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Traditional approaches to building performance analysis often rely on manual or semi-manual methods, suffering
from cumbersome workflows, low efficiency, and high error rates. This study developed AutoBEE, an automated
analysis framework for building energy consumption and environmental parameters based on hierarchical multi-
agent system integrated with large language models. This framework focused on enhancing the efficiency of
individual agent and productive collaboration among agents group. Through the development of a compre-
hensive agent tool library, the establishment of a multi-level network spanning from teams to agents, the design
of a lightweight communication protocol, and the creation of dynamic path planning, AutoBEE achieves
autonomous unmanned operation from natural language input to building performance report output. During
operation, agents group can exhibit a wide range of capabilities, including but not limited to accurately parsing
user instructions, decomposing complex tasks into subtasks, adjusting parameters in the input data file, executing
simulation calculations by energy simulation software, and generating structured professional reports. Verified
through experiments in 54 typical scenarios, compared with traditional methods, AutoBEE has significantly
improved efficiency, accuracy, rationality, content richness, and economic feasibility, providing an innovative
solution for building performance research.

1. Introduction automation, and heavy reliance on manual operations, BECPA faces
challenges of strong professionalism, intricate workflows, and time-
consuming tasks in engineering applications.

In engineering applications, the BECPA process can be broadly

1.1. Research background

Driven by the global energy crisis and the wave of green building,
building energy consumption and performance analysis (BECPA) has
become core methods to promote sustainable development in the con-
struction sector [1]. BECPA is applied throughout the whole architecture
process, covering architectural design optimization, energy efficiency
evaluation of mechanical and electrical systems, energy-saving reno-
vation of existing buildings, and building operation performance
adjustment. It provides a scientific basis for energy-saving decisions and
environmental quality improvement in all links through quantitative
data. [2] However, due to the high complexity of tasks, low degree of

divided into two parts: firstly, acquiring energy consumption or envi-
ronmental parameter data; secondly, analyzing the data and presenting
it in reports or other forms. For the data acquisition process, current
mainstream methods include field measurements, statistical analysis,
and computer simulations. Field measurements rely on sensors to collect
real time data but face issues with spatial coverage and data continuity
[3]. Statistical analysis constructs predictive models based on historical
data but struggles to adapt to complex and dynamic real world scenarios
[4]. In contrast, Building Energy Modeling (BEM) technology, with its
ability to accurately predict energy consumption and environmental
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parameters, has provided reliable support for decision making
throughout the building lifecycle process. However, BEM technology
also faces challenges in its application in multiple dimensions [5]. On
the one hand, constructing feasible energy consumption models requires
practitioners to have a comprehensive understanding of relevant
knowledge, especially, modern buildings integrate complex mechanical
systems and new building materials with the innovation of the con-
struction industry, making the modeling process more comprehensive.
As shown in the list of energy efficiency simulation elements compiled
by Mendes, its rich content vividly illustrates the complexity of building
energy modeling and model modification work [6]. On the other hand,
there are significant differences in the functionality and operational
logic of BEM software available on the market, which leads to poor
interoperability between software, requiring users to relearn each time
they engage with a new software. Based on the above two points, even
professional and skilled BEM engineers often spend enormous time and
effort to complete a reliable BEM model. After BEM modeling and
simulation are completed, for the data analysis process, data output
from BEM models or other channels features large volume, multiple
dimensions, and diverse modalities. When tackling specific issues, en-
gineers also need to incorporate additional knowledge inputs like reg-
ulations and standards. As a result, engineers spend much effort
extracting valid information from the data and synthesizing it into re-
ports. Meanwhile, it is hard to fully ensure the accuracy, rationality, and
content richness of the reports. Take the architectural design phase as an
example. If an engineer needs to evaluate the impact of envelope design
changes on expected energy consumption, the following cumbersome
processes are required. First, it takes a lot of time to build a BEM model,
and the modeling process is prone to errors due to parameter setting or
geometric description deviations. After completing the baseline scheme
simulation, it is necessary to manually modify the envelope parameters
in the model (such as the thermal performance of wall materials,
window-to-wall ratio, etc.) and rerun the simulation. Finally, it is also
necessary to filter and extract energy consumption-related data from the
multi-format files (such as CSV, JSON, or text reports) output by BEM to
complete the comparative analysis of the old and new schemes. In the
building operation phase, when engineers need to analyze whether a
building complies with certain energy-saving codes, in addition to
repeating the modeling and data analysis processes, they also need to
invest a lot of energy in retrieving and comparing industry codes, and
cross-validating the code requirements with the simulation results. In
summary, the BECPA process is extremely cumbersome and highly
professional.

Considering the complexity of BECPA modeling and data processing,
exploring user-friendly, fully automated, and high quality BECPA
methods is core critical to significantly improving work efficiency and
the quality of BECPA analysis. It is obvious that automating data
collection, model construction, and parameter analysis through intelli-
gent algorithms and programs can significantly improve the efficiency
and accuracy of the BECPA process [7]. However, at present, there is no
tool or software on the market that can fully automate and cover all
these processes with the focus remaining on optimizing the modeling
front-end interface, most of the work still needs to be handled manually
according to the workflow. Upon detailed analysis, the reason lies in that
most traditional algorithms rely on preset rules and can only handle
specific scenarios step by step as programmed, while the BECPA process
has distinct characteristics. In terms of model input, the construction of
physical models and the determination of dynamic boundary conditions
are inherently complex. Moreover, as users’ focuses vary widely,
covering aspects such as building envelopes and operating systems, it is
extremely challenging for rule-based programs to fully accommodate
the diverse requirements of various building scenarios. Regarding model
output, the data does not follow a fixed format but rather exhibits di-
versity, making it difficult for rule-based programs to extract informa-
tion that can address users’ problems. Additionally, the communication
barrier between users’ natural language and professional modeling
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remains a crucial bottleneck that urgently needs to be overcome.

With the advancement of artificial intelligence technology, the
emergence of Large Language Model (LLM) and intelligent agents has
brought new opportunities for BECPA, particularly to address the chal-
lenges posed by traditional algorithms above [8]. LLMs can understand a
variety of user needs and convert them into technical instructions [9]
And intelligent agents based on LLMs, through modular design and the
integration of components such as memory, planning, and tool invoca-
tion, can autonomously decompose and execute tasks, rather than
relying on originally preset rule-based steps [10]. Specifically, multi-
agent systems can handle more complex tasks through division of
labor and collaboration. The combination of LLMs and agents provides a
completely new technological pathway for automated building energy
efficiency analysis, driving the field into a new stage of intelligent
development [51112].

1.2. Literature review

In the advancement of LLMs, scholars have increasingly explored the
applications in the field of building energy and environment. LLMs show
significant potential in various building performance scenarios, such as
intelligent control systems, code generation, and regulatory compliance,
as analyzed by Zhang et al. [5] in 2023. However, challenges like high
computational costs, data privacy concerns, and fine-tuning complexity
impede their application. To tackle these issues, researchers have
employed diverse strategies. Many scholars [13-20] have conducted
research on different aspects of LLM application, such as exploring
LLM’s knowledge in the Heating, Ventilation and Air Conditioning
(HVAC) industry, enriching information from Building Information
Modeling (BIM), HVAC terminal control, and information query system
development. The specific details of these directions are summarized in
Table 1. Meanwhile, methods such as Retrieval Augmented Generation
(RAG) and fine-tuning have been used to enhance LLM capabilities. In
summary, these studies demonstrated LLMs’ potential in building en-
ergy applications [2122].

In the field of BECPA from BEM relevant to this study, the application
research with LLMs has emerged as a prominent focus. Regarding the

Table 1
Overview of Existing LLM Research in Building Energy.

LLM Application in References  Key Research Content
building fields
Model Evaluation [13] Evaluation of LLM capabilities in the HVAC
field.
[14] Evaluation of LLM capabilities in building
energy retrofit.
Building Retrofit [11] Utilization of LLMs for building energy
retrofit.
Building Control [15] Utilization of LLMs for building control.
[18] Utilization of LLMs for interpretable
machine learning control.
Building Energy [16] Utilization of LLMs for building operation
Management information query.
[17] Utilization of LLMs for intelligent building
management.
BIM Information [20] Utilization of LLMs for building BIM
information search.
Building Energy [5] Utilization of Multi-agents for building
Modeling energy consumption simulation.
[19] Utilization of LLMs for data-driven urban
building energy modeling.
[23] Utilization of LLMs for IDF files without
geometric information.
[24] Utilization of Fine-Tuning LLMs for building
energy simulation modeling.
[25] Utilization of feedback mechanism by LLMs
for optimizing IDF Files.
[26] Design of architecture structuring with

LLMs to simplify building energy analysis
development process.
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BEM modeling process, many scholars have explored paths to automate
BEM operations, with the automatic generation of Input Data Files (IDF)
at the core, complemented by simulation methods. Zhang et al. [23]
focused on geometry-free IDF file generation, systematically integrating
relevant parameters into LLM prompt templates via analyzing design
requirements, extracting standard parameters, and retrieving similar
models from HVAC design specifications and the EnergyPlus model li-
brary to enable automatic generation. Jiang et al. [24] further custom-
ized LLMs through fine-tuning, enabling them to understand users’
natural language inputs with simple geometric information and simu-
lation requirements. Additionally, Zhang et al. [525] constructed a
feedback mechanism, transmitting the simulation results from the
simulation software back to the LLMs to optimize and correct IDF files.
This ensured the accurate conversion of building descriptions into error-
free EnergyPlus models. These IDF inputs were then processed via the
simulation software’s API, followed by model simulation and result
output. Regarding the data analysis process, Zhang et al. [5] demon-
strated the ability of LLMs to plot simulation results in specific di-
mensions. However, the research findings did not demonstrate that
LLMs can extract multi-dimensional data required by users from com-
plex results.

Although the above mentioned studies covered various aspects of
simulation input, execution, and post-processing, they still struggled to
provide end-to-end solutions when dealing with complex problem in-
puts from users in multiple scenarios due to the insufficient technical
integration and stage coordination. Specifically, most existing research
focused on technical breakthroughs in single links of the energy con-
sumption simulation process (such as file generation, simulation
execution, or result analysis), but BECPA was inherently a complex
process with closely linked multi-link and multi-stage components. Due
to the lack of organic integration of technologies across stages, the entire
process from user requirement input to final result output could not be
smoothly connected and coordinated.

To address the challenge of technical integration, scholars also made
corresponding attempts. In these efforts, multi-agent systems were
regarded as highly promising solutions. Through division of labor,
collaboration, and information exchange, multi-agent systems could
organically connect technologies at various stages and dynamically
decompose and plan complex tasks. Zhang et al. [525] introduced
multiple agents to handle different tasks within the full-process appli-
cation framework of LLM-based simulation, and also proposed a struc-
tured architecture and open-source library to simplify the development,
sharing, and deployment of LLM agents for building energy analysis and
modeling [26]. Similarly, Xiao et al. [11] utilized agents with different
roles to complete the entire workflow of automated building energy
optimization, from extracting information from unstructured audit re-
ports and generating building metadata to providing energy efficiency
diagnosis and retrofit recommendations. The specific research work of
scholars can be found in Table 1. However, these studies failed to
fundamentally provide a highly robust complete framework for BECPA.
Researchers focused on the performance of each agent within its task
scope rather than the collaborative capability of agent groups
throughout the entire task process. Specifically, the operation sequence
and logic of agents still relied on predefined procedural steps or required
manual intervention to operate the agents, rather than autonomously
planning execution paths based on tasks to achieve the requirements of
unmanned operation and user-friendliness. For LLMs, their proactive
task decomposition, planning, and execution mechanisms were the key
to outputting reliable reports across multiple scenarios. Meanwhile,
according to investigations, the current capabilities of single agents still
did not meet the requirements for adapting to multi-scenario and multi-
task environments, but were more targeted at single and simple
scenarios.
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1.3. Research objectives and technical challenges

In order to solve the research questions pointed out in Section 1.2,
this study aimed to build an automated, intelligent and user-friendly
BECPA analysis framework named AutoBEE (Automated Building En-
ergy and Environment Analysis) based on the multi-agent collaborative
system and BEM software. AutoBEE focuses on two core directions: first,
the collaborative capability of the agent group achieved through infor-
mation interaction. By dynamically selecting paths, the entire process
operates efficiently and automatically, completely eliminating the need
for manual intervention; The second is to strengthen the execution ef-
ficiency of a single agent. The core goal of the research is to break
through the bottleneck of traditional Al algorithms, which are highly
dependent on step-by-step guidance from users. By AutoBEE, Users only
need to input natural language instructions about BECPA, without
having to master complex building energy consumption expertise or be
familiar with professional software, the system can automatically com-
plete the whole chain of work from task decomposition, parameter
adjustment, simulation calculation, result analysis and report output.
For example, during the architectural design phase, users only need to
input a question like “the impact of changing a certain parameter on
energy consumption” to obtain the expected energy consumption
change results, thereby assisting in decision-making, without the need to
learn software or perform data processing.

It is important to emphasize that this paper focuses on the con-
struction and optimization of the automated analysis process. As the
generation of IDF files has been addressed by numerous scholars and is
not the core of this study, it is assumed that users can provide original
IDF files as the analytical basis. Given that EnergyPlus is the most widely
used building energy simulation software in the industry (adopted in 65
% of related studies) [6], it was selected as the core simulation tool for
this framework to fully leverage its high-precision simulation
capabilities.

To achieve the goals of full automation and intelligence in BECPA,
the following three key technical problems need to be overcome ((1) and
(2) focus on the interaction among agent groups;(3) focus on the effec-
tiveness of individual agents.):

(1) The problem of agent task allocation: In the BECPA scenario,
tasks that users need to complete often involve complex processes across
multiple scenarios and dimensions. For example, to achieve a specific
building energy consumption analysis requirement, it may be necessary
to sequentially complete core tasks such as IDF file modification,
simulation calculations, and data analysis. Among these, IDF file
modification is further subdivided into professional subtasks such as
building envelope parameter adjustment, HVAC system configuration
optimization, and power equipment operation parameter setting. Data
analysis covers multi-level tasks including data cleaning, multi-source
data integration, multi-dimensional data analysis, standard specifica-
tion matching, report text compilation, and visualization. More
complexly, when tasks involve multi-scenario comparisons (such as
energy consumption simulations of two design schemes), key tasks like
modification and simulation need to be executed multiple times. In such
dynamic task chains, the core challenge for agent groups is: how to
autonomously plan dynamic execution paths based on the specific re-
quirements and real-time status of tasks, and accurately match subtasks
to agents with corresponding capabilities, ensuring efficient collabora-
tion throughout the process and achieving qualified results output.

(2) The problem of communication mechanism optimization:
When addressing the above task allocation problem, efficient commu-
nication between agents serves as a core prerequisite. However, frequent
communication among agents incurs high token costs, and the trans-
mission of invalid information may interfere with task execution. In the
BECPA task, each agent generates substantial information when
executing each subtask. The information existing in the final system
includes details of every IDF file modification, specifics of executed
operations, and the entire process of report generation. If such



Y. Quan et al.

information is fully transmitted among all agents, it will obscure critical
information and affect the agents’ accurate judgment of task progress.
Therefore, the core issue is transformed into: How to construct an effi-
cient communication mechanism between agents that can both mitigate
task execution risks and minimize token consumption in large models,
thereby effectively controlling communication costs.

(3) The problem of improving the execution efficiency of indi-
vidual intelligent agents: After tasks are accurately allocated to
agents, their execution capabilities directly determine the final
completion effect of the tasks. In highly specialized fields such as
BECPA, single agents generally face three core challenges when
handling complex professional tasks: narrow execution scope, insuffi-
cient execution capabilities, and potential “hallucination” risks. For
example, in scenarios involving modifications to HVAC system tem-
perature settings in IDF files, agents often cannot directly provide
scientifically reasonable modification methods due to limitations in
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existing knowledge. Therefore, the technical difficulty lies in: how to
enhance the execution capabilities of single agents to enable them to
achieve precise and efficient processing of complex professional tasks
and ensure task success.

In response to the above challenges, this study plans to conduct ex-
plorations in the following chapters: Chapter 2 will elaborate on the
technical route and key technologies of the AutoBEE framework;
Chapter 3 will construct 54 typical scenario experiments to verify the
significant advantages of the AutoBEE framework compared with
traditional methods; Chapters 4 and 5 will summarize the research re-
sults and deeply discuss the research limitations and future development
directions. The research results of this study will provide innovative
solutions for building performance research, promote the development
of BECPA towards the direction of high efficiency, intelligence, and user-
friendliness.
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2. AutoBEE framework
2.1. Technical route

To achieve the goal of fully automating BECPA, this study focuses on
multi-agent system leveraging LLM to build an end-to-end system named
AutoBEE that specifically addressed three key technical challenges
mentioned in Section 1.3: agent task allocation, communication mech-
anisms, and individual execution efficiency. A series of innovative so-
lutions are proposed:

(1) Enhanced agent execution through the construction of the BECPA
tool library and other technologies [271228];

(2) Constructed a multi-level work network composed of teams and
agents;

(3) Optimized multi-level super node architecture for team collabo-
ration [29];

(4) Optimized lightweight communication protocol for economy and
robustness [30].

The specific technical details will be described in Section 2.2. Fig. 1 is
the overall framework of AutoBEE.

As shown in Fig. 1, the overall framework structure of AutoBEE is
presented. Table 2 outlines the specific meanings of Super Graph, team,
Sub Graph, nodes, edges, super nodes, and path selection under this
framework, with its technical principles detailed in Section 2.2. The
entire framework is composed of multiple work teams, including a
planning team, a supervision team, a modification team, a simulation
team, and a reporting team, with each team consisting of its specific
agents. This multi-level structure is conducive to the precise allocation
of tasks. Within this framework, the user first inputs relevant questions
involving multiple dimensions of building performance, including, but
not limited to, energy consumption, indoor environmental conditions,
pollutant emissions, predicted mean vote (PMV), and compliance, while
also providing the original IDF file. At the “Super Graph” level, The
“Planning team” is responsible for formulating a global original execu-
tion plan according to task characteristics, ensuring the logicality of
subsequent task execution processes. The “Supervisor team” oversees
the entire BECPA task and dynamically selects the next execution team
at the “Sub Graph” level based on the received real-time feedback on
execution status and the obtained plan list. During the execution phase,
each “Sub Graph” also contains sub-super nodes that dynamically select
the next agent to execute. In “Sub Graph 1,” the supervisor responsible
for modifying tasks leads a multi-agent team to make precise modifi-
cations to the parameters of the IDF file according to predefined re-
quirements. In “Sub Graph 2,” a specific agent triggers the simulation
program based on the IDF file, completing the task when the simulation
is finished. In “Sub Graph 3,” the supervisor responsible for reporting
organizes a multi-agent team to comprehensively collect, analyze, and
integrate the simulation data.

The highlights of AutoBEE lie in enabling efficient collaboration

Table 2
Table of Definitions and Meanings of Concepts[29] in AutoBEE.
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among agent groups and enhancing the capabilities of individual agents.
In terms of agent groups collaboration, the framework first organizes
agents with similar functions into teams to form a multi-level task
completion network. Additionally, the framework employs super nodes
composed of LLMs at various levels to dynamically plan the next
execution team or agent. Meanwhile, a lightweight communication
protocol is designed to reduce operational costs and minimize infor-
mation interference. Regarding the capabilities of individual agents,
technologies such as CoT and RAG are significantly utilized, and a
complete omnidirectional tool library covering IDF file modification,
simulation, and report analysis is built for enhancement.

AutoBEE can achieve fully automated BECPA. For example, if a
designer needs to test the energy-saving potential of a new building
material, they only need to input the material properties and problem
description. AutoBEE will then automatically execute the aforemen-
tioned process and provide a energy consumption comparison between
the new and old materials, assisting the designer in making decisions.
The specific technical implementation details mentioned above are
detailed in following Section 2.2.

2.2. Analysis and explanation of key technologies

The following sections provide a detailed elaboration on these key
technical methodologies.

2.2.1. Agent execution capability

To enhance the execution capabilities of agents, this study estab-
lishes a complete library of building performance analysis tools while
integrating the CoT technique and RAG technology.

(DAgent [27].

Against the backdrop of the continuous evolution of artificial intel-
ligence technologies, LLMs [9], as important achievements in the field of
natural language processing, have achieved in-depth understanding and
generation of the complex semantics and grammatical structures of
human language through the Transformer architecture and training on
massive text data. On this basis, agents [27] built based on LLMs achieve
functional upgrades and task expansions through modular design, with
their core modules including memory modules, planning modules, tool
modules, and action modules. This modular architecture enables agents
to autonomously perceive, make decisions, and execute tasks in dynamic
environments, significantly enhancing the task-processing capabilities
and environmental adaptability of artificial intelligence systems. This
study utilizes the multifunctional characteristics of agents to achieve
specific task objectives. Aiming at the execution deviations and effi-
ciency bottlenecks that may occur when agents process complex tasks,
the research focuses on achieving precise definition of agent functions
and behavioral guidance by optimizing prompt design and CoT [31]
strategies, introduces RAG [271228] technology to address the hallu-
cination problem, and meanwhile establishes a complete library of

Concept Original Meaning Meaning in This Study
Super A complex graph structure in theories, used to The top-level framework in this research, coordinating task planning and supervision. Manages “Planning” and
Graph model system architectures. “Supervision” teams to ensure task execution alignment.
Sub Graph A subset of a graph, enabling modular analysis. Represents specific task stages (e.g., parameter modification, simulation, data analysis) within the Super
Graph.

Team A collaborative group working towards a common Specialized groups of agents/LLMs handling distinct roles (e.g., planning, simulation, reporting).
goal.

Nodes Basic units in graph theory, representing entities or ~ Individual agents or LLMs performing specific tasks (e.g., semantic parsing, simulation execution).
operations.

Edges Connections between nodes, denoting relationships ~ Define task dependencies and information transfer paths (e.g., parameter modification must precede
or data flow. simulation).

super nodes Nodes with elevated management capabilities in
distributed systems.
Path Algorithmic process to determine optimal routes

Selection between nodes.

adaptability.

availability.

LLM-powered entities that dynamically plan execution paths based on real-time task status, enhancing

Dynamic decision-making by Super Nodes to select execution paths based on task complexity and resource
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building performance analysis tools.

(2) Chain of Thought (CoT) [31].

CoT refers to a method that decomposes complex tasks into a
sequential series of reasoning steps. By simulating human step-by-step
reasoning, CoT guides agents to generate reasoning and calculations
based on previous results, ultimately leading to the achievement of the
task objective.

The implementation of CoT primarily involves two approaches:
prompt engineering and model fine-tuning. Prompt engineering entails
designing guiding statements or examples within input instructions to
direct the agent in constructing a reasoning chain. Model fine-tuning, on
the other hand, involves training the agent on datasets annotated with
CoT data to enhance its ability to autonomously generate reasoning
steps.

In this study, prompt engineering is employed by embedding struc-
tured guiding statements and examples into input prompts, explicitly
instructing the agent to analyze problems and plan tasks following
specific logical steps. For example, task instructions may require the
agent to “analyze the problem step-by-step: first, identify key elements;
then, derive intermediate logic; and finally, draw conclusions.” This
approach enhances the agent’s understanding and execution of tasks,
thereby improving the accuracy and efficiency of task completion.

Here is an example of CoT prompt engineering applied to the modify
agent:

You are an agent responsible for modifying IDF files. Your task is to
follow the steps below using the {Chain of Thoughts} strategy:

(a) Receive the task instruction, comprehensively analyze the current
system status, the existing information of the IDF file, and the specific
modification requirements, and clarify the task objective.

(b) According to the task requirements, screen the suitable tools from
the tool library and sort out the parameters and instructions required for
tool invocation.

(c) Execute the tool invocation, input the parameters and in-
structions accurately, and start the modification operation on the IDF
file.

(d) Monitor the tool execution process in real — time, obtain the
feedback result of the modification operation, and determine whether
the modification is successful.

(e) If the modification is successful, jump to step 8; if it fails, check
the input parameters and instructions of the tool, and optimize and
adjust them in combination with the feedback error information.

(f) Invoke the modification tool again, execute the modification of
the IDF file, and verify the modification result again.

(g) Repeat steps e — f until the modification is successful.

(h) Output the prompt message indicating that the modification of
the IDF file is successful, and confirm that the modified content is
correct.

(i) Save the modified IDF file according to the specified path and
format to complete the task.

(3) Tools library for building performance analysis.

The tools of an agent are components that assist the agent in
completing specific tasks and expanding its capabilities. These tools
come in various forms. For example, a search engine can provide real-
time information, a code interpreter can execute code to solve pro-
gramming problems, a file reader allows access to and processing of
local files, and a calculator can perform numerical calculations, among
others. These tools function as the “assistants” of the agent. By breaking
down complex tasks into calls to different tools, the agent can extend its
capabilities and efficiently complete a wide range of tasks, such as data
analysis, knowledge retrieval, and content creation, significantly
improving the efficiency and quality of problem-solving.

To enhance the comprehensiveness and efficiency of agents in
executing tasks in the field of building performance analysis, this study
has established a complete tool library covering all dimensions of IDF
file modification, simulation execution, and report analysis, specifically
including IDF file modification from perspectives such as parameters of
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enclosure structure, building morphology and spatial layout, operation
parameters of equipment systems, behaviors of personnel and equip-
ment, and multi-type pollutant emission factor as well as aspects like
EnergyPlus API invocation, building energy consumption analysis, in-
door environmental parameter analysis, and pollutant emission anal-
ysis, which can be widely applied to the whole process of BECPA with
excellent versatility. In this study, the construction of tools in the tool
library mainly adopts three invocation modes, as shown in Fig. 2. In
mode (a), the LLM directly invokes encapsulated custom Python tools
after planning. These tools are presented as functions, with the model
passing parameters for execution and receiving feedback on the results.
In this process, strategies such as reflection, self-criticism, CoT, and sub-
goal decomposition assist in the planning phase. In mode (b), the LLM
first plans and generates executable Python code, which is then run in a
Python execution environment, with the running results being fed back
to the model. Again, the aforementioned auxiliary strategies are
employed. In mode (c), the LLM directly invokes non-custom tools, such
as text chunking, text vectorization, vector storage, and summarization,
with the results being returned after the tools are executed. Strategies
like reflection are also used to support the planning process. These three
modes illustrate the flexibility and adaptability of LLMs in utilizing tools
to complete tasks in this study.

The tool invocation method shown in mode (c) is primarily applied
to RAG technology. This approach effectively addresses the “hallucina-
tion” problem often encountered by large models when handling
specialized knowledge. By combining the retrieval process from an
external knowledge base with the generative capabilities of LLMs, RAG
ensures more accurate and reliable outputs. In the field of building
performance analysis, users’ core demands are frequently closely tied to
industry standards and specifications. However, when LLMs answer
questions involving standard clauses and compliance requirements, er-
rors or fictional content may emerge. To address this issue, this study
develops a targeted application scheme for RAG. First, authoritative
standard documents, such as building energy consumption calculation
standards and indoor environmental quality specifications, are vector-
ized to create a specialized domain knowledge base. Simultaneously,
user input questions are transformed into vector representations. Using
algorithms such as cosine similarity, semantically relevant standard
knowledge fragments are retrieved from the knowledge base and input
into the LLM as context. This mechanism ensures that the answers
generated by the LLM are consistently based on authoritative standards,
effectively mitigating the risk of “hallucination” and enhancing the
professionalism and credibility of the building performance analysis
conclusions produced by the report team. Examples of the specific
implementation methods for these three tools are detailed in Appendix
A.

Through the above strategies and the constructed tool library of
BECPA, this study has improved the performance of a single agent.
Meanwhile, the tool library can be extended to other application sce-
narios of BECPA and has universality.

2.2.2. Agent groups collaborative capability

(1) Multi-level network composed of teams and agents.

When handling complex building performance analysis tasks, tradi-
tional single agent or centralized processing models often face efficiency
bottlenecks and frequent errors. Breaking down tasks and distributing
them across multiple teams, where multiple agents collaborate within
each team, has proven to be an effective strategy for enhancing task
processing efficiency [29]. Therefore, AutoBEE is designed as a multi-
tiered framework. Agents with similar performance capabilities are
first grouped into teams, including the Planning Team, Supervision
Team, Modification Team, Simulation Team, and Report Team, which
further compose the entire framework. This approach ensures that tasks
go through the process of being allocated to teams and then to agents,
which significantly enhances the collaborative capabilities of agent
groups. (2) to (4) will introduce the main technologies of this multi-level
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framework design, and (5) will demonstrate the teams created based on
these technologies and the capability enhancement of individual agents.

(2) LangGraph [3229].

LangChain is a framework specifically designed for developing ap-
plications driven by LLM [29]. It provides a series of tools, components,
and interfaces to help developers efficiently connect with and invoke
large language models. This not only simplifies the integration process
of models with external data sources and tools but also supports the
construction of complex application logic. As an extension of LangChain
[29], LangGraph focuses on building powerful stateful multi-role ap-
plications. It models the application process as a graph structure, where
nodes represent operational steps and edges represent the relationships
between steps. This enables efficient orchestration of multi-agent
collaborative tasks, provides an interface for framework design, and
significantly enhances the logic and traceability of task planning and
execution. Meanwhile, the stateful feature of LangGraph allows agents
to retain and utilize the results of previous steps during execution,
supporting context-based dynamic decision-making. The definitions of
concepts related to LangGraph used in this study are shown in Table 2.

(3) Multi-level super node application [29].

In multi-agent collaborative scenarios for complex task execution,
team collaboration capabilities are critical, with agent scheduling ra-
tionality directly determining task progression efficiency. Failure to
accurately allocate tasks to corresponding agents based on real-time
status, or information mistransmission during allocation, will inevi-
tably lead to complex task execution failures. Specifically, the absence of
global oversight causes task fragmentation: agent groups lacking
centralized control often incur global imbalances due to locally optimal
decisions, such as energy consumption simulation agents and indoor
environment analysis agents competing for computing resources via
parallel calls, thereby stalling tasks. Meanwhile, blind path selection
triggers efficiency collapse: in multi-stage tasks involving IDF file

modification, EnergyPlus simulation, data validation, agents relying
solely on local rules to autonomously select execution paths may enter
cyclic loops or omit critical steps, such as initiating simulations before
parameter optimization is complete and yielding invalid results.

To address the scheduling issues, this study introduces multi-level
super nodes based on the design flexibility of LangGraph. After each
team or agent completes its assigned task, it returns the task completion
status to the super node composed of LLMs. The super node then gen-
erates instructions for the next task based on global optimality and the
current state, generate instructions for subsequent tasks based on global
optimality principles, and macro-regulate the path planning for task
completion. Specifically, at the overall BECPA task level, super nodes
select the next execution team according to global optimal strategies.
For example, when a user only needs to simulate the current IDF file and
generate a report, AutoBEE will invoke the (1) Simulation Team and (2)
Report Team. While when a user requires scenario comparison, the
system will sequentially call the (1) Simulation Team, (2) Modification
Team, (3) Simulation Team (re-invocation), and (4) Report Team, The
simulation team will not mistakenly assume that the simulation task has
been completed due to a previous invocation. At the intra-team level,
sub super nodes are responsible for selecting the next execution agent. If
user only needs to modify parameter A, the modification team’s super-
visor will assign the task exclusively to agent A, or if parameter B needs
to be modified after A, the supervisor will first allocate the task to agent
responsible for modifying A and then to the agent responsible for
modifying B. Through this centralized regulation mechanism, issues
such as locally optimal path selection, cyclic calls, and critical step
omissions can be effectively avoided. Additionally, the configuration of
Super Nodes facilitates communication among agent groups, a feature
that will be elaborated in section (3).

(4) Lightweight communication protocol.

In multi-agent collaboration scenarios, flexible configuration of
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communication strategies is crucial for ensuring system performance
and controlling operational costs [30]. When executing complex tasks,
each subtask completion at both the team and individual agent levels
generates a large amount of status updates and information trans-
mission. If all information is passed to the next task executor without
filtering, it will not only significantly increase the token consumption of
LLMs but also interfere with agent decision-making due to information
overload, remarkably increasing task execution difficulty and even
leading to overall task failure. To address this, this study leverages
LangGraph’s capability to allow developers to customize message
transmission paths and rules based on task requirements, designing a
lightweight communication mechanism. This mechanism implements
fine-grained control over status information through a hierarchical ar-
chitecture of hypergraphs and subgraphs. The super node in the
hypergraph serves as a global coordination hub, aggregating and
distributing only the core input statuses required by subgraph teams.
Each subgraph team, after completing tasks, integrates task status via
sub super node and feeds back key results to the super node. Specific
status data during task execution are strictly confined within team
boundaries, with execution details never shared across teams. For
example, as shown in the example of Fig. 3, state 1 is the information
aggregated by the super node based on the current task status and
intended for team 1. after the information is transmitted to team 1, it is
managed by the sub super 1 node to carry out task completion and in-
formation transfer (state 1.1 to state 1.6) between internal nodes of the
team. finally, after team 1 completes the task, the sub super 1 node filters
out the intermediate states of the task, consolidates the task completion
status, updates state 2, and transmits it to the super node. subsequently,
the super node communicates with team 2 in the same manner. thus,
states 1.1 to 1.6 are only shared within team 1, while team 2 can only
receive information about team 1's task completion and not the details
thereof.

This communication strategy offers dual advantages. On one hand,
by reducing invalid information transmission, LLM token consumption
is significantly minimized, directly cutting operational costs; On the
other hand, by precisely filtering irrelevant information, agents can
focus on core tasks, avoiding decision-making interference. This
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communication setup not only ensures efficient collaboration among
agents but also optimizes overall system performance, providing a
reliable foundation for the efficient execution of complex tasks.

(5) Multi-agent team [5112529].

Based on the aforementioned capability enhancement of individual
agents, team design, and basic communication technologies, this study
has established the following teams, as shown in Fig. 4. And the oper-
ation of the overall framework can be seen in Fig. 1.

(a) Planning Team: This team primarily leverages the text processing
capabilities of LLM. Based on building performance analysis-related is-
sues proposed by users, such as requirements for energy consumption
and indoor environment, it generates comprehensive and detailed task
plans. By performing in-depth semantic understanding and logical
analysis of the issues, the team clarifies the task arrangements for each
stage and the division of labor among agents, thus providing a solid
foundation for the smooth execution of subsequent tasks.

(b) Supervision Team: This team conducts comprehensive super-
vision of the task execution process and manages the communication
and collaboration among team members. This team dynamically plans
the next execution direction of the project in real-time based on the
feedback of the execution status.

(c) Modification Team: Multiple agents within the team are
equipped with corresponding tools (mainly adopting the tool execution
methods shown in Fig. 2 (a). For the task of modifying parameters in the
IDF file in building performance analysis, each agent gives full play to
their expertise. Meanwhile, sub-supervisor nodes are set within the team
for internal path planning of the team. According to the feedback of the
task execution status, the sub-supervisor nodes flexibly dispatch agents
and tools to ensure the accurate and efficient completion of the
parameter modification work.

(d) Simulation Team: Although the task is relatively simple, it has
extremely high requirements for professionalism and accuracy. Agents
within the team are equipped with various tools (mainly adopting the
tool execution methods shown in Fig. 2 (a), focusing on conducting
simulation calculations on the modified IDF file and preliminarily pro-
cessing the simulation results, converting them into a format convenient
for analysis. Due to the clear characteristics of the task, no super nodes
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Fig. 4. Multiple teams of AutoBEE.

are set in this team to simplify the process and improve execution
efficiency.

(e) Report Team: Multiple agents within the team are equipped with
various tools (mainly adopting the tool execution methods shown in
Fig. 2 (b) and (c). They are responsible for comprehensively collecting,
deeply analyzing, and visually presenting the data generated by the
simulation. At the same time, sub-supervisor nodes are set for internal
path planning of the team. According to the task progress and data
characteristics, agents and tools are reasonably allocated. In addition,

this team uses RAG technology to introduce external standard data and
knowledge, effectively reducing the hallucination problems that may
occur when the large model generates reports, ensuring that the finally
output analysis reports are professional, accurate, and reliable.

The operation of each team follows the methods mentioned in (2)
and (3). And the key prompts for all nodes within each team are pro-
vided in Appendix B.
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2.2.3. Mathematical model of AutoBEE

As synthesized from the above mentioned content, the mathematical
model of AutoBEE for task execution is as follows: Formula a represents
the operating program of the framework, Formula b represents the
lightweight information passing strategy among teams, and Formula ¢
represents the dynamic path planning strategy led by the super node.

K N;
YautoBEE = FPlan (FSupervise (ZkleSub—Superwke,k (Zi:klAk'i ) ) ) (a)

ISub—Supervixe,n = (;ﬂz;de (Zf\inl Om-i)’ m, n€y, m 7& n (b)
= argmin(Z(i)EptCi(]:: current) >(C)-

F Supervise/Sub—Supervise Fep

o YautoBer: Structured professional analysis report finally output by the
AutoBEE system.

e Fplan: Planning-layer function that decomposes user tasks into an
initial execution plan.

® Fsupervise: Super-node function monitoring and adjusting the entire
task execution.

® Fsub-supervise,k: Sub-supervision function for the ky, subtask team (k =
1,...,K).

e Ay i Atomic action i of subtask k from agent (i = 1,...,Ny).

o Isyub-supervise,n: Information to the sub-supervisor of team n.

 CYhige: Function for processing hidden information.

e Oy, i: Original information generated by the iy, agent in team m (i =
1,...,Nm).

e P: Set of all possible paths or execution sequences.

e deurrent: Current state of the system or task execution environment.

e C;: Execution cost of the path i.

Formula (a) indicates that the AutoBEE framework is a collaborative
framework involving multiple teams and multiple agents. Formula (b)
shows that detailed information within teams is not shared between
teams. Formula (c) demonstrates that super nodes at all levels dynami-
cally plan the way tasks are completed based on the current state and
path costs.

3. Experiments and results
3.1. Experimental environment

The experiments were conducted using Python 3.11.11 with
PyCharm as the development environment. A multi-agent system was
built upon the LangGraph framework, integrating GPT4o as the LLM to
provide support. This study focused on the accuracy and stability of
results rather than their diversity and divergence. Therefore, the
hyperparameters of Temperature and top-p were both set to 0.2.
Meanwhile, all input original IDF files were sourced from the EnergyPlus
official website.

3.2. Experiments

In the experimental environment constructed above, this study has
established an architecture for multi-agent collaborative work. The
following presents two cases, aiming to verify the effectiveness and
practicality of the multi-agent framework in tasks of analyzing the im-
pacts of energy technology measures on energy consumption and indoor
environment through real cases. Each case focused on specific building
performance analysis issues. By utilizing the collaborative operation of
teams in the multi-agent framework, starting from the problem raised by
the users’ natural language, the professional analysis report for the
problem was finally outputted. The cases clearly demonstrated the
process and advantages of the multi-agent framework in handling
complex building performance analysis tasks.

10
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3.2.1. Case 1: Impact of the COP improvement of the central air
conditioning unit on energy consumption

Case 1 as shown in Fig. 5, demonstrated the effectiveness of the
multi-agent framework in addressing performance analysis issues
related to building energy consumption. At the beginning of the exper-
iment, the planning team received the user’s question about the
reduction in energy consumption after adjusting the coefficient of per-
formance (COP) of the central air conditioning unit to 4.0, and also
obtained the original IDF file. Through the in-depth semantic analysis
and task decomposition capabilities of the LLM, the planning team
formulated a detailed execution plan and clarified the subsequent
workflow of each team as shown in Fig. 5(b) state 1. The simulation
team took the lead in conducting an initial simulation using the original
IDF file. Relying on the simulation tools integrated with agent, the team
generated complete energy consumption data under the baseline con-
dition and output it as standard format files such as ESO file. These data
provided an important reference for subsequent comparative analysis.
After completing the initial simulation, the modification team, under the
instructions of the supervision team, precisely adjusted the parameters
of the IDF file. The team focused on the “central air conditioning unit”
component in the file and accurately modified its COP value to 4.0.
Subsequently, the simulation team conducted a second round simulation
based on the modified IDF file, aiming to obtain the energy consumption
data after adjusting the COP value. The result file generated by the
simulation contained key information about the changes in energy
consumption and was transmitted to the reporting team. The reporting
team conducted a systematic comparative analysis of the results of the
two simulation rounds. By extracting the core energy consumption in-
dicators and applying statistical methods, the team generated a detailed
energy analysis report. In this experiment, the entire process was
effectively monitored with the help of the LangSmith [33] monitoring
platform. The operation steps are shown in Fig. 5a, and the status update
is presented in Fig. 5b. The finally output files and reports are shown in
Fig. 5c. Specific details of the report can be found in Appendix C.

The energy analysis summary report was rich in content, covering
detailed energy consumption data in the two scenarios, including the
monthly electricity consumption of facilities, the monthly electricity
consumption of buildings, the monthly electricity consumption of HVAC
systems, and the monthly electricity consumption of heating/cooling
plant. It focused on presenting the comparative analysis results. After
modifying the COP value of the central air conditioning unit to 4.0, the
total electricity consumption at the facility level was reduced by
approximately 2.10 %, and the electricity consumption at the power
plant level was reduced by approximately 17.43 %. The report not only
quantified the reduction in energy consumption but also provided a
scientific basis for evaluating the energy saving benefits of the COP
adjustment, directly responding to the user’s initial question. The entire
process took 92 s, and after manual verification, the results were
completely correct. Case 1 comprehensively demonstrated the struc-
tured, efficient, and accurate advantages of the AutoBEE framework in
handling complex building performance analysis tasks.

3.2.2. Case 2: Influence of the number of people per unit area on PMV
Case 2, as shown in Fig. 6, demonstrated the effectiveness of the
multi-agent framework in dealing with building performance analysis
issues related to indoor thermal comfort. At the beginning of the
experiment, the user raised the question of “Whether the PMV re-
quirements of ASHRAE 55 standard can be met when the number of
people per square meter in the indoor environment increases by 2" and
provided the original IDF file. The planning team, through the semantic
analysis ability of the LLM, quickly disassembled the task and formu-
lated an execution plan, clarifying the workflow of the modification,
simulation, reporting and other links. The modification team made
targeted adjustments to the relevant parameters in the IDF file according
to the task instructions, providing basic data that met the experimental
settings for subsequent simulations. The simulation team, based on the
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Fig. 5. Impact of the COP improvement on energy consumption.

modified file, used the simulation tools integrated in the agent to
simulate the indoor thermal environment and obtained simulation result
files containing key data such as temperature, humidity, and PMV
values. The reporting team was responsible for conducting in-depth
analysis of the simulation data and generating the final report. The in-
formation transfer and status update mechanism among teams was
consistent with that in Case 1: Supervision teams at all levels coordi-
nated task scheduling, distributed instructions, and allocated resources
based on the task completion status of each team or agent. Each team
transmitted result files through standardized data interfaces, and in-
ternal status updates of the teams were not shared externally.

Taking the reporting team as an example, its internal workflow
showed rigorous hierarchical characteristics. First, the reporting su-
pervision node (Step 2.1) received the task instruction and confirmed
that key data needed to be extracted from the simulation results, and the
status was updated to “Task received and to be processed” (State 2.1).
Subsequently, it entered the data extraction stage (Step 2.2), and the
team screened out core indicators such as the distribution of PMV values
and temperature and humidity parameters from the CSV file, and the
status was updated to “Key data obtained” (State 2.2). In the pre-analysis
link (Step 2.3), the supervision node intervened again to clarify that
compliance analysis needed to be carried out in combination with the
ASHRAE 55 standard, and the status was changed to “Analysis ready”
(State 2.3). Entering the core analysis stage (Step 2.4), the reporting
team used the RAG technology for double verification. First, they vec-
torized the user’s question and simulation data, conducted semantic
retrieval in the ASHRAE 55 standard knowledge base (Step 2.4.1), and
matched relevant clauses such as “The influence of the increase in
personnel density on the PMV threshold” through the cosine similarity
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algorithm. Then they conducted a comparative analysis of the simulated
PMV data based on the retrieval results (Step 2.4.2) to determine
whether it met the standard requirements, and the status at this stage
was updated to “Analysis and retrieval completed” (State 2.4.2). Finally,
the supervision node (Step 2.5) confirmed that all analysis tasks were
closed, and the status was updated to “Report generated and ready for
output” (State 2), and the energy analysis report containing the statis-
tical distribution of PMV values, standard compliance conclusions and
optimization suggestions was delivered to the next link. Meanwhile,
according to the information hiding strategy mentioned in 2.2.2, all
statuses from 2.1 to 2.5 will not be transmitted to other teams. This
process not only ensured the authority of the analysis results but also
effectively avoided the “hallucination” problem of the large model
through the RAG mechanism.

Through the LangSmith monitoring platform, the operation steps
and status update were shown in Fig. 6a, and the finally output files and
reports were shown in Fig. 6¢. Specific details of the report can be found
in Appendix C.

The report provided the occurrence frequencies of different PMV
value intervals. The PMV value appeared 191 times between —3 and —2,
41 times between —2 and —1, etc., Most of the PMV values were
distributed in the intervals of —3 to —2 and 2 to 3. The result summary
and question answering section indicated that according to the ASHRAE
55 standard, the ideal range of PMV values is between —0.5 and 0.5. The
analysis showed that most PMV values exceeded this range, indicating
the current indoor environment did not satisfy thermal comfort re-
quirements, with conditions being either excessively cold or hot,
necessitating environmental adjustments to meet the standard. The
entire process took 61 s, and after manual verification, the results were
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1. Describe the User’s Problem
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indoors by 2 per square meter meets the ASHRAE 55 standard

requirements. This involves analyzing various thermal comfort

metrics, such as temperature, humidity, and predicted mean vote
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In Standard 53, comfort zone is
defined as conditions falling
within and including PMV
levels from —0.5 PMV to +0.5
PMV. At any given PMV level, a
population’s proportion of
dissatisfied members may be
predicted via the predicted
percentage dissatisfied (PPD)

curve.

—_—
retrieve

Energy Analysis Summary Report

3. Text-based Summary of Results and Answering the User's

Problem The Predicted Mean Vote (PMV) index is used to assess

thermal comfort, with a range from -3 (cold) to +3 (hot). For

compliance with the ASHRAE 55 standard, PMV values should

ideally be within the range of -0.5 to +0.5. According to the

E{eport supervisor node ‘ Task: Analyze results from (PMV), among others, to determine if the indoor environment analysis, the majority of PMV values are outside this acceptable
P ~ ey results. remains comfortable under increased occupancy. range, indicating that the current conditions do not meet the
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tep 2.4. analyze too! Analyze task with retrieve State 2.4.2 191 PV valiies b 2t03: 142 -
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PMV values between 1 to 2: 50 occurrences - PMV values not meet the ASHRAE 55 standard for thermal comfort
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Fig. 6. Influence of the number of people per unit area on PMV.

completely correct, fully demonstrating the efficiency and accuracy of

the multi-agent framework in addressing such challenges. Table 3

Classification of Validation Cases for AutoBEE Framework.

Research Variable Evaluation Question
3.3. Vadlidation across all dimensions of building performance analysis Di on ~arameters Direction number
Parameters of Heat transfer 1,2, 3,4, 35,
3.3.1. Typical application case collection of AutoBEE :::::tsu'if coefficient 47
To assess the accuracy and robustness of the framework, this study Building Building 32
systematically collected 54 typical application scenarios that engineers morphology orientation
frequently encountered in building performance analysis. The specific and spatial Window-wall area 5, 36
cases were detailed in Appendix D, under “Question Description.” The layout ratio
. . . .. Exterior window 6, 37
core design logic for these questions followed a key principle: all rele- orientation
vant dimensions were fully covered, with one representative question building shading 7,8, 38
assigned to each single dimension. Specifically, for each category of system
questions, the study selected one representative scenario to conduct Room infiltration 9,39
analysis. Take the building orientation issue as an example. In practical . rate )
i i hitect: lly only needed to modify the orientation Operation Set values of air 14,15, 41
engineering, architects usually only : y the parameters supply
parameter in the IDF file, and the corresponding scenario type was of equipment Temperature 16, 17, 33
relatively simple. Therefore, the study could summarize this type of systems control points
engineering scenario with just one question. For objects like chillers and fans and pumps 20, 21, 22,
. . . - 23
coolln.g wa.ter sy.stems, however, the related issues involved multiple COP and EER 26, 30, 31
technical dimensions such as COP and pumps. For this reason, the study Cooling tower 18,19
also selected one specific scenario for analysis corresponding to each of Chilled/cooling 24, 25, 27,
these dimensions. These 54 questions comprehensively covered the core water 28, 29
dimensions of building performance analysis. By inputting these com- Behaviors of Distribution of 10,13, 34,
1 lti-di . 1 . . he £ K. i d personnel personnel density 46, 48
plex, fl’lu.tl- imensiona quest10n§ 1r.1to the framework, 1t.s accuracy an and indoor electrical 11,12, 40
stability in core tasks such as building energy consumption prediction, equipment equipment
environmental parameter analysis, and performance standard evalua- Multi-type Electricity emission ~ Carbon emissions and 42, 43, 44,
tion were thoroughly tested. This process verified the framework’s pollutant factor pollutant emissions 45
ability to meet the practical needs of engineering applications. Table 3 fe:;f)s:on
presented the classification of the verification cases for AutoBEE, where / / Standard (ASHRAE 49 ~ 54

the “Serial Number” column corresponded directly to the question
numbers in Appendix D.

55, GB50736 et al.)
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3.3.2. Comparative experimental design and evaluation criteria

To verify the effectiveness of the AutoBEE framework compared to
traditional methods, this study conducted a comparative experiment.
Three postgraduate students, each with a comprehensive understanding
of building environments and HVAC systems, as well as experience using
the EnergyPlus software, were recruited as testers. Two questions from
each of the six categories in the question bank, along with the relevant
standards, were provided to the testers. Each participant was required to
independently complete the analysis task based on their professional
knowledge, using the EnergyPlus software, and generate a report that
included key data records, important analysis conclusions, and direct
answers to the questions. The time taken for each task, from the issuance
of the question to the submission of the report, was accurately recorded.
For the AutoBEE framework, these 12 application scenarios were also
inputted, and the framework automatically generated analysis reports
according to the established process. To ensure the objectivity and
reliability of the evaluation, a senior designer with extensive experience
in building performance analysis was invited to serve as the evaluator. It
is important to note that AutoBEE was run three times repeatedly for
each question. The evaluator first needed to check whether there were
differences in numerical values (e.g., energy consumption values) and
core judgment items of the report (e.g., compliance with a specific
standard) among the three runs. If differences existed, the evaluation
was terminated immediately and relevant circumstances were recorded.
If no differences existed, the next step of evaluation was conducted. This
process could effectively ensure the stability and reliability of the
framework operation. On this basis, the evaluator conducted a
comprehensive assessment of the reports generated by the AutoBEE
framework and those from the three testers, with the evaluation criteria
covering three dimensions: accuracy, rationality, and content richness.

In terms of accuracy, a binary judgment method was applied. If the
data values and calculation results in the report fully aligned with the
actual situation, it was classified as “accurate”; otherwise, it was
considered “inaccurate.” For rationality and content richness, both the
manually generated reports and those output by the AutoBEE frame-
work were scored on a scale of 10. The rationality score focused on the
logical coherence of the analysis process and the applicability of the
method, while the content richness score considered the integrity of data
presentation, the depth of the analysis, and the comprehensiveness of
the solution. After collecting all the evaluation data, the average scores
of the manually generated reports in the dimensions of rationality and
content richness were calculated and compared with those of the
AutoBEE framework. If the score of the AutoBEE framework was higher,
the final comparison value was recorded as 1; if both scores were the
same, it was recorded as 0; if the AutoBEE framework score was lower, it
was recorded as —1. A double-blind method was employed during the
evaluation process, meaning the evaluator was unaware of the source of
the reports (whether from the AutoBEE framework or manual analysis)
in order to eliminate potential subjective biases. This comparative
experimental design systematically and objectively compared the
AutoBEE framework with traditional manual analysis methods,
providing empirical evidence to demonstrate the framework’s advan-
tages in terms of efficiency, accuracy, and analysis quality.

3.3.3. Experimental design for information management strategy

To verify the effectiveness of the design of achieving lightweight
communication among multi-agent through specific information man-
agement strategies and controlling the token consumption of large
models by hiding partial detailed information in improving task
completion and economic efficiency, an independent verification
experiment was conducted. The experiment maintained the same pro-
gramming environment and hardware configuration as in the previous
research and selected 54 typical application scenarios of building per-
formance analysis as the test cases. In this experiment, all agents were
set to adopt a fully interconnected message mechanism, meaning no
information hiding was implemented to ensure complete information
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sharing among agents. During the experiment, the system’s execution of
tasks for the 54 scenarios was strictly recorded. If a task was successfully
completed, the total token consumption generated during the process
was simultaneously tracked.

3.3.4. Experimental results

Regarding the task processing time, the time data of the AutoBEE
framework was recorded in the column of “AutoBEE time / S” in Ap-
pendix E, and the time data of manual task processing was recorded in
the column of “Manual Processing Time / S” in Appendix E. The accu-
racy evaluation results were presented in the column of “Report cor-
rectness” in Appendix E, where “correct” indicated accuracy and
“incorrect” indicated inaccuracy. For the rationality and content rich-
ness, the comprehensive comparison results were shown in the columns
of “Rationality Comparison Result” and “Content Richness Comparison
Result” in Appendix E, using a quantification method of —1 (AutoBEE
scores lower than manual processing), O (both scores are the same), and
1 (AutoBEE scores higher than manual processing). The economic costs
of adopting specific information management strategies were shown in
the column of “Cost with Information Hiding ($)” in Appendix E, and the
economic costs of the full-intercommunication message mechanism
were shown in the column of “Cost without Information Hiding ($)” in
Appendix E.

In the comprehensive verification of typical application scenarios, in
terms of BECPA, the AutoBEE framework performed excellently in terms
of high efficiency, accuracy, rationality, content richness, and economy.

(1) High efficiency.

In terms of the processing efficiency of building performance analysis
tasks, the AutoBEE framework demonstrated superiority. Fig. 7(a) pre-
sents the time distribution of AutoBEE’s processing of 54 building per-
formance analysis problems. The results showed that the processing
time fluctuated within the range of 50 to 99 s, reflecting the high effi-
ciency and stability of the framework when dealing with tasks of
different complexity levels. Among them, for some difficult problems
involving multi-parameter coupling analysis and complex logical
reasoning, AutoBEE was still able to complete the full-process analysis in
about 90 s, fully demonstrating its task processing ability. Fig. 7(b)
shows the comparative experimental results of the processing time be-
tween AutoBEE and manual processing. When handling 12 identical
building performance analysis problems, the time consumption of
AutoBEE was significantly lower than that of manual processing. For
example, when dealing with Problem 1, AutoBEE only took 90 s, while
manual processing took as long as 1562 s, with an efficiency improve-
ment of nearly 17 times. In Problem 38, the manual processing time was
2062 s, while AutoBEE reduced it to 80 s. This comparative experiment
clearly showed that through multi-agent collaborative operation, dy-
namic task planning, and efficient invocation of professional tools, the
AutoBEE framework increased the execution efficiency of building
performance analysis tasks by 10 to 20 times, effectively solving the
problems of cumbersome and time-consuming traditional manual
analysis processes and providing an efficient and reliable automated
solution for building performance research.

(2) Accuracy.

In terms of accuracy verification, this study focused on 54 problems
covering multi-dimensional scenarios of building performance analysis.
Through manual verification of each case, it was found that the analysis
reports generated by the AutoBEE framework exhibited a high degree of
accuracy in both numerical calculations and conclusion derivations.
Moreover, the results obtained from repeated runs of the same task
demonstrated stability. Based on precise parameter adjustments,
rigorous simulation calculations, and reliable knowledge reasoning,
AutoBEE was able to produce analysis results without numerical de-
viations, effectively avoiding the human calculation errors and logical
inconsistencies that were prone to occur in traditional analysis models.
This provided a trustworthy analytical foundation for building perfor-
mance research.
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Comprehensive Visualization of Processing Time, Correctness, and Cost for AutoBEE to Process 54 Questions
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Fig. 7. Experimental Results of Time and Cost for 54 Application Cases.

(3) Rationality.

In the evaluation of rationality and content richness, for the 12
problems processed by both manual methods and AutoBEE, as shown in
Fig. 8, AutoBEE demonstrated outstanding advantages. In terms of ra-
tionality, the logical coherence and method applicability of the reports
generated by AutoBEE were comparable to those of the manual reports,
and even superior in some cases, ensuring the rigor of the analysis
process.

It is particularly worth mentioning that, in terms of content richness,
the reports generated by AutoBEE were significantly better than those
produced manually. This was due to its powerful natural language
processing capabilities, which enabled it to quickly and comprehen-
sively integrate multi-source data, deeply explore information related to
building energy consumption and environmental parameters, and
transform complex simulation data into reports with clear logic and
substantial content. The reports not only fully presented various key
indicators but also performed in-depth correlation analysis and trend
prediction, providing more abundant and comprehensive information
for building performance research and strongly supporting relevant

14

decision-making and optimization work.

(4) Economy.

As shown in Fig. 7(a), the cost situation when AutoBEE used the
information hiding strategy to process 54 problems can be clearly
observed. The cost for adopting the information hiding strategy mostly
ranged from 0.069 to 0.098($), and the overall cost was kept within a
reasonable range. This demonstrated the effectiveness of the strategy in
controlling costs.

Fig. 9 presents the comparison results of the information hiding
strategy. When no information hiding was applied, the majority of tasks
(approximately 92.6 %) failed, either falling into a loop or causing the
program to terminate. This was due to the fact that, when tackling
complex problems like building performance analysis, agents need to
process a large volume of task-related information in multiple stages,
including semantic understanding, parameter optimization, and simu-
lation execution. Without the information hiding strategy, excessive and
redundant information interfered with the agents, making it difficult for
them to accurately identify key information. As a result, task planning
and execution were disrupted, preventing tasks from progressing as
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Rationality and Content Richness Comparison Results
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Fig. 8. Comparison of result quality between AutoBEE and manual processing.
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Fig. 9. Comparison of cost with/without Information Hiding.

intended. Only a few tasks (such as Problems 49, 50, and 52) were
completed, but the cost increased dramatically. For instance, the cost of
Problem 52 was 0.075($) with information hiding, but this figure
increased to 0.162($) when no information hiding was applied. This
stark contrast clearly highlights the importance and effectiveness of the
information hiding strategy in improving task completion and control-
ling costs. By reducing token consumption, the strategy lowered oper-
ational costs and ensured both the economic viability and stability of the
AutoBEE framework in handling building performance analysis tasks.

4. Discussion

To build a complete automated analysis framework for BECPA,
AutoBEE, a multi-level system composed of teams and agents, was
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established. Through the improvement of individual agent capabilities
and the enhancement of collaborative capabilities among agent groups,
this system demonstrates High Efficiency, Accuracy, Rationality, Con-
tent Richness, and Economy when facing BECPA problems. The core
technical mechanisms here include: the construction of a building per-
formance analysis tool library, the establishment of a multi-level
framework, the introduction of multi-level supervisory nodes, and the
information hiding strategy. The following will discuss the application
potential and limitations of AutoBEE.

4.1. Application potential of the framework

The design concept and technical architecture of the AutoBEE
framework exhibit strong universality. It is not only applicable to energy
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consumption simulation software, such as EnergyPlus, but also theo-
retically adaptable to any callable professional software or encapsulated
specific function programs, such as computational fluid dynamics (CFD)
software and building thermal environment simulation software. This
versatility is attributed to the modular design and standardized in-
terfaces of the framework, which encapsulate software call functions
into pluggable tool modules. For example, in the case of CFD analysis, by
linking the CFD software’s call interface with the tool modules in the
framework and optimizing the task planning and data processing logic
of agents to align with the specific characteristics of CFD tasks, a fully
automated process, from user instructions to the analysis of CFD simu-
lation results, can be achieved. This universality significantly broadens
the application scope of the framework, offering new perspectives for
the intelligent resolution of complex engineering problems across
various fields. Furthermore, it strongly contributes to the advancement
of LLM towards becoming cross-disciplinary intelligent assistants.

4.2. Limitations and challenges

Although the AutoBEE framework has demonstrated excellent per-
formance in experiments, there are still areas that require improvement.
First, the coverage of experimental verification scenarios is somewhat
limited. While it includes 54 typical building performance analysis
scenarios, more complex coupling scenarios encountered in real world
engineering remain unaddressed. Examples include joint analysis of
dynamic energy consumption and indoor air quality in buildings across
multiple climate zones, as well as the collaborative optimization of en-
ergy systems in large building complexes. These scenarios involve cross-
disciplinary knowledge and strong multi-parameter coupling relation-
ships, placing higher demands on the task decomposition, knowledge
reasoning, and collaborative capabilities of the framework. The prob-
lems encountered during the experimental verification process mainly
fall into three categories. First, process interruptions arise: while com-
plex tasks require decomposition into multiple execution steps, the
planning and supervision nodes fail to map out a clear path for task
completion, leading to disruptions. Second, tool-calling errors occur:
complex problems involve the collaborative use of multiple tools, yet the
agent struggles to accurately match the required tools or provide the
corresponding parameters, resulting in calling failures. Third, ambig-
uous answers appear in reports: as the number of overall task steps in-
creases, the agent’s sensitivity to the user’s initial question diminishes,
which in turn degrades the quality of the analysis report and leads to
unclear conclusions. Therefore, there is an urgent need to improve the
framework’s adaptability to complex scenarios.

Second, there is still room for expansion in the functional division of
agent teams within the framework. Currently, only basic teams such as
planning, supervision, modification, simulation, and reporting have
been established. This setup is insufficient to meet the needs of certain
specialized tasks, For example, the task of converting natural language
into initial IDF files in previous studies could be incorporated into the
team. In the future, it will be necessary to further subdivide the roles of
agents and introduce additional professional teams to build a more
comprehensive agent ecosystem.

Although the AutoBEE framework still has limitations, it is undeni-
able that it provides a framework for constructing multi-level agent
collaborative analysis of building energy consumption, and offers solu-
tions for both individual agent capabilities and communication capa-
bilities, laying a foundation for further development.

4.3. Future researches

Based on the above analysis, future research can be carried out in the
following directions. First, it is necessary to further explore adaptability
to complex scenarios. To address the multi-scenario and high-coupling
problems in actual engineering, it is essential to expand the agent tool
library and enhance team collaboration capabilities. Second, optimizing
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the architecture of agent teams is required. On the existing basis, new
specialized teams should be added to adapt to problems in more di-
mensions and expand the scope of solvable issues, such as incorporating
previous work on generating IDF files from natural language. Through
these improvements and expansions, the AutoBEE framework is ex-
pected to evolve into a more powerful and versatile intelligent analysis
platform.

5. Conclusion

This study developed AutoBEE, an automated analysis framework for
building energy consumption and environmental parameters analysis.
Built upon a hierarchical multi-agent system integrated with large lan-
guage models, this framework focused on enhancing the efficiency of
individual agent and productive collaboration among agent groups,
achieving fully automated and unmanned building performance anal-
ysis. Specifically, this study has realized the automated process from
users’ natural language input to the output of building-related reports
through the following three approaches:

(1) constructing a complete agent tool library covering building
performance analysis;

(2) establishing a multi-level work network from teams to agents;

(3) developing a lightweight communication mechanism and a dy-
namic path selection framework.

In 54 experimental scenarios covering the full spectrum of building
performance analysis, AutoBEE consistently outperformed traditional
manual methods across five key dimensions: efficiency, accuracy,
logical soundness, content richness, and cost effectiveness. It achieved a
10- to 20-fold improvement in task processing speed, delivered analyt-
ical reports with 100 % accuracy, and produced outputs that were more
comprehensive and logically coherent, all while maintaining signifi-
cantly lower operational costs.

In conclusion, AutoBEE provided an innovative, efficient, and reli-
able intelligent solution for building performance research, demon-
strating strong potential to advance the analysis of energy consumption
and environmental parameters toward greater automation and intelli-
gence. Future research will aim to extend AutoBEE applicability to more
complex and integrated scenarios, and further optimize its multi-agent
architecture for interdisciplinary tasks.
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