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A B S T R A C T

Traditional approaches to building performance analysis often rely on manual or semi-manual methods, suffering 
from cumbersome workflows, low efficiency, and high error rates. This study developed AutoBEE, an automated 
analysis framework for building energy consumption and environmental parameters based on hierarchical multi- 
agent system integrated with large language models. This framework focused on enhancing the efficiency of 
individual agent and productive collaboration among agents group. Through the development of a compre
hensive agent tool library, the establishment of a multi-level network spanning from teams to agents, the design 
of a lightweight communication protocol, and the creation of dynamic path planning, AutoBEE achieves 
autonomous unmanned operation from natural language input to building performance report output. During 
operation, agents group can exhibit a wide range of capabilities, including but not limited to accurately parsing 
user instructions, decomposing complex tasks into subtasks, adjusting parameters in the input data file, executing 
simulation calculations by energy simulation software, and generating structured professional reports. Verified 
through experiments in 54 typical scenarios, compared with traditional methods, AutoBEE has significantly 
improved efficiency, accuracy, rationality, content richness, and economic feasibility, providing an innovative 
solution for building performance research.

1. Introduction

1.1. Research background

Driven by the global energy crisis and the wave of green building, 
building energy consumption and performance analysis (BECPA) has 
become core methods to promote sustainable development in the con
struction sector [1]. BECPA is applied throughout the whole architecture 
process, covering architectural design optimization, energy efficiency 
evaluation of mechanical and electrical systems, energy-saving reno
vation of existing buildings, and building operation performance 
adjustment. It provides a scientific basis for energy-saving decisions and 
environmental quality improvement in all links through quantitative 
data. [2] However, due to the high complexity of tasks, low degree of 

automation, and heavy reliance on manual operations, BECPA faces 
challenges of strong professionalism, intricate workflows, and time- 
consuming tasks in engineering applications.

In engineering applications, the BECPA process can be broadly 
divided into two parts: firstly, acquiring energy consumption or envi
ronmental parameter data; secondly, analyzing the data and presenting 
it in reports or other forms. For the data acquisition process, current 
mainstream methods include field measurements, statistical analysis, 
and computer simulations. Field measurements rely on sensors to collect 
real time data but face issues with spatial coverage and data continuity 
[3]. Statistical analysis constructs predictive models based on historical 
data but struggles to adapt to complex and dynamic real world scenarios 
[4]. In contrast, Building Energy Modeling (BEM) technology, with its 
ability to accurately predict energy consumption and environmental 
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parameters, has provided reliable support for decision making 
throughout the building lifecycle process. However, BEM technology 
also faces challenges in its application in multiple dimensions [5]. On 
the one hand, constructing feasible energy consumption models requires 
practitioners to have a comprehensive understanding of relevant 
knowledge, especially, modern buildings integrate complex mechanical 
systems and new building materials with the innovation of the con
struction industry, making the modeling process more comprehensive. 
As shown in the list of energy efficiency simulation elements compiled 
by Mendes, its rich content vividly illustrates the complexity of building 
energy modeling and model modification work [6]. On the other hand, 
there are significant differences in the functionality and operational 
logic of BEM software available on the market, which leads to poor 
interoperability between software, requiring users to relearn each time 
they engage with a new software. Based on the above two points, even 
professional and skilled BEM engineers often spend enormous time and 
effort to complete a reliable BEM model. After BEM modeling and 
simulation are completed, for the data analysis process, data output 
from BEM models or other channels features large volume, multiple 
dimensions, and diverse modalities. When tackling specific issues, en
gineers also need to incorporate additional knowledge inputs like reg
ulations and standards. As a result, engineers spend much effort 
extracting valid information from the data and synthesizing it into re
ports. Meanwhile, it is hard to fully ensure the accuracy, rationality, and 
content richness of the reports. Take the architectural design phase as an 
example. If an engineer needs to evaluate the impact of envelope design 
changes on expected energy consumption, the following cumbersome 
processes are required. First, it takes a lot of time to build a BEM model, 
and the modeling process is prone to errors due to parameter setting or 
geometric description deviations. After completing the baseline scheme 
simulation, it is necessary to manually modify the envelope parameters 
in the model (such as the thermal performance of wall materials, 
window-to-wall ratio, etc.) and rerun the simulation. Finally, it is also 
necessary to filter and extract energy consumption-related data from the 
multi-format files (such as CSV, JSON, or text reports) output by BEM to 
complete the comparative analysis of the old and new schemes. In the 
building operation phase, when engineers need to analyze whether a 
building complies with certain energy-saving codes, in addition to 
repeating the modeling and data analysis processes, they also need to 
invest a lot of energy in retrieving and comparing industry codes, and 
cross-validating the code requirements with the simulation results. In 
summary, the BECPA process is extremely cumbersome and highly 
professional.

Considering the complexity of BECPA modeling and data processing, 
exploring user-friendly, fully automated, and high quality BECPA 
methods is core critical to significantly improving work efficiency and 
the quality of BECPA analysis. It is obvious that automating data 
collection, model construction, and parameter analysis through intelli
gent algorithms and programs can significantly improve the efficiency 
and accuracy of the BECPA process [7]. However, at present, there is no 
tool or software on the market that can fully automate and cover all 
these processes with the focus remaining on optimizing the modeling 
front-end interface, most of the work still needs to be handled manually 
according to the workflow. Upon detailed analysis, the reason lies in that 
most traditional algorithms rely on preset rules and can only handle 
specific scenarios step by step as programmed, while the BECPA process 
has distinct characteristics. In terms of model input, the construction of 
physical models and the determination of dynamic boundary conditions 
are inherently complex. Moreover, as users’ focuses vary widely, 
covering aspects such as building envelopes and operating systems, it is 
extremely challenging for rule-based programs to fully accommodate 
the diverse requirements of various building scenarios. Regarding model 
output, the data does not follow a fixed format but rather exhibits di
versity, making it difficult for rule-based programs to extract informa
tion that can address users’ problems. Additionally, the communication 
barrier between users’ natural language and professional modeling 

remains a crucial bottleneck that urgently needs to be overcome.
With the advancement of artificial intelligence technology, the 

emergence of Large Language Model (LLM) and intelligent agents has 
brought new opportunities for BECPA, particularly to address the chal
lenges posed by traditional algorithms above [8]. LLMs can understand a 
variety of user needs and convert them into technical instructions [9]. 

And intelligent agents based on LLMs, through modular design and the 
integration of components such as memory, planning, and tool invoca
tion, can autonomously decompose and execute tasks, rather than 
relying on originally preset rule-based steps [10]. Specifically, multi- 
agent systems can handle more complex tasks through division of 
labor and collaboration. The combination of LLMs and agents provides a 
completely new technological pathway for automated building energy 
efficiency analysis, driving the field into a new stage of intelligent 
development [51112].

1.2. Literature review

In the advancement of LLMs, scholars have increasingly explored the 
applications in the field of building energy and environment. LLMs show 
significant potential in various building performance scenarios, such as 
intelligent control systems, code generation, and regulatory compliance, 
as analyzed by Zhang et al. [5] in 2023. However, challenges like high 
computational costs, data privacy concerns, and fine-tuning complexity 
impede their application. To tackle these issues, researchers have 
employed diverse strategies. Many scholars [13–20] have conducted 
research on different aspects of LLM application, such as exploring 
LLM’s knowledge in the Heating, Ventilation and Air Conditioning 
(HVAC) industry, enriching information from Building Information 
Modeling (BIM), HVAC terminal control, and information query system 
development. The specific details of these directions are summarized in 
Table 1. Meanwhile, methods such as Retrieval Augmented Generation 
(RAG) and fine-tuning have been used to enhance LLM capabilities. In 
summary, these studies demonstrated LLMs’ potential in building en
ergy applications [2122].

In the field of BECPA from BEM relevant to this study, the application 
research with LLMs has emerged as a prominent focus. Regarding the 

Table 1 
Overview of Existing LLM Research in Building Energy.

LLM Application in 
building fields

References Key Research Content

Model Evaluation [13] Evaluation of LLM capabilities in the HVAC 
field.

[14] Evaluation of LLM capabilities in building 
energy retrofit.

Building Retrofit [11] Utilization of LLMs for building energy 
retrofit.

Building Control [15] Utilization of LLMs for building control.
[18] Utilization of LLMs for interpretable 

machine learning control.
Building Energy 

Management
[16] Utilization of LLMs for building operation 

information query.
[17] Utilization of LLMs for intelligent building 

management.
BIM Information [20] Utilization of LLMs for building BIM 

information search.
Building Energy 

Modeling
[5] Utilization of Multi-agents for building 

energy consumption simulation.
[19] Utilization of LLMs for data-driven urban 

building energy modeling.
[23] Utilization of LLMs for IDF files without 

geometric information.
[24] Utilization of Fine-Tuning LLMs for building 

energy simulation modeling.
[25] Utilization of feedback mechanism by LLMs 

for optimizing IDF Files.
[26] Design of architecture structuring with 

LLMs to simplify building energy analysis 
development process.
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BEM modeling process, many scholars have explored paths to automate 
BEM operations, with the automatic generation of Input Data Files (IDF) 
at the core, complemented by simulation methods. Zhang et al. [23] 
focused on geometry-free IDF file generation, systematically integrating 
relevant parameters into LLM prompt templates via analyzing design 
requirements, extracting standard parameters, and retrieving similar 
models from HVAC design specifications and the EnergyPlus model li
brary to enable automatic generation. Jiang et al. [24] further custom
ized LLMs through fine-tuning, enabling them to understand users’ 
natural language inputs with simple geometric information and simu
lation requirements. Additionally, Zhang et al. [525] constructed a 
feedback mechanism, transmitting the simulation results from the 
simulation software back to the LLMs to optimize and correct IDF files. 
This ensured the accurate conversion of building descriptions into error- 
free EnergyPlus models. These IDF inputs were then processed via the 
simulation software’s API, followed by model simulation and result 
output. Regarding the data analysis process, Zhang et al. [5] demon
strated the ability of LLMs to plot simulation results in specific di
mensions. However, the research findings did not demonstrate that 
LLMs can extract multi-dimensional data required by users from com
plex results.

Although the above mentioned studies covered various aspects of 
simulation input, execution, and post-processing, they still struggled to 
provide end-to-end solutions when dealing with complex problem in
puts from users in multiple scenarios due to the insufficient technical 
integration and stage coordination. Specifically, most existing research 
focused on technical breakthroughs in single links of the energy con
sumption simulation process (such as file generation, simulation 
execution, or result analysis), but BECPA was inherently a complex 
process with closely linked multi-link and multi-stage components. Due 
to the lack of organic integration of technologies across stages, the entire 
process from user requirement input to final result output could not be 
smoothly connected and coordinated.

To address the challenge of technical integration, scholars also made 
corresponding attempts. In these efforts, multi-agent systems were 
regarded as highly promising solutions. Through division of labor, 
collaboration, and information exchange, multi-agent systems could 
organically connect technologies at various stages and dynamically 
decompose and plan complex tasks. Zhang et al. [525] introduced 
multiple agents to handle different tasks within the full-process appli
cation framework of LLM-based simulation, and also proposed a struc
tured architecture and open-source library to simplify the development, 
sharing, and deployment of LLM agents for building energy analysis and 
modeling [26]. Similarly, Xiao et al. [11] utilized agents with different 
roles to complete the entire workflow of automated building energy 
optimization, from extracting information from unstructured audit re
ports and generating building metadata to providing energy efficiency 
diagnosis and retrofit recommendations. The specific research work of 
scholars can be found in Table 1. However, these studies failed to 
fundamentally provide a highly robust complete framework for BECPA. 
Researchers focused on the performance of each agent within its task 
scope rather than the collaborative capability of agent groups 
throughout the entire task process. Specifically, the operation sequence 
and logic of agents still relied on predefined procedural steps or required 
manual intervention to operate the agents, rather than autonomously 
planning execution paths based on tasks to achieve the requirements of 
unmanned operation and user-friendliness. For LLMs, their proactive 
task decomposition, planning, and execution mechanisms were the key 
to outputting reliable reports across multiple scenarios. Meanwhile, 
according to investigations, the current capabilities of single agents still 
did not meet the requirements for adapting to multi-scenario and multi- 
task environments, but were more targeted at single and simple 
scenarios.

1.3. Research objectives and technical challenges

In order to solve the research questions pointed out in Section 1.2, 
this study aimed to build an automated, intelligent and user-friendly 
BECPA analysis framework named AutoBEE (Automated Building En
ergy and Environment Analysis) based on the multi-agent collaborative 
system and BEM software. AutoBEE focuses on two core directions: first, 
the collaborative capability of the agent group achieved through infor
mation interaction. By dynamically selecting paths, the entire process 
operates efficiently and automatically, completely eliminating the need 
for manual intervention; The second is to strengthen the execution ef
ficiency of a single agent. The core goal of the research is to break 
through the bottleneck of traditional AI algorithms, which are highly 
dependent on step-by-step guidance from users. By AutoBEE, Users only 
need to input natural language instructions about BECPA, without 
having to master complex building energy consumption expertise or be 
familiar with professional software, the system can automatically com
plete the whole chain of work from task decomposition, parameter 
adjustment, simulation calculation, result analysis and report output. 
For example, during the architectural design phase, users only need to 
input a question like “the impact of changing a certain parameter on 
energy consumption” to obtain the expected energy consumption 
change results, thereby assisting in decision-making, without the need to 
learn software or perform data processing.

It is important to emphasize that this paper focuses on the con
struction and optimization of the automated analysis process. As the 
generation of IDF files has been addressed by numerous scholars and is 
not the core of this study, it is assumed that users can provide original 
IDF files as the analytical basis. Given that EnergyPlus is the most widely 
used building energy simulation software in the industry (adopted in 65 
% of related studies) [6], it was selected as the core simulation tool for 
this framework to fully leverage its high-precision simulation 
capabilities.

To achieve the goals of full automation and intelligence in BECPA, 
the following three key technical problems need to be overcome ((1) and 
(2) focus on the interaction among agent groups;(3) focus on the effec
tiveness of individual agents.):

(1) The problem of agent task allocation: In the BECPA scenario, 
tasks that users need to complete often involve complex processes across 
multiple scenarios and dimensions. For example, to achieve a specific 
building energy consumption analysis requirement, it may be necessary 
to sequentially complete core tasks such as IDF file modification, 
simulation calculations, and data analysis. Among these, IDF file 
modification is further subdivided into professional subtasks such as 
building envelope parameter adjustment, HVAC system configuration 
optimization, and power equipment operation parameter setting. Data 
analysis covers multi-level tasks including data cleaning, multi-source 
data integration, multi-dimensional data analysis, standard specifica
tion matching, report text compilation, and visualization. More 
complexly, when tasks involve multi-scenario comparisons (such as 
energy consumption simulations of two design schemes), key tasks like 
modification and simulation need to be executed multiple times. In such 
dynamic task chains, the core challenge for agent groups is: how to 
autonomously plan dynamic execution paths based on the specific re
quirements and real-time status of tasks, and accurately match subtasks 
to agents with corresponding capabilities, ensuring efficient collabora
tion throughout the process and achieving qualified results output.

(2) The problem of communication mechanism optimization: 
When addressing the above task allocation problem, efficient commu
nication between agents serves as a core prerequisite. However, frequent 
communication among agents incurs high token costs, and the trans
mission of invalid information may interfere with task execution. In the 
BECPA task, each agent generates substantial information when 
executing each subtask. The information existing in the final system 
includes details of every IDF file modification, specifics of executed 
operations, and the entire process of report generation. If such 
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information is fully transmitted among all agents, it will obscure critical 
information and affect the agents’ accurate judgment of task progress. 
Therefore, the core issue is transformed into: How to construct an effi
cient communication mechanism between agents that can both mitigate 
task execution risks and minimize token consumption in large models, 
thereby effectively controlling communication costs.

(3) The problem of improving the execution efficiency of indi
vidual intelligent agents: After tasks are accurately allocated to 
agents, their execution capabilities directly determine the final 
completion effect of the tasks. In highly specialized fields such as 
BECPA, single agents generally face three core challenges when 
handling complex professional tasks: narrow execution scope, insuffi
cient execution capabilities, and potential “hallucination” risks. For 
example, in scenarios involving modifications to HVAC system tem
perature settings in IDF files, agents often cannot directly provide 
scientifically reasonable modification methods due to limitations in 

existing knowledge. Therefore, the technical difficulty lies in: how to 
enhance the execution capabilities of single agents to enable them to 
achieve precise and efficient processing of complex professional tasks 
and ensure task success.

In response to the above challenges, this study plans to conduct ex
plorations in the following chapters: Chapter 2 will elaborate on the 
technical route and key technologies of the AutoBEE framework; 
Chapter 3 will construct 54 typical scenario experiments to verify the 
significant advantages of the AutoBEE framework compared with 
traditional methods; Chapters 4 and 5 will summarize the research re
sults and deeply discuss the research limitations and future development 
directions. The research results of this study will provide innovative 
solutions for building performance research, promote the development 
of BECPA towards the direction of high efficiency, intelligence, and user- 
friendliness.

Fig. 1. Multi-agent collaborative framework for building performance analysis.
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2. AutoBEE framework

2.1. Technical route

To achieve the goal of fully automating BECPA, this study focuses on 
multi-agent system leveraging LLM to build an end-to-end system named 
AutoBEE that specifically addressed three key technical challenges 
mentioned in Section 1.3: agent task allocation, communication mech
anisms, and individual execution efficiency. A series of innovative so
lutions are proposed:

(1) Enhanced agent execution through the construction of the BECPA 
tool library and other technologies [271228];

(2) Constructed a multi-level work network composed of teams and 
agents;

(3) Optimized multi-level super node architecture for team collabo
ration [29];

(4) Optimized lightweight communication protocol for economy and 
robustness [30].

The specific technical details will be described in Section 2.2. Fig. 1 is 
the overall framework of AutoBEE.

As shown in Fig. 1, the overall framework structure of AutoBEE is 
presented. Table 2 outlines the specific meanings of Super Graph, team, 
Sub Graph, nodes, edges, super nodes, and path selection under this 
framework, with its technical principles detailed in Section 2.2. The 
entire framework is composed of multiple work teams, including a 
planning team, a supervision team, a modification team, a simulation 
team, and a reporting team, with each team consisting of its specific 
agents. This multi-level structure is conducive to the precise allocation 
of tasks. Within this framework, the user first inputs relevant questions 
involving multiple dimensions of building performance, including, but 
not limited to, energy consumption, indoor environmental conditions, 
pollutant emissions, predicted mean vote (PMV), and compliance, while 
also providing the original IDF file. At the “Super Graph” level, The 
“Planning team” is responsible for formulating a global original execu
tion plan according to task characteristics, ensuring the logicality of 
subsequent task execution processes. The “Supervisor team” oversees 
the entire BECPA task and dynamically selects the next execution team 
at the “Sub Graph” level based on the received real-time feedback on 
execution status and the obtained plan list. During the execution phase, 
each “Sub Graph” also contains sub-super nodes that dynamically select 
the next agent to execute. In “Sub Graph 1,” the supervisor responsible 
for modifying tasks leads a multi-agent team to make precise modifi
cations to the parameters of the IDF file according to predefined re
quirements. In “Sub Graph 2,” a specific agent triggers the simulation 
program based on the IDF file, completing the task when the simulation 
is finished. In “Sub Graph 3,” the supervisor responsible for reporting 
organizes a multi-agent team to comprehensively collect, analyze, and 
integrate the simulation data.

The highlights of AutoBEE lie in enabling efficient collaboration 

among agent groups and enhancing the capabilities of individual agents. 
In terms of agent groups collaboration, the framework first organizes 
agents with similar functions into teams to form a multi-level task 
completion network. Additionally, the framework employs super nodes 
composed of LLMs at various levels to dynamically plan the next 
execution team or agent. Meanwhile, a lightweight communication 
protocol is designed to reduce operational costs and minimize infor
mation interference. Regarding the capabilities of individual agents, 
technologies such as CoT and RAG are significantly utilized, and a 
complete omnidirectional tool library covering IDF file modification, 
simulation, and report analysis is built for enhancement.

AutoBEE can achieve fully automated BECPA. For example, if a 
designer needs to test the energy-saving potential of a new building 
material, they only need to input the material properties and problem 
description. AutoBEE will then automatically execute the aforemen
tioned process and provide a energy consumption comparison between 
the new and old materials, assisting the designer in making decisions. 
The specific technical implementation details mentioned above are 
detailed in following Section 2.2.

2.2. Analysis and explanation of key technologies

The following sections provide a detailed elaboration on these key 
technical methodologies.

2.2.1. Agent execution capability
To enhance the execution capabilities of agents, this study estab

lishes a complete library of building performance analysis tools while 
integrating the CoT technique and RAG technology.

(1)Agent [27].
Against the backdrop of the continuous evolution of artificial intel

ligence technologies, LLMs [9], as important achievements in the field of 
natural language processing, have achieved in-depth understanding and 
generation of the complex semantics and grammatical structures of 
human language through the Transformer architecture and training on 
massive text data. On this basis, agents [27] built based on LLMs achieve 
functional upgrades and task expansions through modular design, with 
their core modules including memory modules, planning modules, tool 
modules, and action modules. This modular architecture enables agents 
to autonomously perceive, make decisions, and execute tasks in dynamic 
environments, significantly enhancing the task-processing capabilities 
and environmental adaptability of artificial intelligence systems. This 
study utilizes the multifunctional characteristics of agents to achieve 
specific task objectives. Aiming at the execution deviations and effi
ciency bottlenecks that may occur when agents process complex tasks, 
the research focuses on achieving precise definition of agent functions 
and behavioral guidance by optimizing prompt design and CoT [31] 
strategies, introduces RAG [271228] technology to address the hallu
cination problem, and meanwhile establishes a complete library of 

Table 2 
Table of Definitions and Meanings of Concepts[29] in AutoBEE.

Concept Original Meaning Meaning in This Study

Super 
Graph

A complex graph structure in theories, used to 
model system architectures.

The top-level framework in this research, coordinating task planning and supervision. Manages “Planning” and 
“Supervision” teams to ensure task execution alignment.

Sub Graph A subset of a graph, enabling modular analysis. Represents specific task stages (e.g., parameter modification, simulation, data analysis) within the Super 
Graph.

Team A collaborative group working towards a common 
goal.

Specialized groups of agents/LLMs handling distinct roles (e.g., planning, simulation, reporting).

Nodes Basic units in graph theory, representing entities or 
operations.

Individual agents or LLMs performing specific tasks (e.g., semantic parsing, simulation execution).

Edges Connections between nodes, denoting relationships 
or data flow.

Define task dependencies and information transfer paths (e.g., parameter modification must precede 
simulation).

super nodes Nodes with elevated management capabilities in 
distributed systems.

LLM-powered entities that dynamically plan execution paths based on real-time task status, enhancing 
adaptability.

Path 
Selection

Algorithmic process to determine optimal routes 
between nodes.

Dynamic decision-making by Super Nodes to select execution paths based on task complexity and resource 
availability.
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building performance analysis tools.
(2) Chain of Thought (CoT) [31].
CoT refers to a method that decomposes complex tasks into a 

sequential series of reasoning steps. By simulating human step-by-step 
reasoning, CoT guides agents to generate reasoning and calculations 
based on previous results, ultimately leading to the achievement of the 
task objective.

The implementation of CoT primarily involves two approaches: 
prompt engineering and model fine-tuning. Prompt engineering entails 
designing guiding statements or examples within input instructions to 
direct the agent in constructing a reasoning chain. Model fine-tuning, on 
the other hand, involves training the agent on datasets annotated with 
CoT data to enhance its ability to autonomously generate reasoning 
steps.

In this study, prompt engineering is employed by embedding struc
tured guiding statements and examples into input prompts, explicitly 
instructing the agent to analyze problems and plan tasks following 
specific logical steps. For example, task instructions may require the 
agent to “analyze the problem step-by-step: first, identify key elements; 
then, derive intermediate logic; and finally, draw conclusions.” This 
approach enhances the agent’s understanding and execution of tasks, 
thereby improving the accuracy and efficiency of task completion.

Here is an example of CoT prompt engineering applied to the modify 
agent:

You are an agent responsible for modifying IDF files. Your task is to 
follow the steps below using the {Chain of Thoughts} strategy:

(a) Receive the task instruction, comprehensively analyze the current 
system status, the existing information of the IDF file, and the specific 
modification requirements, and clarify the task objective.

(b) According to the task requirements, screen the suitable tools from 
the tool library and sort out the parameters and instructions required for 
tool invocation.

(c) Execute the tool invocation, input the parameters and in
structions accurately, and start the modification operation on the IDF 
file.

(d) Monitor the tool execution process in real − time, obtain the 
feedback result of the modification operation, and determine whether 
the modification is successful.

(e) If the modification is successful, jump to step 8; if it fails, check 
the input parameters and instructions of the tool, and optimize and 
adjust them in combination with the feedback error information.

(f) Invoke the modification tool again, execute the modification of 
the IDF file, and verify the modification result again.

(g) Repeat steps e − f until the modification is successful.
(h) Output the prompt message indicating that the modification of 

the IDF file is successful, and confirm that the modified content is 
correct.

(i) Save the modified IDF file according to the specified path and 
format to complete the task.

(3) Tools library for building performance analysis.
The tools of an agent are components that assist the agent in 

completing specific tasks and expanding its capabilities. These tools 
come in various forms. For example, a search engine can provide real- 
time information, a code interpreter can execute code to solve pro
gramming problems, a file reader allows access to and processing of 
local files, and a calculator can perform numerical calculations, among 
others. These tools function as the “assistants” of the agent. By breaking 
down complex tasks into calls to different tools, the agent can extend its 
capabilities and efficiently complete a wide range of tasks, such as data 
analysis, knowledge retrieval, and content creation, significantly 
improving the efficiency and quality of problem-solving.

To enhance the comprehensiveness and efficiency of agents in 
executing tasks in the field of building performance analysis, this study 
has established a complete tool library covering all dimensions of IDF 
file modification, simulation execution, and report analysis, specifically 
including IDF file modification from perspectives such as parameters of 

enclosure structure, building morphology and spatial layout, operation 
parameters of equipment systems, behaviors of personnel and equip
ment, and multi-type pollutant emission factor as well as aspects like 
EnergyPlus API invocation, building energy consumption analysis, in
door environmental parameter analysis, and pollutant emission anal
ysis, which can be widely applied to the whole process of BECPA with 
excellent versatility. In this study, the construction of tools in the tool 
library mainly adopts three invocation modes, as shown in Fig. 2. In 
mode (a), the LLM directly invokes encapsulated custom Python tools 
after planning. These tools are presented as functions, with the model 
passing parameters for execution and receiving feedback on the results. 
In this process, strategies such as reflection, self-criticism, CoT, and sub- 
goal decomposition assist in the planning phase. In mode (b), the LLM 
first plans and generates executable Python code, which is then run in a 
Python execution environment, with the running results being fed back 
to the model. Again, the aforementioned auxiliary strategies are 
employed. In mode (c), the LLM directly invokes non-custom tools, such 
as text chunking, text vectorization, vector storage, and summarization, 
with the results being returned after the tools are executed. Strategies 
like reflection are also used to support the planning process. These three 
modes illustrate the flexibility and adaptability of LLMs in utilizing tools 
to complete tasks in this study.

The tool invocation method shown in mode (c) is primarily applied 
to RAG technology. This approach effectively addresses the “hallucina
tion” problem often encountered by large models when handling 
specialized knowledge. By combining the retrieval process from an 
external knowledge base with the generative capabilities of LLMs, RAG 
ensures more accurate and reliable outputs. In the field of building 
performance analysis, users’ core demands are frequently closely tied to 
industry standards and specifications. However, when LLMs answer 
questions involving standard clauses and compliance requirements, er
rors or fictional content may emerge. To address this issue, this study 
develops a targeted application scheme for RAG. First, authoritative 
standard documents, such as building energy consumption calculation 
standards and indoor environmental quality specifications, are vector
ized to create a specialized domain knowledge base. Simultaneously, 
user input questions are transformed into vector representations. Using 
algorithms such as cosine similarity, semantically relevant standard 
knowledge fragments are retrieved from the knowledge base and input 
into the LLM as context. This mechanism ensures that the answers 
generated by the LLM are consistently based on authoritative standards, 
effectively mitigating the risk of “hallucination” and enhancing the 
professionalism and credibility of the building performance analysis 
conclusions produced by the report team. Examples of the specific 
implementation methods for these three tools are detailed in Appendix 
A.

Through the above strategies and the constructed tool library of 
BECPA, this study has improved the performance of a single agent. 
Meanwhile, the tool library can be extended to other application sce
narios of BECPA and has universality.

2.2.2. Agent groups collaborative capability
(1) Multi-level network composed of teams and agents.
When handling complex building performance analysis tasks, tradi

tional single agent or centralized processing models often face efficiency 
bottlenecks and frequent errors. Breaking down tasks and distributing 
them across multiple teams, where multiple agents collaborate within 
each team, has proven to be an effective strategy for enhancing task 
processing efficiency [29]. Therefore, AutoBEE is designed as a multi- 
tiered framework. Agents with similar performance capabilities are 
first grouped into teams, including the Planning Team, Supervision 
Team, Modification Team, Simulation Team, and Report Team, which 
further compose the entire framework. This approach ensures that tasks 
go through the process of being allocated to teams and then to agents, 
which significantly enhances the collaborative capabilities of agent 
groups. (2) to (4) will introduce the main technologies of this multi-level 
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framework design, and (5) will demonstrate the teams created based on 
these technologies and the capability enhancement of individual agents.

(2) LangGraph [3229].
LangChain is a framework specifically designed for developing ap

plications driven by LLM [29]. It provides a series of tools, components, 
and interfaces to help developers efficiently connect with and invoke 
large language models. This not only simplifies the integration process 
of models with external data sources and tools but also supports the 
construction of complex application logic. As an extension of LangChain 
[29], LangGraph focuses on building powerful stateful multi-role ap
plications. It models the application process as a graph structure, where 
nodes represent operational steps and edges represent the relationships 
between steps. This enables efficient orchestration of multi-agent 
collaborative tasks, provides an interface for framework design, and 
significantly enhances the logic and traceability of task planning and 
execution. Meanwhile, the stateful feature of LangGraph allows agents 
to retain and utilize the results of previous steps during execution, 
supporting context-based dynamic decision-making. The definitions of 
concepts related to LangGraph used in this study are shown in Table 2.

(3) Multi-level super node application [29].
In multi-agent collaborative scenarios for complex task execution, 

team collaboration capabilities are critical, with agent scheduling ra
tionality directly determining task progression efficiency. Failure to 
accurately allocate tasks to corresponding agents based on real-time 
status, or information mistransmission during allocation, will inevi
tably lead to complex task execution failures. Specifically, the absence of 
global oversight causes task fragmentation: agent groups lacking 
centralized control often incur global imbalances due to locally optimal 
decisions, such as energy consumption simulation agents and indoor 
environment analysis agents competing for computing resources via 
parallel calls, thereby stalling tasks. Meanwhile, blind path selection 
triggers efficiency collapse: in multi-stage tasks involving IDF file 

modification, EnergyPlus simulation, data validation, agents relying 
solely on local rules to autonomously select execution paths may enter 
cyclic loops or omit critical steps, such as initiating simulations before 
parameter optimization is complete and yielding invalid results.

To address the scheduling issues, this study introduces multi-level 
super nodes based on the design flexibility of LangGraph. After each 
team or agent completes its assigned task, it returns the task completion 
status to the super node composed of LLMs. The super node then gen
erates instructions for the next task based on global optimality and the 
current state, generate instructions for subsequent tasks based on global 
optimality principles, and macro-regulate the path planning for task 
completion. Specifically, at the overall BECPA task level, super nodes 
select the next execution team according to global optimal strategies. 
For example, when a user only needs to simulate the current IDF file and 
generate a report, AutoBEE will invoke the (1) Simulation Team and (2) 
Report Team. While when a user requires scenario comparison, the 
system will sequentially call the (1) Simulation Team, (2) Modification 
Team, (3) Simulation Team (re-invocation), and (4) Report Team, The 
simulation team will not mistakenly assume that the simulation task has 
been completed due to a previous invocation. At the intra-team level, 
sub super nodes are responsible for selecting the next execution agent. If 
user only needs to modify parameter A, the modification team’s super
visor will assign the task exclusively to agent A, or if parameter B needs 
to be modified after A, the supervisor will first allocate the task to agent 
responsible for modifying A and then to the agent responsible for 
modifying B. Through this centralized regulation mechanism, issues 
such as locally optimal path selection, cyclic calls, and critical step 
omissions can be effectively avoided. Additionally, the configuration of 
Super Nodes facilitates communication among agent groups, a feature 
that will be elaborated in section (3).

(4) Lightweight communication protocol.
In multi-agent collaboration scenarios, flexible configuration of 

Fig. 2. Three Tool Invocation Methods of the Agent.
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communication strategies is crucial for ensuring system performance 
and controlling operational costs [30]. When executing complex tasks, 
each subtask completion at both the team and individual agent levels 
generates a large amount of status updates and information trans
mission. If all information is passed to the next task executor without 
filtering, it will not only significantly increase the token consumption of 
LLMs but also interfere with agent decision-making due to information 
overload, remarkably increasing task execution difficulty and even 
leading to overall task failure. To address this, this study leverages 
LangGraph’s capability to allow developers to customize message 
transmission paths and rules based on task requirements, designing a 
lightweight communication mechanism. This mechanism implements 
fine-grained control over status information through a hierarchical ar
chitecture of hypergraphs and subgraphs. The super node in the 
hypergraph serves as a global coordination hub, aggregating and 
distributing only the core input statuses required by subgraph teams. 
Each subgraph team, after completing tasks, integrates task status via 
sub super node and feeds back key results to the super node. Specific 
status data during task execution are strictly confined within team 
boundaries, with execution details never shared across teams. For 
example, as shown in the example of Fig. 3, state 1 is the information 
aggregated by the super node based on the current task status and 
intended for team 1. after the information is transmitted to team 1, it is 
managed by the sub super 1 node to carry out task completion and in
formation transfer (state 1.1 to state 1.6) between internal nodes of the 
team. finally, after team 1 completes the task, the sub super 1 node filters 
out the intermediate states of the task, consolidates the task completion 
status, updates state 2, and transmits it to the super node. subsequently, 
the super node communicates with team 2 in the same manner. thus, 
states 1.1 to 1.6 are only shared within team 1, while team 2 can only 
receive information about team 1′s task completion and not the details 
thereof.

This communication strategy offers dual advantages. On one hand, 
by reducing invalid information transmission, LLM token consumption 
is significantly minimized, directly cutting operational costs; On the 
other hand, by precisely filtering irrelevant information, agents can 
focus on core tasks, avoiding decision-making interference. This 

communication setup not only ensures efficient collaboration among 
agents but also optimizes overall system performance, providing a 
reliable foundation for the efficient execution of complex tasks.

(5) Multi-agent team [5112529].
Based on the aforementioned capability enhancement of individual 

agents, team design, and basic communication technologies, this study 
has established the following teams, as shown in Fig. 4. And the oper
ation of the overall framework can be seen in Fig. 1.

(a) Planning Team: This team primarily leverages the text processing 
capabilities of LLM. Based on building performance analysis-related is
sues proposed by users, such as requirements for energy consumption 
and indoor environment, it generates comprehensive and detailed task 
plans. By performing in-depth semantic understanding and logical 
analysis of the issues, the team clarifies the task arrangements for each 
stage and the division of labor among agents, thus providing a solid 
foundation for the smooth execution of subsequent tasks.

(b) Supervision Team: This team conducts comprehensive super
vision of the task execution process and manages the communication 
and collaboration among team members. This team dynamically plans 
the next execution direction of the project in real-time based on the 
feedback of the execution status.

(c) Modification Team: Multiple agents within the team are 
equipped with corresponding tools (mainly adopting the tool execution 
methods shown in Fig. 2 (a). For the task of modifying parameters in the 
IDF file in building performance analysis, each agent gives full play to 
their expertise. Meanwhile, sub-supervisor nodes are set within the team 
for internal path planning of the team. According to the feedback of the 
task execution status, the sub-supervisor nodes flexibly dispatch agents 
and tools to ensure the accurate and efficient completion of the 
parameter modification work.

(d) Simulation Team: Although the task is relatively simple, it has 
extremely high requirements for professionalism and accuracy. Agents 
within the team are equipped with various tools (mainly adopting the 
tool execution methods shown in Fig. 2 (a), focusing on conducting 
simulation calculations on the modified IDF file and preliminarily pro
cessing the simulation results, converting them into a format convenient 
for analysis. Due to the clear characteristics of the task, no super nodes 

Fig. 3. State Transmission.
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are set in this team to simplify the process and improve execution 
efficiency.

(e) Report Team: Multiple agents within the team are equipped with 
various tools (mainly adopting the tool execution methods shown in 
Fig. 2 (b) and (c). They are responsible for comprehensively collecting, 
deeply analyzing, and visually presenting the data generated by the 
simulation. At the same time, sub-supervisor nodes are set for internal 
path planning of the team. According to the task progress and data 
characteristics, agents and tools are reasonably allocated. In addition, 

this team uses RAG technology to introduce external standard data and 
knowledge, effectively reducing the hallucination problems that may 
occur when the large model generates reports, ensuring that the finally 
output analysis reports are professional, accurate, and reliable.

The operation of each team follows the methods mentioned in (2) 
and (3). And the key prompts for all nodes within each team are pro
vided in Appendix B.

Fig. 4. Multiple teams of AutoBEE.
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2.2.3. Mathematical model of AutoBEE
As synthesized from the above mentioned content, the mathematical 

model of AutoBEE for task execution is as follows: Formula a represents 
the operating program of the framework, Formula b represents the 
lightweight information passing strategy among teams, and Formula c 
represents the dynamic path planning strategy led by the super node. 

YAutoBEE = ƑPlan(ƑSupervise(
∑K

k=1
ƑSub− Supervise,k(

∑Nk

i=1
Ak,i)))(a)

ISub− Supervise,n = Ç¶m
hide

( ∑Nm
i=1Om,i

)
, m, n∊ ʞ, m ∕= n (b).

ƑSupervise/Sub− Supervise = argmin
Pt∊P

(∑
(i)∈Pt

Ci(Ê current)
)

(c). 

• YAutoBEE: Structured professional analysis report finally output by the 
AutoBEE system.

• ƑPlan: Planning-layer function that decomposes user tasks into an 
initial execution plan.

• ƑSupervise: Super-node function monitoring and adjusting the entire 
task execution.

• ƑSub-Supervise,k: Sub-supervision function for the kth subtask team (k =
1,…,K).

• Ak,i: Atomic action i of subtask k from agent (i = 1,…,Nk).
• ISub-Supervise,n: Information to the sub-supervisor of team n.
• Ç¶m

hide: Function for processing hidden information.
• Om,i: Original information generated by the ith agent in team m (i =

1,…,Nm).
• P: Set of all possible paths or execution sequences.
• ʠcurrent: Current state of the system or task execution environment.
• Ci: Execution cost of the path i.

Formula (a) indicates that the AutoBEE framework is a collaborative 
framework involving multiple teams and multiple agents. Formula (b) 
shows that detailed information within teams is not shared between 
teams. Formula (c) demonstrates that super nodes at all levels dynami
cally plan the way tasks are completed based on the current state and 
path costs.

3. Experiments and results

3.1. Experimental environment

The experiments were conducted using Python 3.11.11 with 
PyCharm as the development environment. A multi-agent system was 
built upon the LangGraph framework, integrating GPT4o as the LLM to 
provide support. This study focused on the accuracy and stability of 
results rather than their diversity and divergence. Therefore, the 
hyperparameters of Temperature and top-p were both set to 0.2. 
Meanwhile, all input original IDF files were sourced from the EnergyPlus 
official website.

3.2. Experiments

In the experimental environment constructed above, this study has 
established an architecture for multi-agent collaborative work. The 
following presents two cases, aiming to verify the effectiveness and 
practicality of the multi-agent framework in tasks of analyzing the im
pacts of energy technology measures on energy consumption and indoor 
environment through real cases. Each case focused on specific building 
performance analysis issues. By utilizing the collaborative operation of 
teams in the multi-agent framework, starting from the problem raised by 
the users’ natural language, the professional analysis report for the 
problem was finally outputted. The cases clearly demonstrated the 
process and advantages of the multi-agent framework in handling 
complex building performance analysis tasks.

3.2.1. Case 1: Impact of the COP improvement of the central air 
conditioning unit on energy consumption

Case 1 as shown in Fig. 5, demonstrated the effectiveness of the 
multi-agent framework in addressing performance analysis issues 
related to building energy consumption. At the beginning of the exper
iment, the planning team received the user’s question about the 
reduction in energy consumption after adjusting the coefficient of per
formance (COP) of the central air conditioning unit to 4.0, and also 
obtained the original IDF file. Through the in-depth semantic analysis 
and task decomposition capabilities of the LLM, the planning team 
formulated a detailed execution plan and clarified the subsequent 
workflow of each team as shown in Fig. 5(b) state 1. The simulation 
team took the lead in conducting an initial simulation using the original 
IDF file. Relying on the simulation tools integrated with agent, the team 
generated complete energy consumption data under the baseline con
dition and output it as standard format files such as ESO file. These data 
provided an important reference for subsequent comparative analysis. 
After completing the initial simulation, the modification team, under the 
instructions of the supervision team, precisely adjusted the parameters 
of the IDF file. The team focused on the “central air conditioning unit” 
component in the file and accurately modified its COP value to 4.0. 
Subsequently, the simulation team conducted a second round simulation 
based on the modified IDF file, aiming to obtain the energy consumption 
data after adjusting the COP value. The result file generated by the 
simulation contained key information about the changes in energy 
consumption and was transmitted to the reporting team. The reporting 
team conducted a systematic comparative analysis of the results of the 
two simulation rounds. By extracting the core energy consumption in
dicators and applying statistical methods, the team generated a detailed 
energy analysis report. In this experiment, the entire process was 
effectively monitored with the help of the LangSmith [33] monitoring 
platform. The operation steps are shown in Fig. 5a, and the status update 
is presented in Fig. 5b. The finally output files and reports are shown in 
Fig. 5c. Specific details of the report can be found in Appendix C.

The energy analysis summary report was rich in content, covering 
detailed energy consumption data in the two scenarios, including the 
monthly electricity consumption of facilities, the monthly electricity 
consumption of buildings, the monthly electricity consumption of HVAC 
systems, and the monthly electricity consumption of heating/cooling 
plant. It focused on presenting the comparative analysis results. After 
modifying the COP value of the central air conditioning unit to 4.0, the 
total electricity consumption at the facility level was reduced by 
approximately 2.10 %, and the electricity consumption at the power 
plant level was reduced by approximately 17.43 %. The report not only 
quantified the reduction in energy consumption but also provided a 
scientific basis for evaluating the energy saving benefits of the COP 
adjustment, directly responding to the user’s initial question. The entire 
process took 92 s, and after manual verification, the results were 
completely correct. Case 1 comprehensively demonstrated the struc
tured, efficient, and accurate advantages of the AutoBEE framework in 
handling complex building performance analysis tasks.

3.2.2. Case 2: Influence of the number of people per unit area on PMV
Case 2, as shown in Fig. 6, demonstrated the effectiveness of the 

multi-agent framework in dealing with building performance analysis 
issues related to indoor thermal comfort. At the beginning of the 
experiment, the user raised the question of “Whether the PMV re
quirements of ASHRAE 55 standard can be met when the number of 
people per square meter in the indoor environment increases by 2″ and 
provided the original IDF file. The planning team, through the semantic 
analysis ability of the LLM, quickly disassembled the task and formu
lated an execution plan, clarifying the workflow of the modification, 
simulation, reporting and other links. The modification team made 
targeted adjustments to the relevant parameters in the IDF file according 
to the task instructions, providing basic data that met the experimental 
settings for subsequent simulations. The simulation team, based on the 
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modified file, used the simulation tools integrated in the agent to 
simulate the indoor thermal environment and obtained simulation result 
files containing key data such as temperature, humidity, and PMV 
values. The reporting team was responsible for conducting in-depth 
analysis of the simulation data and generating the final report. The in
formation transfer and status update mechanism among teams was 
consistent with that in Case 1: Supervision teams at all levels coordi
nated task scheduling, distributed instructions, and allocated resources 
based on the task completion status of each team or agent. Each team 
transmitted result files through standardized data interfaces, and in
ternal status updates of the teams were not shared externally.

Taking the reporting team as an example, its internal workflow 
showed rigorous hierarchical characteristics. First, the reporting su
pervision node (Step 2.1) received the task instruction and confirmed 
that key data needed to be extracted from the simulation results, and the 
status was updated to “Task received and to be processed” (State 2.1). 
Subsequently, it entered the data extraction stage (Step 2.2), and the 
team screened out core indicators such as the distribution of PMV values 
and temperature and humidity parameters from the CSV file, and the 
status was updated to “Key data obtained” (State 2.2). In the pre-analysis 
link (Step 2.3), the supervision node intervened again to clarify that 
compliance analysis needed to be carried out in combination with the 
ASHRAE 55 standard, and the status was changed to “Analysis ready” 
(State 2.3). Entering the core analysis stage (Step 2.4), the reporting 
team used the RAG technology for double verification. First, they vec
torized the user’s question and simulation data, conducted semantic 
retrieval in the ASHRAE 55 standard knowledge base (Step 2.4.1), and 
matched relevant clauses such as “The influence of the increase in 
personnel density on the PMV threshold” through the cosine similarity 

algorithm. Then they conducted a comparative analysis of the simulated 
PMV data based on the retrieval results (Step 2.4.2) to determine 
whether it met the standard requirements, and the status at this stage 
was updated to “Analysis and retrieval completed” (State 2.4.2). Finally, 
the supervision node (Step 2.5) confirmed that all analysis tasks were 
closed, and the status was updated to “Report generated and ready for 
output” (State 2), and the energy analysis report containing the statis
tical distribution of PMV values, standard compliance conclusions and 
optimization suggestions was delivered to the next link. Meanwhile, 
according to the information hiding strategy mentioned in 2.2.2, all 
statuses from 2.1 to 2.5 will not be transmitted to other teams. This 
process not only ensured the authority of the analysis results but also 
effectively avoided the “hallucination” problem of the large model 
through the RAG mechanism.

Through the LangSmith monitoring platform, the operation steps 
and status update were shown in Fig. 6a, and the finally output files and 
reports were shown in Fig. 6c. Specific details of the report can be found 
in Appendix C.

The report provided the occurrence frequencies of different PMV 
value intervals. The PMV value appeared 191 times between − 3 and − 2, 
41 times between − 2 and − 1, etc., Most of the PMV values were 
distributed in the intervals of − 3 to − 2 and 2 to 3. The result summary 
and question answering section indicated that according to the ASHRAE 
55 standard, the ideal range of PMV values is between − 0.5 and 0.5. The 
analysis showed that most PMV values exceeded this range, indicating 
the current indoor environment did not satisfy thermal comfort re
quirements, with conditions being either excessively cold or hot, 
necessitating environmental adjustments to meet the standard. The 
entire process took 61 s, and after manual verification, the results were 

Fig. 5. Impact of the COP improvement on energy consumption.

Y. Quan et al.                                                                                                                                                                                                                                   Energy & Buildings 349 (2025) 116516 

11 



completely correct, fully demonstrating the efficiency and accuracy of 
the multi-agent framework in addressing such challenges.

3.3. Validation across all dimensions of building performance analysis

3.3.1. Typical application case collection of AutoBEE
To assess the accuracy and robustness of the framework, this study 

systematically collected 54 typical application scenarios that engineers 
frequently encountered in building performance analysis. The specific 
cases were detailed in Appendix D, under “Question Description.” The 
core design logic for these questions followed a key principle: all rele
vant dimensions were fully covered, with one representative question 
assigned to each single dimension. Specifically, for each category of 
questions, the study selected one representative scenario to conduct 
analysis. Take the building orientation issue as an example. In practical 
engineering, architects usually only needed to modify the orientation 
parameter in the IDF file, and the corresponding scenario type was 
relatively simple. Therefore, the study could summarize this type of 
engineering scenario with just one question. For objects like chillers and 
cooling water systems, however, the related issues involved multiple 
technical dimensions such as COP and pumps. For this reason, the study 
also selected one specific scenario for analysis corresponding to each of 
these dimensions. These 54 questions comprehensively covered the core 
dimensions of building performance analysis. By inputting these com
plex, multi-dimensional questions into the framework, its accuracy and 
stability in core tasks such as building energy consumption prediction, 
environmental parameter analysis, and performance standard evalua
tion were thoroughly tested. This process verified the framework’s 
ability to meet the practical needs of engineering applications. Table 3
presented the classification of the verification cases for AutoBEE, where 
the “Serial Number” column corresponded directly to the question 
numbers in Appendix D.

Fig. 6. Influence of the number of people per unit area on PMV.

Table 3 
Classification of Validation Cases for AutoBEE Framework.

Research 
Dimension

Variable 
Parameters

Evaluation 
Direction

Question 
number

Parameters of 
enclosure 
structure

Heat transfer 
coefficient

​ 1, 2, 3, 4, 35, 
47

Building 
morphology 
and spatial 
layout

Building 
orientation

32

Window-wall area 
ratio

5, 36

Exterior window 
orientation

6, 37

building shading 
system

7, 8, 38

Room infiltration 
rate

9, 39

Operation 
parameters 
of equipment 
systems

Set values of air 
supply

14, 15, 41

Temperature 
control points

16, 17, 33

fans and pumps 20, 21, 22, 
23

COP and EER 26, 30, 31
Cooling tower 18, 19
Chilled/cooling 
water

24, 25, 27, 
28, 29

Behaviors of 
personnel 
and 
equipment

Distribution of 
personnel density

10, 13, 34, 
46, 48

indoor electrical 
equipment

11, 12, 40

Multi-type 
pollutant 
emission 
factor

Electricity emission 
factor

Carbon emissions and 
pollutant emissions

42, 43, 44, 
45

/ / Standard (ASHRAE 
55, GB50736 et al.)

49 ~ 54
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3.3.2. Comparative experimental design and evaluation criteria
To verify the effectiveness of the AutoBEE framework compared to 

traditional methods, this study conducted a comparative experiment. 
Three postgraduate students, each with a comprehensive understanding 
of building environments and HVAC systems, as well as experience using 
the EnergyPlus software, were recruited as testers. Two questions from 
each of the six categories in the question bank, along with the relevant 
standards, were provided to the testers. Each participant was required to 
independently complete the analysis task based on their professional 
knowledge, using the EnergyPlus software, and generate a report that 
included key data records, important analysis conclusions, and direct 
answers to the questions. The time taken for each task, from the issuance 
of the question to the submission of the report, was accurately recorded. 
For the AutoBEE framework, these 12 application scenarios were also 
inputted, and the framework automatically generated analysis reports 
according to the established process. To ensure the objectivity and 
reliability of the evaluation, a senior designer with extensive experience 
in building performance analysis was invited to serve as the evaluator. It 
is important to note that AutoBEE was run three times repeatedly for 
each question. The evaluator first needed to check whether there were 
differences in numerical values (e.g., energy consumption values) and 
core judgment items of the report (e.g., compliance with a specific 
standard) among the three runs. If differences existed, the evaluation 
was terminated immediately and relevant circumstances were recorded. 
If no differences existed, the next step of evaluation was conducted. This 
process could effectively ensure the stability and reliability of the 
framework operation. On this basis, the evaluator conducted a 
comprehensive assessment of the reports generated by the AutoBEE 
framework and those from the three testers, with the evaluation criteria 
covering three dimensions: accuracy, rationality, and content richness.

In terms of accuracy, a binary judgment method was applied. If the 
data values and calculation results in the report fully aligned with the 
actual situation, it was classified as “accurate”; otherwise, it was 
considered “inaccurate.” For rationality and content richness, both the 
manually generated reports and those output by the AutoBEE frame
work were scored on a scale of 10. The rationality score focused on the 
logical coherence of the analysis process and the applicability of the 
method, while the content richness score considered the integrity of data 
presentation, the depth of the analysis, and the comprehensiveness of 
the solution. After collecting all the evaluation data, the average scores 
of the manually generated reports in the dimensions of rationality and 
content richness were calculated and compared with those of the 
AutoBEE framework. If the score of the AutoBEE framework was higher, 
the final comparison value was recorded as 1; if both scores were the 
same, it was recorded as 0; if the AutoBEE framework score was lower, it 
was recorded as − 1. A double-blind method was employed during the 
evaluation process, meaning the evaluator was unaware of the source of 
the reports (whether from the AutoBEE framework or manual analysis) 
in order to eliminate potential subjective biases. This comparative 
experimental design systematically and objectively compared the 
AutoBEE framework with traditional manual analysis methods, 
providing empirical evidence to demonstrate the framework’s advan
tages in terms of efficiency, accuracy, and analysis quality.

3.3.3. Experimental design for information management strategy
To verify the effectiveness of the design of achieving lightweight 

communication among multi-agent through specific information man
agement strategies and controlling the token consumption of large 
models by hiding partial detailed information in improving task 
completion and economic efficiency, an independent verification 
experiment was conducted. The experiment maintained the same pro
gramming environment and hardware configuration as in the previous 
research and selected 54 typical application scenarios of building per
formance analysis as the test cases. In this experiment, all agents were 
set to adopt a fully interconnected message mechanism, meaning no 
information hiding was implemented to ensure complete information 

sharing among agents. During the experiment, the system’s execution of 
tasks for the 54 scenarios was strictly recorded. If a task was successfully 
completed, the total token consumption generated during the process 
was simultaneously tracked.

3.3.4. Experimental results
Regarding the task processing time, the time data of the AutoBEE 

framework was recorded in the column of “AutoBEE time / S” in Ap
pendix E, and the time data of manual task processing was recorded in 
the column of “Manual Processing Time / S” in Appendix E. The accu
racy evaluation results were presented in the column of “Report cor
rectness” in Appendix E, where “correct” indicated accuracy and 
“incorrect” indicated inaccuracy. For the rationality and content rich
ness, the comprehensive comparison results were shown in the columns 
of “Rationality Comparison Result” and “Content Richness Comparison 
Result” in Appendix E, using a quantification method of − 1 (AutoBEE 
scores lower than manual processing), 0 (both scores are the same), and 
1 (AutoBEE scores higher than manual processing). The economic costs 
of adopting specific information management strategies were shown in 
the column of “Cost with Information Hiding ($)” in Appendix E, and the 
economic costs of the full-intercommunication message mechanism 
were shown in the column of “Cost without Information Hiding ($)” in 
Appendix E.

In the comprehensive verification of typical application scenarios, in 
terms of BECPA, the AutoBEE framework performed excellently in terms 
of high efficiency, accuracy, rationality, content richness, and economy.

(1) High efficiency.
In terms of the processing efficiency of building performance analysis 

tasks, the AutoBEE framework demonstrated superiority. Fig. 7(a) pre
sents the time distribution of AutoBEE’s processing of 54 building per
formance analysis problems. The results showed that the processing 
time fluctuated within the range of 50 to 99 s, reflecting the high effi
ciency and stability of the framework when dealing with tasks of 
different complexity levels. Among them, for some difficult problems 
involving multi-parameter coupling analysis and complex logical 
reasoning, AutoBEE was still able to complete the full-process analysis in 
about 90 s, fully demonstrating its task processing ability. Fig. 7(b)
shows the comparative experimental results of the processing time be
tween AutoBEE and manual processing. When handling 12 identical 
building performance analysis problems, the time consumption of 
AutoBEE was significantly lower than that of manual processing. For 
example, when dealing with Problem 1, AutoBEE only took 90 s, while 
manual processing took as long as 1562 s, with an efficiency improve
ment of nearly 17 times. In Problem 38, the manual processing time was 
2062 s, while AutoBEE reduced it to 80 s. This comparative experiment 
clearly showed that through multi-agent collaborative operation, dy
namic task planning, and efficient invocation of professional tools, the 
AutoBEE framework increased the execution efficiency of building 
performance analysis tasks by 10 to 20 times, effectively solving the 
problems of cumbersome and time-consuming traditional manual 
analysis processes and providing an efficient and reliable automated 
solution for building performance research.

(2) Accuracy.
In terms of accuracy verification, this study focused on 54 problems 

covering multi-dimensional scenarios of building performance analysis. 
Through manual verification of each case, it was found that the analysis 
reports generated by the AutoBEE framework exhibited a high degree of 
accuracy in both numerical calculations and conclusion derivations. 
Moreover, the results obtained from repeated runs of the same task 
demonstrated stability. Based on precise parameter adjustments, 
rigorous simulation calculations, and reliable knowledge reasoning, 
AutoBEE was able to produce analysis results without numerical de
viations, effectively avoiding the human calculation errors and logical 
inconsistencies that were prone to occur in traditional analysis models. 
This provided a trustworthy analytical foundation for building perfor
mance research.
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(3) Rationality.
In the evaluation of rationality and content richness, for the 12 

problems processed by both manual methods and AutoBEE, as shown in 
Fig. 8, AutoBEE demonstrated outstanding advantages. In terms of ra
tionality, the logical coherence and method applicability of the reports 
generated by AutoBEE were comparable to those of the manual reports, 
and even superior in some cases, ensuring the rigor of the analysis 
process.

It is particularly worth mentioning that, in terms of content richness, 
the reports generated by AutoBEE were significantly better than those 
produced manually. This was due to its powerful natural language 
processing capabilities, which enabled it to quickly and comprehen
sively integrate multi-source data, deeply explore information related to 
building energy consumption and environmental parameters, and 
transform complex simulation data into reports with clear logic and 
substantial content. The reports not only fully presented various key 
indicators but also performed in-depth correlation analysis and trend 
prediction, providing more abundant and comprehensive information 
for building performance research and strongly supporting relevant 

decision-making and optimization work.
(4) Economy.
As shown in Fig. 7(a), the cost situation when AutoBEE used the 

information hiding strategy to process 54 problems can be clearly 
observed. The cost for adopting the information hiding strategy mostly 
ranged from 0.069 to 0.098($), and the overall cost was kept within a 
reasonable range. This demonstrated the effectiveness of the strategy in 
controlling costs.

Fig. 9 presents the comparison results of the information hiding 
strategy. When no information hiding was applied, the majority of tasks 
(approximately 92.6 %) failed, either falling into a loop or causing the 
program to terminate. This was due to the fact that, when tackling 
complex problems like building performance analysis, agents need to 
process a large volume of task-related information in multiple stages, 
including semantic understanding, parameter optimization, and simu
lation execution. Without the information hiding strategy, excessive and 
redundant information interfered with the agents, making it difficult for 
them to accurately identify key information. As a result, task planning 
and execution were disrupted, preventing tasks from progressing as 

Fig. 7. Experimental Results of Time and Cost for 54 Application Cases.
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intended. Only a few tasks (such as Problems 49, 50, and 52) were 
completed, but the cost increased dramatically. For instance, the cost of 
Problem 52 was 0.075($) with information hiding, but this figure 
increased to 0.162($) when no information hiding was applied. This 
stark contrast clearly highlights the importance and effectiveness of the 
information hiding strategy in improving task completion and control
ling costs. By reducing token consumption, the strategy lowered oper
ational costs and ensured both the economic viability and stability of the 
AutoBEE framework in handling building performance analysis tasks.

4. Discussion

To build a complete automated analysis framework for BECPA, 
AutoBEE, a multi-level system composed of teams and agents, was 

established. Through the improvement of individual agent capabilities 
and the enhancement of collaborative capabilities among agent groups, 
this system demonstrates High Efficiency, Accuracy, Rationality, Con
tent Richness, and Economy when facing BECPA problems. The core 
technical mechanisms here include: the construction of a building per
formance analysis tool library, the establishment of a multi-level 
framework, the introduction of multi-level supervisory nodes, and the 
information hiding strategy. The following will discuss the application 
potential and limitations of AutoBEE.

4.1. Application potential of the framework

The design concept and technical architecture of the AutoBEE 
framework exhibit strong universality. It is not only applicable to energy 

Fig. 8. Comparison of result quality between AutoBEE and manual processing.

Fig. 9. Comparison of cost with/without Information Hiding.
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consumption simulation software, such as EnergyPlus, but also theo
retically adaptable to any callable professional software or encapsulated 
specific function programs, such as computational fluid dynamics (CFD) 
software and building thermal environment simulation software. This 
versatility is attributed to the modular design and standardized in
terfaces of the framework, which encapsulate software call functions 
into pluggable tool modules. For example, in the case of CFD analysis, by 
linking the CFD software’s call interface with the tool modules in the 
framework and optimizing the task planning and data processing logic 
of agents to align with the specific characteristics of CFD tasks, a fully 
automated process, from user instructions to the analysis of CFD simu
lation results, can be achieved. This universality significantly broadens 
the application scope of the framework, offering new perspectives for 
the intelligent resolution of complex engineering problems across 
various fields. Furthermore, it strongly contributes to the advancement 
of LLM towards becoming cross-disciplinary intelligent assistants.

4.2. Limitations and challenges

Although the AutoBEE framework has demonstrated excellent per
formance in experiments, there are still areas that require improvement. 
First, the coverage of experimental verification scenarios is somewhat 
limited. While it includes 54 typical building performance analysis 
scenarios, more complex coupling scenarios encountered in real world 
engineering remain unaddressed. Examples include joint analysis of 
dynamic energy consumption and indoor air quality in buildings across 
multiple climate zones, as well as the collaborative optimization of en
ergy systems in large building complexes. These scenarios involve cross- 
disciplinary knowledge and strong multi-parameter coupling relation
ships, placing higher demands on the task decomposition, knowledge 
reasoning, and collaborative capabilities of the framework. The prob
lems encountered during the experimental verification process mainly 
fall into three categories. First, process interruptions arise: while com
plex tasks require decomposition into multiple execution steps, the 
planning and supervision nodes fail to map out a clear path for task 
completion, leading to disruptions. Second, tool-calling errors occur: 
complex problems involve the collaborative use of multiple tools, yet the 
agent struggles to accurately match the required tools or provide the 
corresponding parameters, resulting in calling failures. Third, ambig
uous answers appear in reports: as the number of overall task steps in
creases, the agent’s sensitivity to the user’s initial question diminishes, 
which in turn degrades the quality of the analysis report and leads to 
unclear conclusions. Therefore, there is an urgent need to improve the 
framework’s adaptability to complex scenarios.

Second, there is still room for expansion in the functional division of 
agent teams within the framework. Currently, only basic teams such as 
planning, supervision, modification, simulation, and reporting have 
been established. This setup is insufficient to meet the needs of certain 
specialized tasks, For example, the task of converting natural language 
into initial IDF files in previous studies could be incorporated into the 
team. In the future, it will be necessary to further subdivide the roles of 
agents and introduce additional professional teams to build a more 
comprehensive agent ecosystem.

Although the AutoBEE framework still has limitations, it is undeni
able that it provides a framework for constructing multi-level agent 
collaborative analysis of building energy consumption, and offers solu
tions for both individual agent capabilities and communication capa
bilities, laying a foundation for further development.

4.3. Future researches

Based on the above analysis, future research can be carried out in the 
following directions. First, it is necessary to further explore adaptability 
to complex scenarios. To address the multi-scenario and high-coupling 
problems in actual engineering, it is essential to expand the agent tool 
library and enhance team collaboration capabilities. Second, optimizing 

the architecture of agent teams is required. On the existing basis, new 
specialized teams should be added to adapt to problems in more di
mensions and expand the scope of solvable issues, such as incorporating 
previous work on generating IDF files from natural language. Through 
these improvements and expansions, the AutoBEE framework is ex
pected to evolve into a more powerful and versatile intelligent analysis 
platform.

5. Conclusion

This study developed AutoBEE, an automated analysis framework for 
building energy consumption and environmental parameters analysis. 
Built upon a hierarchical multi-agent system integrated with large lan
guage models, this framework focused on enhancing the efficiency of 
individual agent and productive collaboration among agent groups, 
achieving fully automated and unmanned building performance anal
ysis. Specifically, this study has realized the automated process from 
users’ natural language input to the output of building-related reports 
through the following three approaches:

(1) constructing a complete agent tool library covering building 
performance analysis;

(2) establishing a multi-level work network from teams to agents;
(3) developing a lightweight communication mechanism and a dy

namic path selection framework.
In 54 experimental scenarios covering the full spectrum of building 

performance analysis, AutoBEE consistently outperformed traditional 
manual methods across five key dimensions: efficiency, accuracy, 
logical soundness, content richness, and cost effectiveness. It achieved a 
10- to 20-fold improvement in task processing speed, delivered analyt
ical reports with 100 % accuracy, and produced outputs that were more 
comprehensive and logically coherent, all while maintaining signifi
cantly lower operational costs.

In conclusion, AutoBEE provided an innovative, efficient, and reli
able intelligent solution for building performance research, demon
strating strong potential to advance the analysis of energy consumption 
and environmental parameters toward greater automation and intelli
gence. Future research will aim to extend AutoBEE applicability to more 
complex and integrated scenarios, and further optimize its multi-agent 
architecture for interdisciplinary tasks.

Declaration of generative AI and AI-assisted technologies in the 
writing process

During the preparation of this work, the authors used GPT4o in order 
to improve language. After using this tool/service, the authors reviewed 
and edited the content as needed and take full responsibility for the 
content of the publication.

CRediT authorship contribution statement

Yani Quan: Writing – original draft, Software, Methodology, Formal 
analysis, Conceptualization. Tong Xiao: Validation, Methodology, Data 
curation. Jiefan Gu: Visualization, Project administration, Data cura
tion. Peng Xu: Writing – review & editing, Supervision, Funding 
acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgement

This research is funded by National Natural Science Foundation of 
China (No.52161135202).

Y. Quan et al.                                                                                                                                                                                                                                   Energy & Buildings 349 (2025) 116516 

16 



Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.enbuild.2025.116516.

Data availability

Data will be made available on request.

References

[1] Z. Wang, Y. Hong, L. Huang, et al., A comprehensive review and future research 
directions of ensemble learning models for predicting building energy 
consumption, Energ. Buildings 335 (2025) 115589, https://doi.org/10.1016/j. 
enbuild.2025.115589.

[2] A. Al-Shargabi, A. Almhafdy, D. Ibrahim, et al., Buildings’ energy consumption 
prediction models based on buildings’ characteristics: Research trends, taxonomy, 
and performance measures, Journal of Building Engineering. 54 (2022) 104577, 
https://doi.org/10.1016/j.jobe.2022.104577.

[3] N. Bucarelli, N. El-Gohary, Sensor deployment configurations for building energy 
consumption prediction, Energ. Buildings 308 (2024) 113888, https://doi.org/ 
10.1016/j.enbuild.2024.113888D.

[4] J. Ji, H. Yu, X. Wang, X. Xu, Machine learning application in building energy 
consumption prediction: A comprehensive review, Journal of Building 
Engineering. 104 (2025) 112295, https://doi.org/10.1016/j.jobe.2025.112295.

[5] L. Zhang, Z. Chen, V. Ford, Advancing building energy modeling with large 
language models: Exploration and case studies, Energy & Buildings. 323 (2024) 
114788.

[6] V.F. Mendes, A.S. Cruz, A.P. Gomes, J.C. Mendes, A systematic review of methods 
for evaluating the thermal performance of buildings through energy simulations, 
Renew. Sustain. Energy Rev. 189 (2024) 113875, https://doi.org/10.1016/j. 
rser.2023.113875.

[7] S. Norouzi, N. Chittoor, K. Grewal, et al., Geometric data in urban building energy 
modeling: Current practices and the case for automation, Journal of Building 
Engineering. 97 (2024) 110836, https://doi.org/10.1016/j.jobe.2024.110836.

[8] Y. Lu, A. Aleta, C. Du, et al., LLMs and generative agent - based models for complex 
systems research, Phys. Life Rev. 51 (2024) 283–293, https://doi.org/10.1016/j. 
plrev.2024.10.013.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, 
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Proces. Syst. 30 (2017) 
6000–6010, https://doi.org/10.5555/3295222.3295349.

[10] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, 
Y. Lin, A survey on large language model based autonomous agents, Front. Comp. 
Sci. 18 (6) (2024) 186345, https://doi.org/10.1007/s11704-024-40231-1.

[11] T. Xiao, P. Xu, Exploring automated energy optimization with unstructured 
building data: A multi-agent based framework leveraging large language models, 
Energ. Buildings 322 (2024) 114691, https://doi.org/10.1016/j. 
enbuild.2024.114691.

[12] S. Cheng, Z. Zhuang, Y. Xu, F. Yang, C. Zhang, X. Qin, Q. Zhang, Call Me When 
Necessary: LLMs can Efficiently and Faithfully Reason over Structured 
Environments, Findings of the Association for Computational Linguistics: ACL 
2024 (2024) 4275–4295, https://doi.org/10.18653/v1/2024.findings.

[13] J. Lu, X. Tian, C. Zhang, Y. Zhao, J. Zhang, W. Zhang, C. Feng, J. He, J. Wang, 
F. He, Evaluation of large language models (LLMs) on the mastery of knowledge 

and skills in the heating, ventilation and air conditioning (HVAC) industry, Energy 
Built Environ. (2024), https://doi.org/10.1016/j.enbenv.2024.03.010.

[14] L. Chen, A. Darko, F. Zhang, A.P.C. Chan, Q. Yang, Can large language models 
replace human experts? Effectiveness and limitations in building energy retrofit 
challenges assessment, Build. Environ. 276 (2025) 112891.

[15] L. Song, C. Zhang, L. Zhao, J. Bian, Pre-Trained Large Language Models for 
Industrial Control. (2023), https://doi.org/10.48550/arXiv.2308.03028.

[16] Y. Li, M. Ji, J. Chen, X. Wei, X. Gu, J. Tang, A large language model - based 
building operation and maintenance information query, Energ. Buildings 334 
(2025) 115515, https://doi.org/10.1016/j.enbuild.2025.115515.
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