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Abstract 

Building heating, ventilation, and air conditioning (HVAC) systems consume large amounts of energy, 
and precise energy prediction is necessary for developing various energy-efficiency strategies. 
Energy prediction using data-driven models has received increasing attention in recent years. 

Typically, two types of driven models are used for building energy prediction: sequential and 
parallel predictive models. The latter uses the historical energy of the target building as training 
data to predict future energy consumption. However, for newly built buildings or buildings without 

historical data records, the energy can be estimated using the parallel model, which employs the 
energy data of similar buildings as training data. The second predictive model is seldom studied 
because the model input feature is difficult to identify and collect. Herein, we propose a novel 

key-variable-based parallel HVAC energy predictive model. This model has informative input features 
(including meteorological data, occupancy activity, and key variables representing building and 
system characteristics) and a simple architecture. A general key-variable screening toolkit which 

was more versatile and flexible than present parametric analysis tools was developed to facilitate 
the selection of key variables for the parallel HVAC energy predictive model. A case study is 
conducted to screen the key variables of hotel buildings in eastern China, based on which a 

parallel chiller energy predictive model is trained and tested. The average cross-test error measured 
in terms of the coefficient of variation of the root mean square error (CV-RMSE) and normalized 
mean bias error (NMBE) of the parallel chiller energy predictive model is approximately 16% 

and 8.3%, which is acceptable for energy prediction without using historical energy data of the 
target building.  
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1 Introduction 

Buildings account for more than 30% of the total energy 
consumption worldwide. The building heating, ventilation, 
and air conditioning (HVAC) system is one of the highest 
energy consumers in building service systems (Liu et al. 
2019). Engineers try to reduce HVAC energy consumption 
using methods such as optimizing the design scheme and 
implementing efficient operating strategies. Most of these 
energy-efficient strategies rely on accurate energy consumption 

predictions. There are two main methods for building 
HVAC energy prediction (Sha et al. 2019). The first is the 
use of physical-based models, such as energy simulation 
tools. However, using simulation tools to precisely calculate 
HVAC energy is difficult. Current simulation tools have 
the following disadvantages: 
(1) A large amount of information (i.e., model input 

parameters) is needed.  
(2) Development of the building geometric model is time 

consuming. 
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(3) The computation time for buildings with complex forms 
or systems is too long (Hong et al. 2008). 

(4) The simulation result has a large deviation from the 
actual value because of uncertainties caused by the input 
parameters and physical model simplification (Higdon 
et al. 2004). 
Because of these disadvantages, researchers tend to 

perform energy prediction with data-driven models, which 
is much more efficient and precise (Zhao et al. 2020). 
Two types of data-driven models have been studied for 
predicting building energy (Sha et al. 2021). The first uses 
the historical energy data of the target building as training 
data to predict its future energy. This is referred to as the 
sequential predictive model. The parallel predictive model, 
on the other hand, involves the use of historical data from 
similar buildings. The parallel predictive model is suitable 
for newly built buildings or buildings without historical data 
records. However, this type of model has seldom been studied 
because its input features are difficult to identify. The 
data-driven model performance is significantly influenced 
by the model input features. The input features should 
contain the driving factors for target (the HVAC energy 
consumption) variation. For the sequential predictive model, 
variables such as meteorological parameters and occupancy 
schedule are the only driving factors with respect to a specific 
building. The building- and system-related variables were 
excluded because they remained the same. However, for the 
parallel predictive model, variables that distinguish between 
different buildings and systems should also be included 
as model input features. Previous studies have revealed 
that building HVAC energy is mainly determined by a few 
variables (Tian et al. 2018). These variables are referred to 
as key variables in this study. However, dozens of variables 
may influence HVAC energy but collecting all of them is 
difficult. Moreover, a large dimension of the input feature 
will cause a curse of dimensionality (Pardalos 2009) and 
degrade model performance when the training data size  
is small. In this paper, we propose a novel method for 
developing parallel HVAC energy predictive models. A key- 
variable screening toolkit was developed to facilitate the 
selection of input features of parallel HVAC energy predictive 
models. This key-variable screening toolkit was developed 
based on EnergyPlus and sensitivity analysis (SA). Finally, a 
parallel data-driven model for predicting the chiller energy 
of hotel buildings in eastern China was developed and 
tested to verify the feasibility of the proposed parallel model 
development method. The contributions and novelty of this 
study are summarized as follows: 
(1) A novel framework for a parallel HVAC energy predictive 

model is proposed. This framework incorporates various 
input features regarding meteorological variation, 
occupancy activity, and key variables representing 

building and system characteristics. Moreover, this 
parallel model framework has a simple architecture and 
high flexibility for training data. Both the measured and 
simulated data can be used in this model to improve 
model generalizability.  

(2) A parallel chiller energy predictive model that can be 
directly applied to the chiller energy prediction of hotel 
buildings in eastern China was developed and verified. 
The average coefficient of variation of the root mean 
squared error (CV-RMSE) is 16%, which is acceptable 
for engineering purposes. 

(3) The key variables are different for different building 
types, climate zones, and prediction targets. There has 
been no comprehensive and systematic research on the 
identification of the key variables. A general key-variable 
screening toolkit was developed in this study. This 
toolkit has stronger versatility because it can analyze 
the impact on HVAC energy consumption of building 
geometry as well as building physics, construction quality, 
and system performance.  

2 Literature review 

In this section, a complete review of data-driven energy 
prediction model and building energy performance sensitivity 
analysis will be presented. 

2.1 Parallel data-driven models for building energy 
prediction 

In recent years, more smart meters have been installed in 
buildings to collect energy data, facilitate the development 
of relevant data-driven models, and perform energy 
analysis and prediction. As discussed in Section 1, building 
energy predictive models can be classified into sequential 
and parallel models with regard to model input features 
and training data. Sequential models have been widely 
studied and reviewed (Ahmad et al. 2018). As illustrated  
in Figure 1, both traditional machine learning algorithms  
and complicated deep learning models were explored to 
improve model prediction accuracy. In addition to advanced 
artificial intelligence (AI) algorithms, the influence of 
feature engineering on model performance has also been 
thoroughly analyzed (Sha et al. 2021). Apart from discussion 
on input features and AI algorithms for energy prediction 
model development, there are also papers focusing on 
acquisition of high-quality synthetic data which is beneficial 
to improve model quality. Lamagna et al. (2020) summarized 
the previous methods of acquiring high-resolution data from 
raw data and also presented an expeditious mathematical 
method to extract the building energy demand on an hourly 
basis from monthly energy bills. Fan et al. (2022) proposed  
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Fig. 1 AI algorithms used for building an energy predictive data- 
driven model 

a deep generative modeling-based data augmentation 
method to solve the problem of data shortage in developing 
data-driven models. 

The parallel energy predictive model, in contrast, has 
been less studied. The reasons are two-fold. First, the 
identification of input features for parallel models is difficult 
because the key variables accounting for building energy 
consumption differences should be included. The key 
variables were different for different types of buildings. 
Second, the collection of large-scale energy data is difficult. 
In previous studies, the selection of input features for a 
parallel predictive model is more experience-dependent and 
restricted to data that have been collected. Pan and Zhang 
(2020) used a new machine learning algorithm, CatBoost, to 
build an energy prediction model along with building type, 
energy star score, number of years, and number of floor 
areas of parking as input features. The prediction target was 
the energy use intensity rather than a time series of smaller 
granularity. Fan et al. (2020) employed transfer learning 
for 24 h-ahead energy prediction. The input features used 
included historical energy data, outdoor conditions, day type, 
month type, and primary building usage. The experimental 
results showed that the transfer learning-based model 
significantly improved the model performance. Li et al. 
(2021) also used transfer learning-based ANN model for 
one-hour ahead building energy prediction for buildings 
without sufficient historical data record. However, the 
transfer learning model architecture of the proposed model 
was too complex to popularize, and a large amount of data 
was required to build a pretrained model. 

2.2 Sensitivity analysis for building energy performance 
analysis 

SA is a commonly used and effective way to determine the 

prominent factors among input candidates. There are two 
main types of SA methods: global and local approaches 
(Saltelli et al. 2002). Global SA calculates the effects of all 
uncertain inputs simultaneously, whereas the local approach 
is focused on one or a few points. Therefore, the global  
SA is more reliable and widely used for building energy 
performance analysis. Table 1 lists several studies that 
have used global SA to perform building energy analyses 
in various applications. Demonstrably, the SA result is 
very sensitive to preconditions, i.e., candidate parameters, 
reference building, and output. The deductions from one 
case cannot be extended to other cases. Therefore, SA 
should be conducted in accordance with the specific 
analysis requirements. Moreover, SA of the building energy 
performance is largely conducted on a specific reference 
building. The effects on building geometry and layout, 
which can hardly be changed when using simulation 
parametric analysis tools, are seldom analyzed. A typical 
simulation-based SA process is illustrated in Figure 2 (Fan 
et al. 2020). The most time-consuming step is obtaining  
the corresponding output of the input variations. Tens of 
thousands of models must be developed and run to obtain 
an output dataset. For building energy sensitivity analysis, 
the fast parametric simulation tool jEPlus is often used to 
conduct batch simulations (Pang et al. 2020). However, 
jEPlus was designed for parametric analysis based on a 
specific reference building model. It cannot change the 
building model geometry or layout. In contrast, the key- 
variable screening method proposed in this paper can develop 
simplified building models in accordance with specific 
building dimensions (such as, building area, number of 
layers, and compactness ratio) and can be adapted to various 
building types and locations, which are more versatile.  

3 Framework of parallel HVAC energy predictive 
model 

The architecture of the proposed parallel HVAC energy 
predictive data-driven model is displayed in Figure 3. It con-
tains three categories of input features: occupancy features, 
meteorological features, and key variables of building 
geometry, envelope, and energy systems. As mentioned above, 
weather conditions and occupant activity-related variables 
are recognized as input features for developing a sequential 
HVAC energy predictive data-driven model for a specific 
building. These two types of features are essential in allowing 
the model to capture the relationship between temporal 
variations in HVAC energy consumption during a period. 
Therefore, they are also employed in the parallel energy 
predictive model development. In this study, five extended 
features representing meteorological variation and occupancy 
activity were extracted from directly observable raw features  



Sha et al. / Building Simulation 

 

4 

 
Fig. 2 Typical process of SA for building energy performance 
analysis 

to improve model performance. A detailed explanation is 
provided in Section 3.1. In addition to the first two types of 
features, key variables summarizing the building envelope, 
geometrical, and energy system characteristics should also 
be included. These account for the difference in HVAC 
energy consumption between buildings. The key-variable 
identification process is explained in Section 4. Using all 
the above-mentioned variables as model input features, the 

parallel energy predictive model can be applied. Moreover, 
the available energy record data of similar buildings can  
be used as model training data for energy prediction in 
buildings without historical energy consumption data.  

3.1 Extended features 

(1) Time index and day type 

Human activity is known to be a major factor influencing 
building energy consumption. However, real-time human 
activity is difficult to measure and quantify. As a substitute, 
time index features refer to categorical features such as 
the ith hour of the day, ith day of the month/week, and 
ith month of the year, which are commonly used as input 
features for building energy prediction to represent actual 
occupant number variation and activity characteristics. 
Moreover, energy consumption usually varies for different 
day types (for instance, during weekdays, weekends, and 
holidays). Therefore, day–type features, denoted as 0–1, are 
also used as input features in this study. 

(2) Periodical factors and statistical factors 

Historical energy consumption contains valuable information 
regarding building operating patterns. Periodical and 
statistical factors are dimensionless parameters extracted 
from historical energy data. Periodical factors are constructed 
under the assumption that human activity tends to display 

Table 1 Sensitivity analysis for building energy performance analysis 

Reference SA method Objective performance Sensitive parameters 
Reference 

building/location 

Tian et al.  
2018 Sobol 

 Heating energy 
 Cooling energy 
 Carbon emission 

 Infiltration, equipment peak value, lighting power density 
 Occupancy density, equipment peak value, lighting power 

density 
 Equipment peak value, lighting power density 

Office building/Tianjin, 
China 

Li et al.  
2018 Morris, FAST Cooling energy Building orientation, roof solar absorptance, window solar  

heat gain coefficient, overhang projection ratio 
Zero carbon building/ 
Hong Kong, China 

Petersen  
et al. 2019 Sobol Total HVAC energy Heating set point, window area, roof insulation, equipment 

power density, ventilation rate Office building/Denmark

Delgarm  
et al. 2018 

OFAT, 
variance-based 

method 

 Annual cooling energy 
 Annual heating energy 

 Window size, building orientation, glazing solar transmittance 
 Building orientation, window size, glazing visible transmittance 

Thermal zone of office 
building/Iran 

Tian et al.  
2017 

Regression 
(SRC), Sobol 

 Annual cooling energy 
 Annual heating energy 

 Window solar heat gain coefficient, chiller COP 
 Occupancy density, window U-value, heating set point 

Office building/Tianjin, 
China 

Heiselberg  
et al. 2009 Morris Annual energy 

consumption Lighting control, ventilation rate in winter Office building/Denmark

Mechri  
et al. 2010 FAST 

 Cooling energy 
 Heating energy 

 Envelope transparent surface ratio, compactness ratio 
 Envelope transparent surface ratio, compactness ratio, building 

orientation, external shading reduction factor 
Office building/Italy 

Spitz et al.  
2012 Sobol Indoor air temperature Infiltration, fiberglass thickness, heat exchanger efficiency, 

internal gains on the ground floor, fiberglass conductivity Low-energy house/France
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similar patterns for the same type of day, which conforms 
to the regular rules. The daily periodic factor is calculated 
using the following equation:  

,
,

i

j
i j

je
dr

e
=                                       (1) 

where dri,j is the daily periodical factor in a month, with 
i = 1, 2, …, 7 and j = 1, 2, …, 12. ,i je  is the average energy 
consumption of the ith weekday in the jth month. je  is 
the mean energy consumption of the jth month. 

Statistical factors were extracted from historical energy 
data series using statistical methods. The calculation equation 
is given as follows: 

, ( )i j i jt T Y=                                     (2) 

where Ti is the statistical formula including the mean, 
median, maximum, minimum, skew, and standard deviation. 
Yj represents the energy consumption data of the jth 
weekday, and j = 1, 2, …, 7. 

(3) Smoothed meteorological features 

Meteorological parameters, including dry-bulb temperature 
and relative humidity, are driving factors behind building 
energy consumption and variations. Apart from those 
directly observable parameters, this study also adopts 
some smoothed meteorological parameters to handle lagging 
caused by building thermal mass and simultaneously avoid 
feature explosion. Savitzky–Golay filters (Savitzky and Golay 
1964), which are commonly used to remove high-frequency 
oscillations in digital signals, were adopted to calculate  
the smoothed dry-bulb temperature and relative humidity 
in this study. The original and smoothed meteorological 
features are fed into the predictive model to extract more 
information. 

3.2 Prediction algorithm 

In this study, the machine learning algorithm CatBoost was 
used because of its high performance and efficiency. CatBoost 
is an algorithm for gradient boosting in decision trees. 
Compared with XGBoost and LightBoost, which are also 
gradient boosting algorithms, CatBoost has the following 
advantages: 
 It is well-suited to building machine learning models 

with data involving categorical and heterogeneous data. 
Numerical features are created using the occurrence 
frequency of each categorical feature and some hyper-
parameters.  

 Composite categorical features that take advantage of the 
relationship between features are created to enrich the 
feature information. 

 The ordered boosting method is adopted to cope with noise 
in the training data and avoid the deviation of gradient 
estimation, thereby improving the prediction accuracy. 

 It can achieve high performance using default hyper-
parameters. 

3.3 Evaluation metrics 

The coefficient of variation of the root mean squared error 
(CV-RMSE) and normalized mean bias error (NMBE) 
suggested by ASHRAE Guideline 14 (ASHRAE 2014) 
were used in this study to evaluate the model prediction 
performance. Compared with other popular metrics, such 
as root mean squared error (RMSE) and mean absolute 
error (MAE), CV-RMSE and NMBE is scale-independent, 
which is suitable for evaluating the performance of models 
built with different datasets. Lower CV-RMSE and NMBE 
indicate a higher accuracy. The CV-RMSE and NMBE 

 
Fig. 3 Framework of parallel energy predictive model 
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values can be calculated using the following equations: 
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where yk is the test data, ˆky  is the predicted data, and n is 
the number of test data points. 

4 Development of key-variable screening toolkit 

The framework of this key-variable screening method is 
shown in Figure 4. It was developed based on EnergyPlus and 
sensitivity analyses. The objective of key-variable screening 
is to select a few variables that have a major impact on 
building HVAC energy consumption and variations. First, 
users should specify the following boundary parameters: 
(a) candidate variables, (b) building location (or weather file), 
(c) building type, and (d) prediction target. The key variables 
identified may vary according to the above parameters. The 
building HVAC energy consumption is influenced by not 
only the theoretical design parameters of building thermal 
characteristics and system configuration, but also by 
additional factors affecting construction quality and system 
operation level. Therefore, both types of variables are 
adopted as candidate variables from which the key variables 
are screened. One of the most significant challenges for 
sensitivity analysis is that many building models must be  

 
Fig. 4 Framework of key-variable screening toolkit 

built and run in accordance with the input parameter 
samples. The Sample Modelling module was used to solve 
this problem. The simulation results were stored in a database 
for further sensitivity analyses.  

4.1 Sample model development 

The Sample Modelling module was developed based on 
Python and Eppy (a scripting language for E+ IDF files). A 
detailed workflow is shown in Figure 5. It mainly comprises 
three parts: (1) base model files, (2) a geometric model 
generation module, and (3) a parameter alteration module. 
The base model files contain insensitive simulation 
information, such as basic simulation settings, typical 
schedules, and functional space allocation of the target 
building type. These parameters remained consistent 
throughout the analysis. The geometric model generation 
module builds a building model to match the sampled 
parameters. The parameter alteration module is designed 
to automatically change the model parameters (such as 
occupancy density, infiltration, and plant efficiency) in 
accordance with sample values and to create the corresponding 
IDF files. Following the aforementioned preparation steps, 
a modeling engine (EnergyPlus.exe) was used to conduct 
batch simulations and store the corresponding output results 
for further sensitivity analysis. 

The building compactness ratio has a significant influence 
on building energy. This factor is a simplified mathematical 
representation of building shape. A higher compactness 
ratio indicates a building with less surface exposed to an 
outdoor environment. However, previous studies seldom 
focused on the influence of building shape on energy 
consumption because it is infeasible to manually build 
several models with different shapes. The geometric model 
generation module addresses the problem of automatic 
building shape alteration. A building shape database was 
created to represent the different building geometric 
characteristics. The database contains five types of basic 
building shapes, as shown in Figure 6. Building footprints 

 
Fig. 5 Workflow of sample model establishment and simulation 
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a–e have equal areas but increasing perimeters; thus, they 
are arranged in order of decreasing compactness. We 
developed a factor sigma to represent the compactness of 
each shape. 

/
16
Asigma C= ( )                                (5) 

The compactness ratio, which represents the compactness 
of a building, can be related to sigma using the following 
function: 

totalCR ( , ,NL)f sigma A=                           (6) 

where C is the perimeter of the building footprint, A is 
the area of the building footprint, Atotal is the building area, 
and NL is the number of building layers. In this way, the 
geometric model generation module can find the most 
suitable building shape to match given parameters (i.e., 
building area, number of layers, and compactness ratio). The 
3D model of different shapes developed by this module is 
shown in Figure 7. 

4.2 Sensitivity analysis for key-variable screening 

SA is the study of how uncertainty in a mathematical 
model or system output is assigned to different sources of 
uncertainty in its inputs (Douglas-Smith et al. 2020). The 
SA methods typically used for building energy analysis  
can be divided into global and local approaches. Global 
approaches focus on the impact of input parameters on 
whole input spaces, whereas local approaches are more 
interested in the influence of input parameters around a 
base point (Saltelli et al. 2002, 2008). Thus, global approaches 
are more reliable but time consuming and computationally 
intensive. The commonly used global SA methods for   

 
Fig. 7 3D model of different building shapes 

building energy performance analysis include the regression 
method, Morris method, Sobol, and FAST (Saltelli et al 
2012). In this study, the regression method and Morris 
method were adopted because of their effectiveness and 
convenience. 

The regression method is the most widely used because 
it is easy to interpret (Hopfe and Hensen 2011; Hygh et al. 
2012). Using the regression method, the relation between 
the input and output was regressed using a linear equation. 
The coefficient of each input variable can be used to indicate 
the importance of the variables. Standardized regression 
coefficients (SRC) and partial correlation coefficients (PCC) 
are often used for this purpose. The calculation method  
for SRC and PCC can be found in Saltelli et al. (2002). 
However, these two indicators can only be used for linear 

 
Fig. 6 Flat shape for different building compactness 
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models (https://www.aatradingcourses.com/tag/simlab-2-2- 
tutorials-sensitivityanalysis/). The rank transformation of 
SRC and PCC (i.e., standardized rank regression coefficient 
(SRRC) and partial rank correlation coefficient (PRCC)) are 
often used for nonlinear models. 

The Morris method is popular because it can handle 
computationally expensive models with a small number of 
model evaluations (Saltelli et al. 2002). The Morris method 
is also known as the elementary effect method. Assume that 
a model contains k independent variables, Xi, i = 1, …, k 
each of which is divided into p levels. Thus, the input space 
is divided into a p-level grid Ω. The elementary effect of the 
ith dimension of X is defined as 

( ) ( )1 2 1 1 2[ , , , , Δ, , , , , ]
Δ

i i k k
i

Y X X X X X Y X X X
EE -¼ + ¼ - ¼

=
 

(7) 

where Δ is selected from the collection of { }1 1, ,1
1 1p p
¼ -

- -
 

to ensure X + eiΔ is still inside Ω. ei is a unit vector in the 
ith dimension. The distribution of the elementary effect is 
denoted as Fi—i.e., EEi~Fi. The sensitivity indicator of the 
Morris method, μ, is the estimate of the mean of Fi. However, 
using μ as the indicator may be misleading when Fi contains 
both positive and negative values, i.e., the model is either 
nonmonotonic or has interaction effects. Thus, the estimate  
of the mean of the distribution of iEE , which is denoted  
as μ*, is more commonly used (Campolongo et al. 2007). 

5 Case study 

In this study, luxury hotel buildings in eastern China 
higher than four stars were analyzed. A reference hotel 
building model was also developed for key-variable 
identification. Then a parallel model for hotel chiller energy 
prediction which uses key variables selected previously as 
input features is trained and tested based on field-test data 
to validate the parallel energy predictive model developing 
methodology. 

5.1 Reference building description 

There are seven functional spaces in the hotel building model. 
The area ratio of each functional space was set to represent 
a typical hotel building: 0.1, 0.1, 0.075, 0.03, 0.025, 0.02, 
and 0.65 for the lobby, service room, dining room, kitchen, 
meeting room, gym, and guest rooms, respectively. The area 
ratio value for each functional space is set according to 
MOHURD (2014). The various schedules for each functional 
space were also set to be consistent with hotel characteristics 
(MOHURD 2015), as shown in Figure 8. 

5.2 Selection of candidates for key-variable identification 

Building HVAC energy is influenced by both the building 
thermal load and system characteristics. Parameters related 
to the building thermal load, such as building window/wall 
ratio and wall U-value, are all numeric, whereas system-related 
parameters contain non-numeric parameters such as water 
pump type (variable speed or constant speed). If the two 
types of parameters are combined for sampling, the sample 
size becomes extremely large. Thus, in this study, sampling 
and sensitivity analyses were conducted twice to select 
the key influential variables separately from the building 
thermal load- and system-level parameters. 

The potential influential variables, including theoretical 
variables and correction factors, are shown in Table 2.  
In total, 23 building thermal load-level variables and 11 
system-level variables that can influence building HVAC 
energy were considered in this study. The probability 
distributions of the input variables depend on the research 
purpose. Uniform distribution is an appropriate assumption 
because SA is conducted for design purposes (Li et al. 2018). 
Variables, including building area, number of stories, and 
energy system type are determined according to energy 
audit reports, whereas the ranges of other numerical variables 
are mainly determined according to references (MOHURD 
2015; Morrison Hershfield Limited 2016; Li et al. 2018).  

The 23 building thermal load-level variables were classified 
into four categories: building layout, envelope thermal 
characteristics, operation and occupancy, and construction 
quality. The building compactness ratio (defined as the ratio 
of the external surface area to the building area) is used to 
reflect the impact of different building geometric shapes on 
the building thermal load. The more compact a building 
is, the less heat is transferred through its envelope. This 
indicator is similar to the building shape coefficient but is 
easier to compute. As shown in Figure 5, different shapes 
a–e were adopted in this study to represent varying building 
compactness ratios. Construction quality (which mainly 
refers to the thermal bridge due to poor construction quality) 
has not been adequately considered in previous studies on 
building load simulation, and its impact on the building 
load is uncertain; therefore, it is considered as a potentially 
influential variable in this study. According to Morrison 
Hershfield Limited (2016), the impact of the thermal bridge 
on the building load can be transformed into increments 
of the building wall U-value (Eq. (8)): 

( )
T 0

tot

ψ L
U U

A
⋅

= +å                             (8) 

where UT is the wall U-value considering the impact of 
the thermal bridge (W/(m2∙K)). U0 is the wall U-value 
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(W/(m2∙K)). Atot is the total area of the opaque wall (m2). 
The impact of the thermal bridge was quantified using the 
thermal linear transmittance ψ (W/(m∙K)). L is the length 
of the corresponding linear thermal transmittance (m). 

For system-level parameters, four correction factors, 
which are listed as normal factors in Table 2-2, are included 
in addition to the theoretical design variables. A small 
temperature difference between the chilled supply and 
return temperatures is a common problem in commercial 
buildings in China. This phenomenon is referred to as 
low-delta T syndrome. The operational temperature difference 
is only 1–2 °C, which is much lower than the design 
temperature of 5 °C. The low-delta T syndrome considerably 
increases the water flow rate and energy use in a water 
supply system. The temperature difference between the chilled 
water supply and return water can be directly defined in 
EnergyPlus. 

Heating and cooling coil fouling may reduce the overall 
heat transfer coefficient (UA), causing reduced coil capacity, 
resulting in unmet loads and/or increased water flowrate 
and reduced water-side temperature difference. In this study, 
we used the fouling factor for coil fouling. The overall UA 
factor of a fouled coil can be calculated using Eqs. (9)–(10) 
(EnergyPlus 2018).  

foul air air water water/ /R r A r A= +                       (9) 

( )fouled air foul waterUA 1/ 1/UA 1/UAR= + +             (10) 

where Rfoul is the overall fouling factor (K/W), rair is the 
air-side fouling factor ((m2∙K)/W), rwater is the water-side 
fouling factor ((m2∙K)/W), Aair/water is the air/water-side coil 
surface area (m2), and UAair/water is the heat transfer coefficient 
of the coil on the air/water side. 

Cooling tower fouling is common in cooling tower 

 
(a) People 

 
(b) Lighting and equipment 

Fig. 8 Schedules of hotel building model 
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operations. It occurs when deposits become clogged, which 
is usually caused by poor water quality and treatment. 
Reportedly, the removal of scale deposits is one of the largest 
expenses in cooling tower maintenance. Scale deposits can 
reduce the overall UA, affecting both tower effectiveness 
and energy efficiency. In this study, we used a UA reduction 

factor called the cooling tower fouling ratio (CTFR) to 
describe the fouling severity. It is defined as the ratio 
between the UA value in the fouling case and that in the 
fault-free case.  

Air filter fouling may increase the air-loop system 
resistance, resulting in a different system curve. This directly 

Table 2-1 Potential influential variables (building thermal load level) 
Type Parameter name Abbreviation Distribution Range Unit 

Window wall ratio (north) NWWR Uniform 0.2–0.8  
Window wall ratio (south) SWWR Uniform 0.2–0.8  
Window wall ratio (east) EWWR Uniform 0.2–0.8  
Window wall ratio (west) WWWR Uniform 0.2–0.8  
Area AREA Uniform 20000–200000 m2 

Number of stories NL Uniform 5–40  

Building layout 

Compactness ratio CR Uniform 0.1–0.9  

Wall U-value WALLU Uniform 0.09–5 W/(m2∙K) 
Wall specific heat WSP Uniform 800–2000 J/(kg∙K) 
Roof U-value RU Uniform 0.09–4.8 W/(m2∙K) 
Window U-value WINU Uniform 0.2–7 W/(m2∙K) 
Window solar heat gain SHGC Uniform 0.1–0.9  
Wall solar absorption coefficient WSA Uniform 0.1–0.9  

Envelope 
thermal 

characteristics 

Roof solar absorption coefficient RSA Uniform 0.1–0.9 W/(m2∙K) 

Setpoint temperature for cooling SPC Uniform 22–28 °C 
Setpoint temperature for heating SPH Uniform 18–24 °C 
Lighting power density LPD Uniform 3–15 W/m2 
Occupancy density OPD Uniform 0.02–0.05 people/m2 

Infiltration rate INFIL Uniform 0.05–0.5 ACH 

Operation & 
occupancy 

Interior shading rate ST Uniform 0.1–0.9  

Floor linear transmittance FLT Uniform 0.007–1.842 W/(m∙K) 
Glazing linear transmittance GLT Uniform 0.03–1.058 W/(m∙K) Construction 

quality 
Corner linear transmittance CLT Uniform 0.036–0.684 W/(m∙K) 

Table 2-2 Potential influential variables (system level) 
Type Parameter name Abbreviation Distribution Range Unit 

Air-side system type AST — Constant volume system (CAV), variable volume 
system (VAV), fan coil system (FCU)  

Water-side system type WST — 
Constant primary flow system (CP), variable primary 
flow system (VP), constant primary variable secondary 
flow system (CPVS) 

 

Supply air temperature SAT Uniform 8–18 °C 
Chilled water supply temperature CWST Uniform 5–10 °C 
Fan efficiency FEffi Uniform 0.3–0.8  
Pump efficiency PEffi Uniform 0.3–0.8  

Normal 
factors 

Chiller COP COP Uniform 3–7  

Temperature difference of chiller 
supply and return water TDW Uniform 1–6 °C 

Coil fouling factor CFF Uniform 0–200 (m2∙K)/W
Cooling tower fouling ratio CTFR Uniform 0.5–1  

Correction 
factors 

Air filter fouling ratio AFFR Uniform 1–2  
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affects the operation of the corresponding fans. Specifically, 
it may lead to variations in the fan pressure rise, fan energy 
consumption, and enthalpy of the fan outlet air. It may also 
lead to a reduction in the airflow rate and, thus, affect the 
performance of other system components. In this study, we 
used the air filter fouling ratio to describe the pressure rise 
variations of the fan associated with the fouling air filter. It 
is used as a multiplier for the fan design pressure increase. 
A curve that describes the relationship between the fan 
pressure rise and air flow rate should be defined. 

5.3 Data description of parallel chiller energy predictive 
model development  

The energy data used for the parallel energy predictive 
model training contained both measured and simulated 
data. The measured energy data came from a building 
submetering platform, which was established to monitor the 
energy consumption of commercial buildings in Shanghai, 
China. This energy monitoring platform also provides 
meteorological parameters, including dry-bulb temperature 
and relative humidity, which are gathered in real-time from 
a local weather station at Hongqiao Airport. In this study, 
the daily chiller energy consumption data of six luxury 
hotel buildings were adopted. The values of key variables 

come from the energy audit reports of each hotel building 
as are shown in Table 3. A total of 146 field-test energy data 
points ranging from May 1, 2019 to September 24, 2019, 
were selected for each building, contributing a total of 876 
measured data points for model training. However, the 
amount of available measured data is insufficient to build a 
high-performance data-driven model. Therefore, this study 
integrates simulated energy data with field-test data to 
expand the training data. A total of 100 hotel building energy 
models were built to generate 18400 simulated chiller energy 
consumption data points. The values of the model input 
parameters are sampled from the value ranges in Table 2 
using the Latin hypercube sampling method. The energy 
data profile is shown in Figure 9. It can be found that 
patterns of measured data are similar to those of simulated 
data. Moreover, the amounts and ranges of the simulated 
data were much larger than the measured data. In this 
regard, we believe that the integration of simulated data 
may improve parallel model performance by reducing 
under-fitting. 

6 Results and analysis  

In this part, separate analyses are made on key-variable 
identification and parallel model performance. The key 

Table 3 Building and HVAC system information of hotels 

No. 
Area 
(m2) 

Stories 
underground 

Stories above 
ground 

Lodging 
ratio 

SPC 
(°C) 

INFIL 
(ACH) 

LPD 
(W/m2) WST AST COP 

OPD 
(people/m2)

1 136800 36 3 0.6 24 1.05 7.6 CP FCU 6.1 0.1 
2 57000 31 1 0.56 24.5 0.83 8 CPVS FCU 5.5 0.12 
3 10549 20 2 0.7 24 0.5 7.5 CP FCU 5.7 0.11 
4 47193 23 2 0.56 24.5 0.6 8.3 VP FCU 4.7 0.16 
5 58899 20 1 0.7 23.8 0.45 7 CPVS FCU 5.5 0.18 
6 61055 16 1 0.66 24.6 0.4 8 CPVS FCU 5.6 0.09 

 
Fig. 9 Profile of measured and simulated energy data 
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variables selected in the first procedure which represent 
differences regarding building geometry, envelop and system 
operation are used as input features for parallel energy 
predictive model. Besides, variables proposed in Section 3.1 
are also incorporated as input features for parallel energy 
predictive model training. 

6.1 Identification of key variables 

The results of the sensitivity analysis are extremely sensitive 
to the preconditions. For a given system with given input 
parameters, the sensitivity analysis result may vary if the 
objective output parameter changes. Thus, we must specify 
the performance objective, which can be either cooling 

energy, heating energy, or total energy consumption, for 
building HVAC energy sensitivity analysis. In this section, 
we define the cooling energy (chiller electricity consumption) 
as the output parameter. In the first stage, both the Morris 
method and regression method were adopted to conduct 
the sensitivity analysis to select the key influential variables 
of the building thermal load level. For the Morris method, 
the number of effects per parameter is set to be 8, so 240 
simulations obtained by sampling all 23 input parameters 
within their ranges were conducted for sensitivity analysis. 
The results are presented in Figure 10(a). As is explained  
in Section 4.2, μ* is employed to represent parameter 
importance, the higher the μ* value of a parameter is, the 
more sensitive it is. For the regression method, the Latin  

 
(a) μ* ranking of Morris method 

 
(b) SRRC and PRCC ranking of regression method 

Fig. 10 Results of sensitivity analysis (building thermal load level) 
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hypercube sampling method (Helton and Davis 2003) was 
used to sample the 23 input parameters, and 6000 samples 
were generated for sensitivity analysis. Because a building 
thermal system is highly nonlinear, SRRC and PRCC are 
calculated as sensitivity indicators, as shown in Figure 10(b). 
A positive value indicates the changes in this variable 
and performance objective go in the same direction and 
vice versa. The absolute value of each parameter indicator 
represents its importance no matter its influence is positive 
or negative. The input parameters in Figure 10(b) are 
sorted in increasing order of sensitivity. Both regression 
indicators (i.e., SRRC and PRCC) provide the same results. 
The results of the Morris method and regression also 
showed high consistency for the 10 most sensitive variables. 
Because we are interested only in high-sensitivity variables, 
the analysis results of both methods are considered valid. 
SPC, OPD, INFIL, CR, LPD, and SHGC were chosen as the 
high-sensitivity variables of the building thermal load level. 
The value of the OPD is replaced by the empirical monthly 
occupancy rate to represent the average occupancy density. 
CR and SHGC were obtained from the design documents. 
Other parameters were measured in the field, which can be 
found in the energy audit reports. 

Because the Morris method requires the same change 
level for each variable dimension, the sampling size may be 
too small for problems with non-numeric input parameters. 
Thus, in the second stage, the Morris method is not 

applicable to system-level analysis because the system type 
has only three change levels. Only the regression method was 
used in this study. A total of 600 samples were generated 
using the Latin hypercube sampling method for numeric 
variables, and a total of 5400 samples were obtained together 
with nine combinations of two non-numeric variables 
(air-side system type and water-side system type). The 
ranking of the regression method indicators is shown in 
Figure 11. The chiller COP, AST, and WST are selected as 
the high-sensitivity variables of the system level, and their 
values can be found in energy audit reports. The average 
value of the chiller COP was adopted. The SAT was 
excluded because its value was not available.  

6.2 Cross test of parallel chiller energy predictive model 

Data-driven model performance should be evaluated in 
terms of both accuracy and stability. This study proposes 
a cross-test method, as shown in Figure 12. For a dataset 
composed of n real buildings, n times of model training 
and testing were run. For each duration, we chose the 
measured data of one building as test data and the others 
(including simulated data and measured data of buildings 
except the target building) as training data. Compared with 
the traditional train-test split method, which uses a randomly 
selected test dataset, the cross test method used in this study 
can display the model performance more comprehensively  

 

 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

PEffi CFF CWST CTFR TDW AFFR FEffi WST SAT AST COP

SRRC_CHILLER

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

PEffi CFF CWST CTFR TDW AFFR FEffi WST SAT AST COP

PRCC_CHILLER

 
Fig. 11 SRRC and PRCC ranking of system level variables 
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Fig. 12 Training and test data split for parallel energy predictive 
model cross test 

from both accuracy and stability and avoid the deviation of 
model evaluation caused by random selection of the test 
dataset. The cross test results of the chiller energy pre-
dictive model are displayed in Figures 13–14. Scenario 
A in Figure 13 displays the performance of the models 
trained with merely measured energy data, whereas scenario 
B displays those trained with the integrated dataset. 
Noticeably, the parallel energy predictive model performs 
better when the simulated data is integrated into the 
training dataset. The average test CV-RMSE and NMBE of 
the model trained with the integrated training dataset are 
0.16 and 0.083, which is significantly lower than that (i.e., 
0.25 and 0.108) of the model trained with only measured 
data. The performance difference between the two scenarios 
is mainly caused by the training data scale, which has a 
significant impact on the data-driven model performance. 
Scenario B has approximately 20 times as much data as 
Scenario A. Moreover, the models can simulate the energy 
consumption of buildings under various conditions. In  
this regard, the ranges of simulated data are much larger, 
which enriches the training dataset and improves model 
generalizability. However, more simulated data cannot 
always provide better results because the distribution of 
the simulated data slightly differs from that of the measured 
data. A comparative experiment was conducted to determine 
the optimal simulated data size. As shown in Figure 15, 
with the accumulation of simulated training data, the 
model prediction error decreases gradually until the error 
reaches the minimum value when the number of simulated 
cases is 100. As the number of simulation cases continues 
to increase, the model prediction error begins to increase. 
In this study, we proved that if the amount of measured 
energy data is insufficient to build a well-behaved data-driven 
model, the integration of simulated data is helpful for 
improving model performance. However, it is quite hard 
to provide a concrete number of simulated data because it 
varies with the amount of measured data. So the optimal 
number of simulated data is different for different datasets, 
which should be carefully manipulated. 

 
 (a) Without simulated data         (b) With simulated data 

Fig. 13 Predicted and test chiller energy 

7 Conclusions 

The parallel HVAC energy predictive model proposed in 
this paper provides a convenient way of predicting the 
energy demand for buildings without historical energy 
data. The selection of input features is the primary step in the 
development of a data-driven energy model. The parallel 
HVAC energy predictive model incorporates variables  
pertaining to occupancy activity, weather conditions, and 
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HVAC key variables as input features. In addition, we propose 
a general key-variable screening toolkit to facilitate feature 
selection in parallel data-driven models. This toolkit is easy 
to use and suitable for various building types and prediction 
targets. In contrast to previous parametric analysis tools, 
we propose a factor sigma to link building geometric 
parameters (i.e., building area, number of building layers, 
and compactness ratio) to the corresponding building shapes, 
which makes this key-variable screening method flexible. 
To verify the feasibility of the proposed methods and models, 
a case study was conducted to develop a parallel chiller 
energy predictive model for hotel buildings in eastern China. 
Nine variables—SPC, OPD, INFIL, CR, LPD, SHGC, Chiller 
COP, AST, and WST—were identified as key variables for 
chiller energy consumption. Then, a parallel chiller energy 
predictive model was developed on the basis of key variables 
identified in the previous stage along with the other five 
extended features. Moreover, this study innovatively integrated 
simulated data and measured data to train a parallel chiller 
energy predictive model. The cross test result shows that 
the parallel energy predictive model obtains an average 
CV-RMSE of 16% when using integrated training data, 
which is acceptable for energy prediction without historical 
data. Finally, the following points should be considered 
when using the methods proposed in this paper. 
a) The high-sensitivity variables found in this study are 

only sensitive to the chiller energy consumption. If users 
want to obtain the key variables of other objective 
performance, they should change the boundary parameters. 
Then, the simulation result of the Sample Modelling 
module can be changed to the target variables (pump 

energy, cooling tower energy, etc.). Moreover, this study 
used a hotel building in southeast China as a reference 
building model. Conclusions drawn under this condition 
cannot be directly extended to other cases. However, the 
methodology proposed in this study is universal. Users 
can easily switch to other cases by changing the boundary 
parameters. 

b) The selection of the key variables was subjective. Users can 
choose any number of top-ranked variables according to 
specific purposes and limitations (financial, technical, etc.).  

c) The possibledistribution form and variation range of the 
candidate variables influence the SA results. Thus, users 
should make decisions carefully. A uniform distribution 
is applicable for design purposes. However, for analyses 
involving retrofits of existing buildings, a normal 
distribution may be more suitable (Fan et al. 2020).  

e) The amount of simulated data included in the integrated 
training dataset for parallel energy predictive model 
development should be carefully tuned for different 
applications. 
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