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The rapid development of building energy consumption monitoring platforms makes engineering data
more diverse, which facilitates the goal of reducing emissions. It is increasingly acknowledged that data
preprocessing deserves the same attention as intelligent algorithms. In this work, the data quality issue of
the engineering big data from non-demonstration complexes in China are analyzed thoroughly, and the
analysis is based on clustering-based algorithms. We can conclude that the data of the hourly power of
equipment groups are quality and stable, which is suitable for the benchmark to check other data. The
quality of the data about pipes is acceptable. The number of data types about cooling towers is less,
and the quality is worse. Regarding other data, the quality is unstable, so researchers should deal with
those case-by-case. According to the above analysis, we proposed a convenient, rule-based data prepro-
cessing framework that utilizes the law of physics, ensuring the strong coupling of multi-variants. After
the data preprocessing, these engineering data are more reliable and can be used to improve performance
or train models. Additionally, the proposed framework is more suitable for preprocessing multi-variant
engineering data.

� 2022 Published by Elsevier B.V.
1. Introduction

1.1. Background

Emission saving has been one of the top trending topics, closely
related to issues posing a threat to creature survival, natural
resource depletion, and climate change. They are mainly attributed
to energy-related greenhouse gas (GHG) emissions. Clean energy
innovation plays an integral part in the prospect of net-zero emis-
sion. To achieve this long-term goal as soon as possible, organiza-
tions worldwide spare no effort toward that goal. The technology
portfolio in public energy Research and Development is more bal-
anced today than in previous decades, with far more money going
to energy efficiency and renewable energy[1]. Meanwhile, the plan
to achieve carbon neutrality by 2060 launched by Chinese officials
further motivates a wide variety of professions to promote low-
carbon technologies.

In this energy landscape, the commercial real estate industry
has accounted for over 30 % of the global final energy consump-
tion: more than 35 % fossil fuel and over 30 % electricity
consumption[1]. Technology innovation needs to undergo four
phases: prototype, demonstration, early adoption, and maturity.
In buildings, the number of clean energy technologies entering
the early adoption phase is much more than in other fields
(transport, industry, power generation, and fuels transforma-
tion)[1]. The technique for data acquisition is outstanding among
them. Widespread building energy consumption monitoring plat-
forms (BECMPs) are among the most prominent examples[2–4].
Smart energy meters are quickly meters have been adopted
across the world[refs][5]. More than 100 million buildings have
adopted smart energy meters by 2019 in U.S [refs][6]. Sweden,
Italy and Finland have achieved more than 90 % smart meter
marketing share [refs][7]. Apart from the political motivation,
the reasons why data acquisition related to building energy con-
sumption can get attention from all walks of life in China are
enlisted below:

1) More Disturbance: Covid-19 pandemic is a challenge for
improving energy efficiency in buildings. According to heating,
ventilation, air-conditioning, and cooling(HVAC) operation guideli-
nes during covid-19[8–10], ventilation strategies may increase the
energy consumption on account of the safety issue and uncertainty
of occupant behavior[11,12]. Data acquisition can give us more
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Nomenclature

Abbreviation
ANN Artificial Neural Network
BECMPs Energy Consumption Monitoring Platforms
BIM Building Information Model
BO Building Occupancy
CES Contemporary Energy Systems
DBSCAN Density-Based Spatial Clustering of Applications with

Noise
DT Decision Tree
FDD Fault Detection and Diagnosis
GNNs Graph Neural Networks
GAN Generative Adversarial Network
HVAC Heating, Ventilation, Air-conditioning and Cooling
IEA International Energy Agency
KNN K-nearest Neighbor
LSTM Long Short Term Memory
MAR Missing at Random
MCAR Missing Completely at Random
ML Machine Learning
MPC Model Predictive Control
NMAR Not Missing at Random
RNN Recurrent Neural Network
CH Chiller
CHs All Chillers in one BECMP

CHWP Chilled Water Pump
CHWPs All Chilled Water Pumps in one BECMP
CWP Cooling Water Pump
CWPs All Cooling Water Pumps in one BECMP
CTF Fan in Cooling Towers
CTFs All Fans in Cooling Towers in one BECMP
T Temperature
C Current
Hourly_P Hourly Power
Q Water Flow
H Relative Humidity

Subscript
chws Chilled supply water
chwr Chilled return water
cws Cooling supply water
cwr Cooling return water
on/off On/off status
m Header pipe
out outdoor
in indoor
s setpoint
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profound insight into BO against the background of the recent
pandemic.

2) Model Foundation: Computational algorithms and peripheral
hardware[13] make data-driven models shine in low-carbon
energy technology: machine learning (ML) algorithms, like Deci-
sion Tree (DT), LightGBM, and XGBoost. Recently, researchers have
tried to apply more advanced algorithms, including attention-
based models[14–16], Graph Neural Networks (CNN) [17], rein-
forcement learning[18] for fault detection and diagnosis (FDD)
[19],optimization, model predictive control (MPC)[2], building load
prediction[20] and non-intrusive monitoring (NIM)[21–24].
Immerse data is needed to feed these models to achieve satisfaction
[25], so accumulated engineering data establish the solid founda-
tion to put these state-of-art approaches into practice[26].

3) Building Information Model: As the US National Building Infor-
mation Modelling Standard defines[27], a Building information
model (BIM)[28,29] is ‘‘A digital representation of . . .a shared
knowledge resource for information about a facility forming a reli-
able basis for decisions during its life-cycle”. The concept of digital
twins[13,30,31] brings a whole new dimension to BIM, especially
in buildings. By far, the digital twin is facilitated because of the
advent of the Internet of Things (IoT)[32–34]. IoT makes the digital
twin emphasize maintenance and operation, so the real-time engi-
neering data is indispensable to fulfilling BIM.

4) Economic Demand: As we all know, retrofitting existing public
buildings is integral to emission savings. Big engineering data gives
a new dimension to building energy audits[35,36]. The data-intensive
approach can radically change the status quo of traditional audits:
time-consuming and labor-intensive, which can help companies
save costs.

The richness of engineering data facilitates the fact that count-
less researchers have been dedicated to making components more
intelligent in CESs[refs][37]. Consequently, how to maximize the
2

potential of big data from CESs is the top priority for some
researchers interested in interdisciplinary research.

This section concludes with the motivations for collecting and
building big engineering data in China. Section 1.2 illustrates gen-
eral data preprocessing practices and the significance of our work.
Section 2 introduces the proposed data preprocessing framework.
Section 3 shows the application of the proposed framework. Sec-
tion 4 is about how to improve the collection of engineering data.
Section 5 summarizes the paper.
1.2. Literature over data preprocessing to building energy-related data

1.2.1. Problems in data preprocessing
Data quality issue is prevalent. According to the analysis based

on text-mining in buildings[38], data preprocessing has not gotten
enough attention, no matter what kinds of data. FDD seems to be
the sub-field that pays enough attention to preprocess data[38].
Generally, researchers tend to require data quality before experi-
ments, which can guarantee that data preprocess would not dra-
matically reduce the quantity of valid data[39].

In our work, Data preprocessing is more like diagnosing data.
That is the first procedure among them[26]. There are two com-
mon problems in data quality: data missing and anomalies. In
civil engineering and buildings, data missing is complicated and
can be divided into different situations[40,41]:

1) missing completely at random (MCAR); data missing hap-
pens entirely by accident and is nothing to do with other attribu-
tions, like data type and value range. For example, the lost data
of energy consumption is almost nothing to do with other data.

2) missing at random (MAR); the observed variables affect the
data missing, but the unobserved variables do not. For instance,
when the hourly power of a chiller is lost, that can be fixed by
the current of the same chiller, which is the characteristic of MAR.
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3) not missing at random (NMAR); the data missing is only
about itself. Under some circumstances, researchers cannot get
some data due to historical or private issues.

Researchers are likely to encounter more than one kind of data
missing simultaneously. Apart from data missing, another issue is
anomalies, including global constant and moving average[26]. We
can also divide abnormal data into point anomalies, contextual
anomalies, and collective anomalies[20,42].

1.2.2. Methods of data preprocessing
Before training data-driven models, researchers have explored

various approaches to preprocessing data: engineering approach
[43], statistic methods[44], and intelligent algorithms. Of course,
more than one method can be used in data preprocessing. In this
section, much emphasis are put on the intelligent algorithm
because many recent papers about.

1) Engineering approach means that researchers depend on
their knowledge when preprocessing data. The effort aims at tak-
ing advantage of mechanism, such as the heat and mass transfer
process between building envelop and surrounding, in mathemat-
ical equations and simulation tools[43,45]. Mathematical equa-
tions require proficiency with expertise and reality. Simulation
tools (E.g. EnergyPlus[46], DeST[47]) could describe buildings at a
detailed level, but some parameters is hard to get, which makes
an significant gap between simulation and field measured data
[48].

2) Statistic methods include single upper limit, pauta criterion
(3 d law), local outlier factor, and interquartile range[20]. Statistic
methods may be better for detection or imputation when the data
missing values is mild[49]. These methods are common in compe-
titions, like ASHRAE Great Energy Predictor[20]. Firstly, competi-
tors entirely use statistical methods to process data missing and
anomalies. For invisible abnormal data in time series, expertise is
used to filtering out these data.

3) Intelligent algorithms can be divided into unsupervised clus-
tering, supervised classification, and semi-supervised recognition,
especially when data missing is severe[50]. Compared with linear
statistical methods, almost intelligent algorithms are nonlinear
[49], which means these algorithms are capable of dealing with
more complicated situations. Clustering-based methods can be
used in two ways. The first is regarded as a preliminary step to
identifying data clusters, and then statistic methods are applied
for outlier detection[51]. The second one is to use these
clustering-based techniques to fill or remove data directly; Cui
et al. make use of the k-nearest neighbor (KNN)[51] for the
Fig. 1. The aspects facilitated eng
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imputation of building energy data[52]. Armini et al. studied and
compared the performance of different fuzzy-rough nearest neigh-
bors on missing imputations[53]. Liu et al. used DBSCAN to identify
data when the system is in transient operations[54]. More compli-
cated algorithms are also used to detect abnormal and missing data
imputations. Liang proposed an ensemble method to hint at differ-
ent kinds of data, and an artificial neural network (ANN) was
among his ensemble methods[55]. Ma et al. utilized LSTM to
impute missing data, proving that his proposed method can be
suitable even if the percentage of missing data is relatively high
[49]. Dongyeon et al. used a factor analysis matrix to impute the
missing data, which utilized electricity characteristics to fill the
data of load[56]. Cao et al. proposed a bidirectional approach to
imputing missing data by Recurrent Neural Network (RNN) and
used air quality and healthcare data to verify[57]. Luo et al. use
Generative Adversarial Network (GAN) to preprocess multivariate
time series[58], but not in buildings.
1.2.3. The gap the proposed framework wants to fill
Given the features of big engineering data, multi-variants, vari-

ous working conditions, and highly correlated[40], the features are
made the full use of to design the rule-based framework for data
preprocess. The proposed framework is explainable, so it will be
suitable in engineering.

Apart from missing data and anomalies considered, the mis-
match between labels and data is another problem that few pre-
vious papers refer to, but it is ubiquitous in engineering. The
proposed framework takes this problem into consideration.

To enhance the generalization ability of the proposed frame-
work, the analysis of engineering big data is conducted before, which
is rare in previous work. The data involved are from 100 commer-
cial non-demonstration complexes in China. Compared with
demonstration buildings, non-demonstration complexes is larger
in number, and data quality issue is more complicated because of
not highly professional operation and maintenance.Fig. 1.
2. Methodology

2.1. Overview of the workflow and proposed framework

The overall workflow (Fig. 2) can be divided into three parts:
analysis of data quality, data preprocessing, and data application.
The first two are the core of this paper, and the last part is based
on the first two parts.
ineering data from BECMPs.



Fig. 2. The overall workflow.
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Firstly, the data quality analysis aims to determine the bench-
mark of the data preprocessing. The clustering algorithms are used
to analyze the features of data missing, including missing rates and
time windows.

The second part is to process the engineering data considering
the clustering results. The order of data processing is in the orange
box in Fig. 2. Specifically, the ‘‘rule-based” is to take advantage of
the laws of physics because CESs are physical systems, which can
reduce dependence on expertise. In this paper, the laws of physics
include Kirchhoff’s law, the law of conservation of energy, and the
similarity criterion in fluid mechanics.

After the data preprocessing, researchers can apply the checked
data to fulfilling their goals. In this paper, energy efficiency analysis
is used as the data application to verify the proposed frameowork.
4

2.2. Analysis of data quality

2.2.1. Method for analysis
The analysis includes feature extraction and clustering. First, 14

features are extracted (Table 1.) from raw data: Features #2 - #6
are statistical features of the vector of time window
X ¼ x1; x2; � � � ; xk; � � � ; xnð Þ.

where xk is the number of consistent data missing, k 2 0;Nall½ �,
xk 2 0;Nall½ �.

Features #7 - #14 are used to find if data missing follows some
rules related to time (month, the day of the week, hour in a day,
minute in an hour).

Features #1 - #6 can tell if data missing happens intermittently
or constantly and if massive data missing happens. Features



Table 1
The features about absence in data extracted from raw whole-building data.

No. Features Specification Range

1 The overall missing rate rall ¼ Nall missing=Nall 0;1½ �
2 The minimum time window Nmin ¼ min x1; x2; � � � ; xk; � � � ; xnf g 0;Nmax½ �TNmin � Nall missing

3 The maximum time window Nmax ¼ max x1; x2; � � � ; xk; � � � ; xnf g Nmin;Nall½ �TNmax � Nall missing

4 The number of time windows n 0;Nall½ �
5 The average length of time windows xmean ¼ Pn

k¼1xk=n Nmin;Nmax½ �
6 The variance of length of time windows s2 ¼ Pn

k¼1 xk � xmeanð Þ2=n
7 The month with maximum data missing rate the span ranges from May 2020 to December 2020 5;12½ � \ Nþ

8 The maximum missing rate by month Nmax mon ¼ max xMay; xJun; � � � ; xDec
� �

0;Nall mon½ �
9 The day of the week with maximum data missing

rate
Monday: 0, Tuesday: 1, Wednesday: 2, Tuesday: 3, Friday: 4, Saturday:5,
Sunday: 6.

0;6½ � \ Nþ

10 The maximum missing rate by the day of the
week

Nmax wee ¼ max xMon; xTue; � � � ; xSunf g 0;Nall wee½ �

11 The hour with maximum data missing rate 0: 0.00 � 0:59, 1: 1.00 � 1.59, . . ., 23: 23.00 � 23.59 0;23½ � \ Nþ

12 The maximum missing rate by hour Nmax hou ¼ max x0H ; x1H ; � � � ; x23Hf g 0;Nall hou½ �
13 The minute with maximum data missing rate An arithmetic sequence spaced 15 min apart 0;15; � � � ;45½ �
14 The maximum missing rate by minute Nmax min ¼ max x0min; x15min; � � � ; x45minf g 0;Nall min½ �

Nall missing is the total number of absence in data.
Nall is the total number of data.
In feature #8, xMay means the total number of data missing in May 2020. And so on.
In feature #10, xMon means the total number of data missing in all Mondays in the second half of 2020. And so on.
In feature #12, x0H means the total number of data missing in 0.00 � 0.59 every day in the second half of 2020. And so on.
In feature #14, x15min means the total number of data missing in hourly 15th minute in the second half of 2020. And so on.

Table 2
The details of 141 non-demonstration complexes themselves.

No. Type of information Know or not Total

known unknown

1 Name 0 141 141
2 Appearance 0 141 141
3 Drawings Layout 0 141 141

CES 3 139 141
4 Nameplates Rough 140 0 141

Detailed 1 0
5 Overall Area 140 1 141
6 Location Rough 141 0 141

Detailed 0 0

Rough information of nameplates means we only know the manufacturers of equipment.
Detailed information of nameplates means the nameplates of equipment are known.
Rough location means that we know which province where a complex is located.
Detailed location means the latitude and longitude of a complex.
Among 3 known CESs, 2 of them are primary pump systems, another is a secondary pump system. We have no idea about the type of terminal system for all CESs.

Table 3
The details of data from BECMPs in 141 non-demonstration complexes.

No. Span Time Temporal The number of complex

1 0.5 year May 2020 - Dec 2020 Every 15 min 140
2 6 years Jun 2015 - Oct 2020 Hourly 1

2 known primary pump systems are in #1.
Only 1 known secondary pump system is in #2.
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#7 - #14 give us an insight into whether the data missing is highly
correlated to time. Additionally, the value ranges of features #7
and #13 are confined to the data we have.

After choosing these features, normalization, the ‘‘min-
max_scale” API in scikit-learn[59], makes all features range from
0 to 1. In order to make results convincible, we compare the results
between K-Means and DBSCAN: K-Means is based on partition,
while DBSCAN is based on density.
5

2.2.2. The engineering big data involved in analyzing
Static information: The engineering data involved are from 141

non-demonstration complexes, are provided by a technology com-
pany. Privacy issues are not allowed us to access all details. We
only know the general area and location of almost every building.
Static information is shown in Table 2.

Dynamic data: Data from different BECMPs have some differ-
ences in quantity, interval (Table 3), and labels (Table 4). The rough



Table 4
All labels in BECMPs in 141 non-demonstration complexes.

Level Labels

Weather Ambient dry bulb temperature Ambient relative humidity
Thermal comfort Average indoor temperature*
System Main chilled water flow Main cooling water flow

Main supply chilled water temperature Main supply cooling water temperature
Main return chilled water temperature Main return cooling water temperature
Main supply chilled water pressure Main supply cooling water pressure
Secondary supply chilled water flow** Secondary supply chilled water pressure**
Secondary supply chilled water pressure setting** Cooling load*
The power of overall chillers* The power of overall cooling towers*
The power of overall chilled water pumps* The power of overall cooling water pumps*

Chillers Branch supply chilled water temperature Branch supply cooling water temperature
Branch return chilled water temperature Branch return cooling water temperature
Evaporating temperature** Condensing temperature**
Percent of current* Supply chilled water temperature setting
The power of individual chiller On/off status

Primary chilled water pumps The power of individual pump On/off status**
The frequency of individual pump*

Secondary chilled water pumps The power of single pump** The frequency of individual pump**
On/off status** The frequency gear of individual pump**

Cooling water pumps The power of individual pump On/off status**
The frequency of individual pump*

Cooling towers The frequency of individual fan* On/off status of individual fan**
The frequency gear of individual fan**

**means ONLY #1 in Table 2 has these labels.
*means ONLY #2 in Table 2 has these labels.

R. He, T. Xiao, S. Qiu et al. Energy & Buildings 273 (2022) 112372
locations of all sensors are shown in Fig. 3. These labels give us a
deeper understanding of some HVAC systems:

1) If there is only one label ‘‘on/off status” for a water pump, it
means the fixed frequency pump.

2) If there is a label ‘‘the frequency gear of individual pump”, the
only way to change the frequency of a pump is to adjust the gear.

3) If there is a label ‘‘the frequency of a water pump” and values
are continuous, it means that the water pump is under the stepless
control.
Fig. 3. The rough locations of sensors in

6

2.3. Data preprocessing

2.3.1. Check Kirchhoff’s law
Given the clustering results, the overall hourly power of equip-

ment groups becomes the benchmark of data preprocessing. After
removing the missing data and anomalies in the overall hourly
power of equipment groups, Kirchhoff’s law is used to preprocess
the hourly power of every piece of equipment. The strict subjection
a typical commercial HVAC system.



Fig. 4. The proposed framework for checking data in system level.

Fig. 5. The visualization of data missing of different data. (a) data of chillers, (b) data of fans for cooling towers, (c) data of water pumps and (d) data of header pipes. One bar
is one label, the dark space means no data missing and the white space means data missing. The longer the length of white space, the more severe the data missing is.

R. He, T. Xiao, S. Qiu et al. Energy & Buildings 273 (2022) 112372

7



Table 5
Hyperparameters of K-Means and DBSCAN.

K-Means
n_cluster sample_weight init other
5 None k-means++ default
DBSCAN
eps min_sample metric other
0.3 1000 minkowski default

R. He, T. Xiao, S. Qiu et al. Energy & Buildings 273 (2022) 112372
to Kirchhoff’s law is nearly impossible, so we set the threshold (Eq.
(1)) to use data fully.

jPallchs�
Pk

i¼1
Pchi j

Pallchs
� 0:25i ¼ 1; � � � ; k

jPallchwps
�
Pm

i¼1
Pchwpi j

Pallchwps
� 0:25i ¼ 1; � � � ;m

jPallcwps�
Pn

i¼1
Pcwpi j

Pallcwps
� 0:25i ¼ 1; � � � ;n

jPallctfs�
Pp

i¼1
Pctfi j

Pallctfs
� 0:25i ¼ 1; � � � ;p

8>>>>>>>>>>><>>>>>>>>>>>:
ð1Þ

where Pallchs is the hourly power of all chillers, Pallchwps
is the hourly

power of all chilled water pumps, Pallcwps is the hourly power of all
cooling water pumps, Pallctfs is the hourly power of all fans for all
cooling towers, k is the total number of chillers, m is the total num-
ber of chilled water pumps, n is the total number of cooling water
pumps and p is the total number of the fans for cooling towers.
2.3.2. Check correspondence among labels
After the above procedure, the data of every piece of equipment

can be processed by the overall hourly power of equipment groups.
Generally, there is an exclusive label to record the on/off status of
every chiller. The frequency is necessary for every water pump and
the fan for cooling tower. According to the expertise and similarity
criterion in fluid mechanics, the data that should have been subject
to Eq. (2) and (3) must preprocess.

In engineering, the frequency and the hourly power of some
water pumps and fans cannot be in accordance with Eq. (2)
because of the mismatch among labels. The example of the mis-
match is that the label ‘‘the frequency of chilled water pump #1”
actually monitors the frequency of chilled water pump #2. In terms
of chillers, missing data of on/off status is more severe than that of
the hourly power. We correct the on/off status of every chiller by
Eq. (3). When the chiller is off, the meter fluctuates around 0, so
Fig. 6. The percent of data missing of different kinds of data. (a) the worst situation and (b
the colored bar is, the higher the rate is.

8

the threshold is set to check the on/ff status of every chiller. The
threshold need to be determined based on expertise and reality.

f 1
f 2
¼ n1

n2
¼ Q1

Q2
¼ V

f 1
f 2

� �3
¼ P1

P2

8<: ð2Þ

where f is frequency of a piece of equipment, n is rotate speed of a
piece of equipment, Q is water flow for every water pump or air
flow for every fan. V is speed ratio.

Schi ¼ 1ifPchi > 0
Schi ¼ 0ifPchi � 0:025Pirated

�
; i ¼ 1; � � � ; k ð3Þ

where k is the total number of chillers, Pchi is the hourly power of
the chiller #i, Pirated is the rated power of the chiller #i, Schi is the
on/off status of chiller #i.

Generally, the data of the fans for cooling towers is worse than
those of other equipment:

1) every cooling tower has more than one fan, and these fans
can be controlled independently. In many BECMPs, there is no cor-
respondence between fans and cooling towers in labels, which
means we have no idea which fans are in the same cooling towers.

2) entirely data missing often happens to the data of the hourly
power.

But Pearson correlation coefficient matrix, Eq. (4), can be used
to tell whether all fans are controlled synchronously. If that’s the
) the best situation. The length of colored bar represents the missing rate, the longer



Table 6
The centroids of different clusters (K-Means).

No. clustering Feature #1 Feature #2 Feature #3 Feature #4 Feature #5

0 0.00458 0.000073 0.00121 15.616605 0.00014
1 0.99854 0.998538 0.99854 1 0.99854
2 0.46113 0.018894 0.22648 480.58832 0.06011
3 0.03078 0.000057 0.02172 31.968536 0.00229
4 0.10063 0.012422 0.07744 102.46261 0.02563

No. clustering Feature #6 Feature #7 Feature #8 Feature #9 Feature #10

0 8.52e-07 5.435748 0.016392 0.130619 0.006681
1 2.14e-18 5 1 0.001969 0.99859
2 9.85e-03 7.351796 0.889354 2.597305 0.490453
3 3.96e-05 5.198959 0.17012 1.147859 0.051707
4 6.87e-04 5.252429 0.543724 3.258766 0.119578

No. clustering Feature #11 Feature #12 Feature #13 Feature #14

0 3.96e-01 0.007833 9.28e-01 0.00495
1 1.09e-14 0.998547 �1.12e-12 0.99854
2 6.49e + 00 0.526402 1.51e + 01 0.46367
3 1.38e + 01 0.042414 1.45e + 01 0.0313
4 2.14e + 00 0.116196 1.14e + 01 0.10283

Features #1 - #14 are features #1 - #14 in Table 1.

Fig. 7. The visualization of clustering result by K-Means. Different colored bar means different clusters. The length of colored bar means the count of keyword showing the
corresponding cluster.

Fig. 8. The visualization of clustering result by DBSCAN. Different colored bar means different clusters. The length of colored bar means the count of keyword showing the
corresponding cluster.
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case, Eq. (2) and (3) can batch process these data of the fans for
cooling towers.
9

r ¼
Pn

i¼1 xi � x
�� �

yi � y
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � x
�� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi � y
�� �2

s ð4Þ



Table 7
The key parameters of equipment for case #1.

Name Quantity Key parameters

Chiller 3 Capacity 4462KW Hourly_P 863KW
Chiller 1 Capacity 1371KW Hourly_P 257.3KW
CHWP 2 Water flow 196 m3/h Hydraulic Head 32 m

Hourly_P – Variable frequency YES
CHWP 3 Water flow 639 m3/h Hydraulic Head 32 m

Hourly_P – Variable frequency YES
CWP 2 Water flow 281 m3/h Hydraulic Head 28 m

Hourly_P 28KW Variable frequency YES
CWP 3 Water flow 911 m3/h Hydraulic Head 30 m

Hourly_P 110KW Variable frequency YES
CT – Capacity – Water flow –

CTF_Hourly_P 5.5KW The number of fans –
CT – Capacity – Water flow –

CTF_Hourly_P 7.5KW The number of fans –

- ‘‘–” means that the parameters are unknown.
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where X ¼ x1; � � � ; xnð Þ and Y ¼ y1; � � � ; ynð Þ, X and Y are time series of
frequency of every fan for cooling tower.

2.3.3. Check the law of the conversation of energy and similarity
criterion

When the first two procedures are finished, the data about
pipes can be checked sequentially.The detailed procedure is
Fig. 4. The first step is to compare the water flow calculated by
the similarity criterion and the original water flow in two loops.
CV-RMSE Eq. (7) is used to tell if there are severe data quality
issues happening to the original data of water flow. There are
two scenarios.

1) When water flows in two loops meet the threshold of CV-
RMSE, the law of conversation of energy, Eq. (8), is used to remove
anomalies. The threshold of 0.25 aims to keep as much data as
possible.
Fig. 9. The histogram about the overall hourly power of all chillers, pumps, and cooling
data without zero values.

10
2) If one kind or both of water flow cannot meet the threshold,
Eq. (6) is used to correct the original water flow. The threshold can
be adjusted with the reality. The worse the data quality is, the big-
ger the threshold is. If the original data of water flow is far from the
expertise, Fig. 4 should not be applied.

Qi ¼ f i
f irated

Q irated

Qoverall ¼
Pn

i¼1Qi

(
; i ¼ 1; � � � ;m ð5Þ

where Qi is the water flow of chilled / cooling water pump #i, f i is
the frequency of chilled / cooling water pump #i, m means the total
number of chilled / cooling water pumps. f i is rated frequency
(50 Hz in China) of chilled / cooling water pump #i, Qirated is rated
water flow of chilled / cooling water pump. Qoverall is the main water
flow in chilled / cooling water loop.
towers: diagrams in the first row are from raw data and ones in the second row are



Fig. 10. The relationship between the summary of the hourly power of every chiller and the overall hourly power of all chillers. (a) raw data. (b) data without data missing. (c)
after Kirchhoff’s law.

Fig. 11. The relationship between the summary of the hourly power of every chilled water pumps and the overall hourly power of all chilled water pumps. (a) raw data. (b)
data without data missing. (c) after Kirchhoff’s law.

Fig. 12. The relationship between the summary of the hourly power of every cooling water pumps and the overall hourly power of all cooling water pumps. (a) raw data. (b)
data without data missing. (c) after Kirchhoff’s law.
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cpqQchwDtchw þ Pallchs ¼ cpqQcwDtcw ð6Þ

Where cp is specific heat capacity of water at constant pres-
sure, 4:2kJ= kg � Kð Þ in engineering generally, q is density
of water, 1000kg=m3 in engineering generally, Qchw is main
11
chilled water flow, Qcw is main cooling water flow, Pchs is the
overall hourly power of chillers. Dtchw is chilled water
temperature difference. Dtcw is cooling water temperature
difference.



Fig. 13. The relationship between power and on/off status (0: off 1: on). (a) raw data without data missing, and (b)data after processing.
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Fig. 13 (continued)
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CV � RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi�byi� 	2

n

s
Pn

i¼1
yi

n

ð7Þ

where yi is the original hourly water flow, and byi is the calculated
hourly water flow by frequency. n is the total number of data.
13
�0:25 � cpqQchwiDtchwi þ Pchsi � cpqQcwiDtcwi
� 	

cpqQcwiDtcwi
� 0:25; i

¼ 1; � � � ;n ð8Þ



Fig. 14. The relationship between frequency and hourly power of individual chilled water pumps. (a) raw data (b) corrected data. In every subplot, x-coordinate is the
frequency and y-coordinate is the hourly power. The subplots in the same line/column share the same y/x-coordinate.
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2.3.4. Check other data
Other data, including the temperature of 4 ports of every chiller

and weather data, are processed based on the above data and
expertise.
3. Application

3.1. Analysis of data quality

3.1.1. Overall analysis
When we check the missing rate of different data in one complex

(Fig. 5), we can see:
14
1) In terms of data missing, the data of chillers are better than
those of other equipment.

2) For data of the hourly power of the fan for cooling tower,
complete data missing happens in 19 out of 20 fans.

3) During the second half of 2020, the data of the hourly power
of every water pump and load are missed intermittently and more
frequently.

4) Data of temperature and water flow in header pipe, the over-
all hourly power of equipment group, indoor temperature, and
weather are nearly intact.

When we check the missing rate of all data from all complexes
(Fig. 6), we can see that:



Fig. 14 (continued)
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1) In the best situation (Fig. 6 (b)), the missing rate of every kind
of data can be low, even in the hourly power of the fans for cooling
tower, the worst rate can go to 0.29 %.

2) In the worst situation (Fig. 6 (a).), the missing rate can rocket
to 1.0 (complete data missing). But the missing rate is always low
in the overall hourly power of equipment groups and indoor
temperature.

According to macro- (complexes) and micro- (one complex)
analysis, the hourly power of equipment groups is suitable for
the benchmark to process other data. The clustering results
below prove it further.
15
3.1.2. Cluster the features about missing rate
The 14 features are extracted from raw data; and then K-Means

and DBSCAN are used to analyze if the data missing follows the
patterns. Table 5 shows the hyper-parameters and Table 6 shows
the characteristic of clusters:

1) the data quality of cluster #0 is excellent, and the overall
missing rate (Feature #1) is low.

2) over the overall missing rate of cluster #1 is almost equal to
1, which means the data is missed entirely.



Fig. 15. The relationship between frequency and hourly power of individual cooling water pumps. (a) the raw data (b) the checked data. Other demonstrations are the same
as those in Fig. 13.
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3) In cluster #2, nearly half of the data is missing, and the data
missing happens intermittently because the number of time win-
dows (Feature #4) is much more than that of other clusters.

4) In clusters #3 and #4, the overall missing rates are more
commonplace, but the time-related characteristics vary. Although
both maximum missing rates (Feature #7) occurred in May 2020,
the maximum missing rates (Feature #8) are 0.17 and 0.54,
respectively.

The labels of data are processed before the number of occur-
rences of different labels is counted in each group (Fig. 7, Fig. 8).
For instance, ‘‘CH1” becomes ‘‘CH” and ‘‘CHWP3” becomes
‘‘CHWP”. Furthermore, to distinguish an equipment group from a
16
piece of equipment, ‘‘CHs” means all chillers in a CES, and ‘‘CH”
represent a chiller.

As shown in Fig. 7, all system-level data and indoor temperature
belong to cluster #0. The hourly power of the fan for cooling tower
is classified as cluster #1. Partial data of the hourly power and fre-
quency of a piece of equipment are classified as cluster #2, but the
majority of these data are classified as clusters #3 and #4 on
almost average, which means there is a vast difference in the char-
acteristic of data quality, including hourly power, and frequency of
a piece of the equipment (chiller and water pump).

Fig. 8 is the result of DBSCAN, which is similar to that of K-
Means. Cluster #0 corresponds to cluster #1 in Fig. 7. Cluster #1



Fig. 15 (continued)
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corresponds to cluster #2 in Fig. 7. Cluster #3 corresponds to clus-
ter #2 in Fig. 7. Cluster #-1, #2 correspond to cluster #3, #4.

According to the clustering results, the overall power of equip-
ment groups is better than others, and that is in line with
Section 3.1.2.
3.2. Case study

3.2.1. The reasons why the proposed framework is applied to two cases
This section will show the necessity of every step of the pro-

posed general framework. Two cases are used to demonstrated
how to apply the proposed framework to raw engineering data.
There is marked differences between two cases. In case #1, the
17
water flow is in accordance with expertise and reality, but the
water flow is against expertise in case #2. Different methods are
used to preprocess the water flows in two cases.
3.2.2. Case #1
(i) basic information.
Case #1 is located at Sichuan province, and that is hot summer

and cold winter zone. The area of the complex is 106585 m2. The
BECMP belongs to #1 in Table 3, and Table 7 shows the key param-
eters of equipment.

(ii) check the benchmark for data preprocessing
The first step is to process data of the overall hourly power of

equipment groups (Fig. 9). Without zero values, we can see that



Fig. 17. The scatter plots about energy conservation in two loops. (a) data with data missing. (b) before using the law of conservation of energy. (c) after using the law of
conservation of energy.

Fig. 16. Histogram of water flow in chilled/cooling water loop. The shapes of the distributions are similar.
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the data of overall hourly power of equipment groups are quality:
no data missing and sensible distribution.

(iii) check Kirchhoff’s law.
After checking the data of the overall hourly power of equip-

ment groups, the hourly power of every piece of equipment is pro-
cessed by Kirchhoff’s law. Theoretically, the summary of all hourly
power of every chiller should equal the overall hourly power of all
chillers (Fig. 10(c)). Furthermore, data of water pumps can be done
similarly (Fig. 11, Fig. 12).

(vi) check correspondence among labels.
After processing the hourly power of every chiller, the on/off

status of every chiller can be checked, ensuring the on/off status
is in line with the hourly power. In Fig. 13(a), the raw data of every
chiller’s on/off status are weird, the checked data of the hourly
power of every chiller are used to correct these data (Fig. 13(b)).

Next, the mismatch happening to water pumps should be
solved. Fig. 14 and Fig. 15 show chilled and cooling water pump,
18
respectively. For example, in the red box of the second row of
Fig. 14(a), the raw data means that the combination between the
frequency of pump #3 and the hourly power of pump #2 is in
accordance with the similarity criterion, which does not make
sense. And then, the proposed framework is used to solve these
problems (Fig. 14(b)). In the red box of the second row in Fig. 14
(b), the checked data means that the combination between the fre-
quency and the hourly power of pump #2 is in accordance with the
similarity criterion, which does make sense.

(v) check the law of the conversation of energy and similarity
criterion.

Firstly, the similarity criterion is used to check water flow in the
header pipe (Fig. 16). There is not much difference between the
original data and the calculated data (CV-RMSEchw = 0.21, CV-
RMSEcw = 0.25), so the original water flow is acceptable. And
then, Eq. (8) is used to process load and temperature differences
in the header pipes (Fig. 17).



Fig. 18. The relationship about temperatures in header pipes in case #1.
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(vi) check other data.
After the above procedure, the remaining data should be pro-

cessed by expertise. In Fig. 18, the delta-Ts (difference in tempera-
ture between chilled and cooling water) are expected (5 degreesC
approximately), which means temperature-related data can reflect
the operation.

Fig. 19 shows that massive data missing happened to the hourly
power of the fan for cooling tower, and that problem has been
beyond the proposed framework.

(vii) energy efficiency analysis – verify the proposed
framework.

Energy efficiency analysis is a good way to verify the checked
data by the proposed framework. First, the checked data can show
the relationships between chillers and water pumps but thr raw
data cannot (Fig. 20). Fig. 20(a) and (b) are chilled and cooling
water pumps, respectively.

These relationships are analyzed from two aspects: water pump
frequency and hourly power. The right plots shows that the fre-
quency is in line with the hourly power, but the left plots cannot
show the thing. According to the checked data, it is clear that the
Fig. 19. Visualization for fans in cooling towers in case #1: (a) the hourly pow
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relationships between chillers and water pumps are reasonable
and in accordance with expertise.

Second, Fig. 21 shows that relationships between thermal load
and the number of chillers under operation. In Fig. 21(b), the
checked data shows that the thermal load becomes larger with
the larger capacity of chillers under operation, but Fig. 21(a) shows
the raw data is not in accordance with expertise: a chiller with lar-
ger capacity (the orange dots) cannot deal with 4000KW thermal
load, which will lead to complaints about thermal comfort, but that
did not happen in reality.
3.2.3. Case #2 - supplement
(i) basic information.
Case #2 is a supplement to Case #1. Case #2 is a complex in

Guangxi province in hot summer and warm winter zones. The
key parameters of equipment (Table 8) are more detailed than in
Case #1.

(ii) check the law of the conversation of energy and similarity
criterion.

All procedures are the same before we check the water flow
data. There are two severe problems in water flow (Fig. 22),
which has never been met in Case#1:

1) In (a), the raw chilled water (the blue points) flow surged in
Nov 2020, which is unreasonable. The chilled water water should
drop because the thermal load will drop when winter is
approaching.

2) In (b), there is a massive gap between the raw chilled (the
blue points) and cooling water (the orange points), which is unsea-
sonable.3) In (c), the raw cooling water flow (the blue points) is
beyond the upper limit of the rated water flow calculated by fre-
quency (the orange points), CV-RMSEcw = 0.47. In reality, the cool-
ing water flow cannot reach 3000 m3/h approximately because of
the on/off status of chillers, so the raw cooling water need to be
corrected.

3) In (d), the water temperature differences between supply and
return chilled/cooling water is 5 degrees Celsius approximately,
which is in line with reality and expertise.

4) In (e), after removing the chilled water flow from Nov 2020
onward, the distribution of the raw chilled water flow is similar
with that of the calculated water flow, so the raw chilled water
is regarded as the benchmark to correct the cooling water flow
and thermal load.

According to the above analysis, the cooling water flow is pro-
cessed by the check chilled water flow, temperature (Fig. 22(f)).

(iii) energy efficiency analysis – verify the proposed framework.
er of fans in cooling towers, (b) the frequency of fans in cooling towers.



Fig. 20. The relationships among chillers and water pumps. In every x-coordinate, 0 means the chiller is shut down and 1 means the chiller is running.
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This part is the same as that in Case #1. Fig. 23(a) shows that
the relationships between thermal load and the number of chillers
unber operation is not accordance with expertise. After processing
data by the proposed framework, the relationship is in line with
expertise in Fig. 23(b).
4. Suggestion of data collection

The distribution of sensors (Fig. 6) shows that much more
emphasis is put on chillers and pipes than on other equipment:
every chiller has six types of data, but other pieces of equipment
20
only have two types of data. Worse, among 141 BECMPs, there is
much difference in data quality.

Chillers: 1) The temperature data of four ports need engineers to
check further. 2) It would be nice to be able to record the water
flows of every chiller.

Water pumps: 1) Mismatch between data and labels is severe. 2)
It would be better if the pressure data of the inlet and outlet could
be recorded, which would help engineers maintain water pumps.

Cooling towers: 1) Massive data missing should get attention,
which is a severe problem to solve. 2) Mismatch between data
and labels confused the researchers. 3) it would be better to record
the water flow and temperature data, which can help us tell if the
performance degradation occurs in cooling towers.



Fig. 20 (continued)
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Fig. 21. Comparisons between the sum of nominal capacity of operating chillers and thermal load (case #1). L means the chiller with lager capacity and S means the chiller
with smaller capacity. L1S1 means that 1 chiller with larger capacity and 1 chiller with smaller capacity are operating.

Table 8
The key parameters of equipment for case #2.

Name Quantity Key parameters

Chiller 3 Capacity 3868KW Hourly_P 721.9KW
Tchws 6℃ Tchwr 12℃
Tcws 37℃ Tcws 32℃

Chiller 1 Capacity 1363.9KW Hourly_P 257.3KW
Tchws 6℃ Tchwr 12℃
Tcws 37℃ Tcws 32℃

CHWP 2 Water flow 196 m3/h Hydraulic Head 42 m
Hourly_P 37KW Variable frequency YES

CHWP 3 Water flow 553 m3/h Hydraulic Head 42 m
Hourly_P 110KW Variable frequency YES

CWP 2 Water flow 282 m3/h Hydraulic Head 32 m
Hourly_P 45KW Variable frequency YES

CWP 3 Water flow 789 m3/h Hydraulic Head 32 m
Hourly_P 45KW Variable frequency YES
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Cooperation is necessary to improve the engineering data qual-
ity, although there are some interest conflicts. As a researcher, the
top priority is to get as much data as possible. Still, the quality and
quantity of data are not determined by themselves but by engi-
neers who can check sensors to ensure big engineering data. Addi-
tionally, only a combination of engineering data and experimental
data from manufacturers can help us know if the efficiency of
building energy systems can be improved further Fig. 24.
5. Conclusion

Generally, our work can be divided into two parts: analyzing big
engineering data quality and proposing a rule-based data prepro-
cessing framework based on the analysis.

The analysis of data quality can be concluded:
1) The overall hourly power of equipment groups is excellent in

quality because they are the basis of the electricity bills, so these
data have the potential to be the benchmark for processing other
data in the proposed framework.

2) The complete data missing happened to data of the fan for
cooling tower, like the hourly power, which reminds engineers to
check the data collection about cooling towers.

3) Mismatch between data labels puts an obstacle to data pre-
processing, and the problem occurs in water pumps and cooling
towers frequently, which exposes the fact that these equipment
should have gotten enough attention. They play an integral role
in improving building energy efficiency.

4) The data of weather are stable and excellent because they are
collected by professional third party conpmaies.
22
And then, the rule-based data preprocessing framework is pro-
posed. Lastly, two cases are used to verify the proposed framework
and represent how to preprocess data when different problems
happen to the engineering data.

In the paper, the rule-based data preprocessing framework is
proposed. The proposed framework makes full use of the laws of
physics, which makes it explainable. The proposed framework does
not need to train models in advances to process data, which makes
it convenient. Last, the proposed framework is based on the analy-
sis of engineering big data quality, so the proposed framework is
suitable for engineering. But something needs to be improved in
the future. The thresholds need to be set by expertise and reality.
The framework can reduce but not be independence from the
expertise.
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Fig. 22. Comparison among different kinds of water flow.
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Fig. 23. Comparisons between the sum of nominal capacity of operating chillers and thermal load (case #2). Other demonstrations are the same as those in Fig. 20.

Fig. 24. The ideal situation of different parts involved building energy consumption. The collaboration among three parts is necessary to application of data-driven model in
industry.
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