. 17–20 present the results of the energy consumption and temper
ature prediction models for Strategy 2. 

From Table 8 and it can be observed that after excluding the periods 
when the air conditioning is not activated, the R2 score of XGBoost 
model for energy consumption prediction improve to over 0.9 and its 
RMSE is 0.1042 even without the device operating parameters. But the 
LSTM models are not converged in Table 9. 

Fig. 17 also demonstrates good fitting performance for energy con
sumption, with the prediction error reduced by only considering the 
energy consumption during the air conditioning activation periods. 

As for indoor temperature prediction, Strategy 2 achieve similar 
performance to Strategy 1. Both strategies demonstrated high prediction 
performance, which provide a foundation for training the RL agent. 

3.1.2. Training results of DQN and DDPG agent models 
We encapsulate the XGBoost energy consumption and temperature 

prediction models generated from the above two strategies into an 
OpenAI Gym environment and test the DQN and DDPG models trained 
on these environments. The training step is set to 300,000 steps, and the 
following are the test results. The hyperparameters of DQN and DDPG 
training are described in Table 10 after hyperparameter tuning. In the 
DQN model, our ε value in greedy policy is dynamic. The value of ε 
linearly changes from 1 to 0.05. This is because, during the training 
process of RL, a higher exploration probability is needed in the early 
stages of training to explore the action space. Reducing the exploration 
probability later in training aids the convergence of the model. DDPG 
algorithm uses the policy gradient network to replace the ε-greedy 
policy so there is not an ε in it. The training dataset of RL consists of the 
training data of the aforementioned XGBoost model, while the testing 
dataset consists of additional data that is not used to train the XGBoost 
model in order to prevent data leakage. The variation in data corre
sponds to differences in initialization conditions, thus making our 
training and testing environments distinct. Furthermore, since the data 
utilize in the testing environment has never been employed during 
training, our testing environment effectively reflects the control per
formance of the RL agent in a novel setting. In each episode, the model 
will be tested after training. And the action values of the observed values 
in the training and testing sets will be recorded. At the beginning of each 
episode, the OpenAI Gym environment is initialized for the next training 
iteration. 

Firstly, DQN is trained for Strategy 1. Fig. 21 displays the reward, 
ekpi, and tkpi for Experiment 1 under DQN. It can be observed that 
during the training of DQN, rewards and ekpi/tkpi fluctuate within a 

Fig. 15. Temperature prediction of secondary bedroom 1 of Strategy 1 after dimensionality reduction.  
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large range, without showing a stable convergence trend. However, after 
stabilization, periodic fluctuations become evident. DQN does not yield 
satisfactory training results in this environment. 

Fig. 22 displays the training results of the DDPG agent for Strategy 1. 
Similar to DQN, DDPG also exhibits a periodic pattern in the later stages 

of training, but with a reduced fluctuation range compared to DQN. 
Considering the training results of both agents mentioned above, it 

can be observed that Strategy 1 fails to guide the training of a stable and 
useable DQN or DDPG agent. There could be two possible reasons for 
this phenomenon. Firstly, in Strategy 1, when training the energy con
sumption and temperature prediction models, we require a model to 
provide predictions for both the air conditioning on and off states. 
However, when entering the training of the RL agent, the model cannot 
accurately determine the air conditioning’s current state, resulting in a 
significant impact on the predictions of energy consumption and tem
perature. This is highly detrimental to the training of the RL agent 
model. 

Secondly, during the off-state, we set the reward at any given time 
step to be 0. This implies that the model’s training does not stop during 
the off-state. However, since the model realizes that any room temper
ature setting will yield the same reward feedback, it may randomly guess 
the desired air conditioning temperature. The guessed action values may 
be related to the training cycle, which could explain the periodic 
changes observed in the later stages of training for the DDPG model. 

In summary, due to the issues in the strategy design, Strategy 1 fails 
to properly induce the training of the RL agent. The data-driven RL 
environment cannot achieve automatic control by modeling multiple 
states using a single model. 

Fig. 23 illustrates the training results of the DQN agent model in the 
Strategy 2 environment. From Fig. 23, it can be observed that after an 

Fig. 16. Temperature prediction of secondary bedroom 1 of Strategy 1 after dimensionality reduction.  

Table 8 
Energy prediction and indoor temperature prediction performance of XGBoost 
models for Strategy 2.  

Prediction 
model 

Energy Master 
bedroom 
temperature 

Temperature of 
secondary 
bedroom 1 

Temperature of 
secondary 
bedroom 2 

R2 0.9181 0.9884 0.9916 0.9958 
RMSE 0.1042 0.3101 0.2739 0.2006  

Table 9 
Energy prediction and indoor temperature prediction performance of LSTM 
models for Strategy 2.  

Prediction 
model 

Energy Master 
bedroom 
temperature 

Temperature of 
secondary 
bedroom 1 

Temperature of 
secondary 
bedroom 2 

R2 − 0.0151 − 0.0337 − 0.0176 − 0.0370 
RMSE 0.3463 3.1423 3.0944 3.0301  
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initial large oscillation, the training process exhibits periodic oscillations 
that persist for a while before expanding into a larger range. This in
dicates that the model eventually diverges, and the environment fails to 
train an effective DQN agent model. 

Fig. 24 presents the training progress of the DDPG agent model in 
Strategy 2. By considering the rewards, ekpi, and tkpi, we can observe 
that after an initial period of intense action oscillations, the three metrics 
gradually increase and stabilize, indicating the model’s convergence. 

However, around step 110,000, the model starts to overfit, leading to a 
slight increase in the oscillation range for the three metrics. Therefore, 
according to Fig. 24, the model achieves optimal performance at 
approximately 110,000 steps. Thus, we will select the observed values 
and action values of the testing process at around 110,000 steps for 
further analysis. 

Fig. 25 shows the temperatures of the master bedroom, secondary 
bedroom 1, secondary bedroom 2, room temperature setpoint, and 

Fig. 17. Energy prediction of Strategy 2.  

Fig. 18. Temperature prediction of master bedroom of Strategy 2.  

Fig. 19. Temperature prediction of secondary bedroom 1 of Strategy 2.  
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outdoor temperature at step 110,000 of the test set. At this point, the 
master bedroom temperature remains within the range of 
18.4 ◦C–19.0 ◦C, while secondary bedroom 1 ranges from 18 ◦C to 
18.5 ◦C, which is closer to the desired temperature of 20 ◦C set during 
the training process. However, secondary bedroom 2 exhibits lower 
temperatures, ranging from 16.5 ◦C to 17.5 ◦C, with a larger deviation 
from the desired temperature. 

Comparing the historical data in Figs. 18–20, it can be observed that 
at the same moment, the temperature in secondary bedroom 2 is 
generally lower than that in the master bedroom and secondary 
bedroom 1, with a difference of approximately 1.5 ◦C–2 ◦C. Referring to 
the floor plan in Fig. 2, this is because secondary bedroom 2 is adjacent 
to a non-air-conditioned area, namely the bathroom, while the master 
bedroom and secondary bedroom 1 are adjacent to each other and 
surrounded by air-conditioned areas. Secondary bedroom 2 is more 
influenced by the non-air-conditioned area, resulting in higher heat 
dissipation compared to the other two rooms. 

Additionally, consistent with the theoretical analysis in section 2.2.2, 
when we set the desired temperature to 20 ◦C, none of the three rooms 
fully reach 20 ◦C, but they generally meet the lower limit of the heating 
comfort standard at 18 ◦C. This confirms that when we assigned equal 
weights to ekpi and tkpi during training, the agent tended to prioritize 
energy efficiency over comfort to some extent. 

Furthermore, comparing the DQN and DDPG algorithms, it can be 
observed that DQN still fails to converge in Strategy 2, possibly due to its 
small action space of only 11 values. This limited range of options in the 
DQN model is insufficient for addressing the complexity of our actual 
problem, resulting in difficulty in convergence. DQN performs poorly on 
this problem. 

Moreover, the control strategy of the DDPG agent does not exhibit 
significant fluctuations within the given period. This is because this 
study focuses on the heating condition of a nearly zero-energy building 
during winter, where the building has good insulation and therefore 
experiences minimal fluctuations in indoor temperature. In conven
tional buildings, the adjustability of the RL agent model is likely to be 
more effective. 

3.2. Comparison with the original control logic 

Fig. 26 shows the probability density curve of the room temperature 
setpoint (return air temperature) in the historical data. From the curve, 
it can be observed that the original control logic had the highest prob
ability density at a room temperature setpoint of 26.2 ◦C. Table 11 
presents the energy consumption comparison in the test set under DDPG 
control compared to the 26.2 ◦C control. According to Table 11, the 
energy consumption in the building under DDPG control was 10.06% 
lower compared to the 26.2 ◦C control during the test set time range. 

4. Conclusion 

In this study, two strategies for energy-saving control of a residential 
building are established, and XGBoost models for energy consumption 
prediction and indoor temperature prediction are chosen after com
parsion with LSTM model under these strategies, because none of LSTM 
models converged. Under the aforementioned strategies, two RL models, 
DQN with a discrete action space and DDPG with a continuous action 
space, are trained. The main conclusions are as follows:  

● Without considering the iterability of data, the performance of the 
energy consumption prediction model trained under Strategy 1 is 
0.9537 of R2 score and 0.1454 of RMSE, and the performance of the 
temperature prediction models for the master bedroom, secondary 
bedroom 1, and secondary bedroom 2 is 0.9905 of R2 score and 
0.2784 of RMSE, 0.9920 of R2 score and 0.2698 of RMSE, 0.9975 of 
R2 score and 0.1532 of RMSE, respectively. However, there are non- 
iterable parameters in the training parameters of the above models, 
such as equipment operating parameters and room wall tempera
tures. After excluding these parameters, the performance of the en
ergy consumption model under Strategy 1 is 0.8634 of R2 score and 
0.2423 of RMSE., and the performance of the temperature prediction 
for the three rooms is 0.9887 of R2 score and 0.3051 of RMSE, 0.9913 
of R2 score and 0.2864 of RMSE, 0.9953 of R2 score and 0.2087 of 
RMSE, respectively. The energy consumption prediction perfor
mance under Strategy 2 is 0.9181 of R2 score and 0.1042 of RMSE, 
and the temperature prediction performance for the three rooms is 
0.9884 of R2 score and 0.3101 of RMSE, 0.9916 of R2 score and 
0.2739 of RMSE, 0.9958 of R2 score and 0.2006 of RMSE. Equipment 
operating parameters have a significant impact on the performance 
of air conditioning energy consumption prediction.  

● Strategy 1 does not induce a useable RL agent in both DQN and DDPG 
training. This is because a single model is used to represent two 
processes, making it difficult for the RL agent to determine the cur
rent on/off state. Additionally, during the off state, the model 
training do not stop, but the rewards are all 0, causing the RL agent to 

Fig. 20. Temperature prediction of secondary bedroom 2 of Strategy 2.  

Table 10 
Hyperparameters of DQN and DDPG training.   

Policy Learning 
rate 

Discount 
factor 

initial value 
of ε 

final value 
of ε 

DQN Mlp 0.0005 0.99 1 0.05 
DDPG Mlp 0.0005 0.99 – –  
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make random guesses about the air conditioning temperature 
setpoints.  

● In the DQN training of Strategy 2, a useable agent is not induced. 
However, in the DDPG training, the RL algorithm converge and 
generate a useable agent model. This is because the action space of 

the DQN algorithm is relatively small for the problem at hand, and 
the model failes to converge.  

● In the test set, the DDPG agent trained under Strategy 2 achieve 
10.06% energy savings compared to the original fixed temperature 
control at 26.2 ◦C, while ensuring indoor thermal comfort. 

Fig. 21. DQN training result of Strategy 1.  
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5. Discussion 

In this study, a data-driven approach is used to construct an RL 
environment for an experimental nearly zero-energy building and verify 

its feasibility. However, this approach may encounter the following is
sues in practical applications. 

First, when training the RL agent model using this approach, the 
action space cannot exceed the range of actions observed in the 

Fig. 22. DDPG training result of Strategy 1.  
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historical data. In this case, the range of room temperature setpoints 
cannot include data that has not appeared in the historical data. This is 
because data-driven methods learn based on available data and may not 
perform well on unseen data. 

Second, the iterability of parameters needs to be considered in the 
selection of observation values. In this case, although the operating 

parameters of the air conditioning system can positively impact energy 
consumption prediction, we cannot obtain these parameters during 
iterative data-driven training. Therefore, they have to be excluded, 
resulting in a sacrifice of prediction accuracy. However, in an experi
mental environment, this problem can be solved, and its impact on the 
training of RL agent models will be further reduced. 

Fig. 23. DQN training result of Strategy 2.  
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Fig. 24. DDPG training result of Strategy 2.  
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Thirdly, although the research in this paper is based on a nearly zero- 
energy residential building, the research methodology can theoretically 
be extended to conventional residential buildings. The generalization of 
this method would require more case studies and data from conven
tional residential buildings. 
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Comparison between DDPG controller and original temperature setpoint.   
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